Supporting Information

Symmetry Lowering in Triindoles: Impact on the Electronic and Photophysical Properties

Constanza Ruiz, Eva M. Garcia-Frutos, Demetrio A. da Silva Filho, Juan T. López Navarrete,* M. Carmen Ruiz Delgado* and Berta Gómez-Lor*
*E-mail: bgl@icmm.csic.es, teodomiro@uma.es; carmenrd@uma.es

Supporting Information

Pag.

1. Characterization of compound 2 c S2
2. Absorption spectra S3
3. Cyclic Voltammetry Measurements S4
4. Spectroelectrochemistry and chemical oxidation S5-S8
5. DFT calculations S9-S23

1. Characterization of compound 2c

Characterization of 5,6,11-trioctyl-6,11-dihydro-5H-diindolo[2,3-a:2',3'-c]carbazole (2c). ${ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right) \delta 8.96(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{ArH}), 8.90(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{ArH}), 8.41(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{ArH}), 7.70-$ $7.63(\mathrm{~m} ; 3 \mathrm{H}, \mathrm{ArH}), 7.57-7.33(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{ArH}), 4.95\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.70\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.58(\mathrm{t}$, $\left.\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.47-0.82\left(\mathrm{~m}, 30 \mathrm{H} ; \mathrm{CH}_{2}\right), 0.71\left(\mathrm{~m}, 9 \mathrm{H} ; \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right) 144.7,143.3,140.8,133.8,131.8,127.0,126.8,125.2,124.5,124.1,123.9,123.5,123.1,122.7,122.2$, $120.3,119.6,119.0,112.7,112.5,112.0,109.8,48.5,48.0,46.8,31.7,31.6,31.5,30.4,29.7,29.3,29.2,28.9$, 28.8, 27.4, 27.0, 26.8, 26.6, 26.4, 22.6, 22.5, 14.1, 14.0; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right): \lambda_{\text {max }}(\varepsilon)=263$ (7447), 309 (7674), 343 (3219), 357 (4092), 390 (1681), 408 (1844) nm; MALDI-TOF MS $m / z 681$ [M $\left.{ }^{+}\right]$, HRMS (MALDITOF) calcd for $\mathrm{C}_{48} \mathrm{H}_{63} \mathrm{~N}_{3}: 681.50165$, found: 681.50189 .

2. Absorption spectra

Figure S1. Experimental UV-Vis spectra of 1b and 2b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions.

3. Cyclic Voltammetry Measurements

a)

Figure S2. Cyclic voltammograms of $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}, \mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$ at $\mathrm{c}=1 \times 10^{-3} \mathrm{molL}^{-1}$ recorded in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M}$ tetra-n-butylammonium hexafluorophosphate $\left(\mathrm{TBAPF}_{6}\right)$ measured versus $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M}$ NaCl) and containing ferrocene as internal standard. Measurements were performed at a scan rate $100 \mathrm{mV} / \mathrm{s}$ using a Pt working electrode and a Pt wire auxiliary electrode.

4. Spectroelectrochemistry and chemical oxidation

Figure S3: Spectroelectrochemistry of $\mathbf{1 c}$ in acetonitrile solution containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as supporting electrolyte at a) 0.5 V, b) 0.9 V c) 1.6 V and d) recovery of the compound from 1.6 to 0.5 V .

Figure S4: Chemical oxidation of $\mathbf{1 c}$ in acetonitrile with different equivalent of NOSbF_{6}.

Figure S5: Spectroelectrochemistry of $\mathbf{2 c}$ in acetonitrile solution containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as supporting electrolyte at a) $0.4 \mathrm{~V}, \mathrm{~b}) 0.8 \mathrm{~V} \mathrm{c)} 1.4 \mathrm{~V}$ and d) recovery of the compound from 1.4 to 0.4 V .

Figure $\mathbf{S 6}$ Chemical oxidation of $\mathbf{2 c}$ in acetonitrile with different equivalent of NOSbF_{6}.

5. DFT calculations

Figure S7. DFT//B3LYP/6-31G** molecular orbital energies and topologies for $\mathbf{1 c}$ and $\mathbf{2 c}$.

HOMO-2

номо

SOMO

Figure S8. DFT// B3LYP/6-31G** molecular orbitals involved in the orbital transitions associated with the optical bands of radical cation species of $\mathbf{1 c}$ (top) and $\mathbf{2 c}$ (bottom).

Table S1. Vertical transition energies and oscillator strengths (f) calculated using TD-DFT//B3LYP/6$31 \mathrm{G}^{* *}$ for the $\mathbf{1 b}$ and $\mathbf{2 b}$ systems.

compound	TDDFT//B3LYP/6-31G**	
	Calculated Transition energy (eV)	description
1b	4.02 (f=0.45)	$\mathrm{H} \rightarrow \mathrm{L}, \mathrm{H}-1 \rightarrow \mathrm{~L}+1$
	4.02 ($\mathrm{f}=0.45$)	$\mathbf{H - 1} \rightarrow \mathrm{L}, \mathrm{H} \rightarrow \mathrm{L}+\mathbf{1}$
	4.23 (f=0.16)	$\mathrm{H} \rightarrow \mathrm{L}+2$
	4.23 ($\mathrm{f}=0.16$)	$\mathrm{H}-2 \rightarrow \mathrm{~L}+2$
	4.89 (f=0.30)	$\mathrm{H} \rightarrow \mathrm{L}+5$
	4.89 (f=0.30)	$\mathrm{H}-1 \rightarrow \mathrm{~L}+5$
$1 b^{\bullet+}$	1.11 (f=0.05)	$\mathrm{H}-1 \rightarrow \mathrm{~S}$
	1.83 (f=0.14)	$\mathrm{H}-2 \rightarrow \mathrm{~S}$
	3.96 (f=0.16)	$\mathrm{H}-1 \rightarrow \mathrm{~L}, \mathrm{H}-9 \rightarrow \mathrm{~S}$
$1 \mathrm{~b}^{+}$	1.29 (f=0.09)	$\mathbf{H - 1} \rightarrow \mathrm{L}$
	1.76 (f=0.10)	$\mathrm{H}-3 \rightarrow \mathrm{~L}, \mathrm{H}-2 \rightarrow \mathrm{~L}$
	2.17 ($\mathrm{f}=0.29$)	$\mathrm{H}-2 \rightarrow \mathrm{~L}, \mathrm{H}-3 \rightarrow \mathrm{~L}$
$2 \mathbf{b}^{+2}$	3.21 (f=0.13)	$\mathrm{H} \rightarrow \mathrm{L}$
	3.56 (f=0.21)	$\mathrm{H}-1 \rightarrow \mathrm{~L}$
	3.99 (f=0.10)	$\mathrm{H} \rightarrow \mathrm{L}+\mathbf{1}$
	4.19 (f=0.10)	$\mathrm{H}-2 \rightarrow \mathrm{~L}$
	4.29 (f=0.27)	$\mathrm{H}-2 \rightarrow \mathrm{~L}, \mathrm{H}-1 \rightarrow \mathrm{~L}+1$
	4.34 ($\mathrm{f}=0.28$)	$\mathrm{H} \rightarrow \mathrm{L}+2$
	4.79 (f=0.16)	$\mathrm{H} \rightarrow \mathrm{L}+4$
	4.93 (f=0.40)	$\mathrm{H} \rightarrow \mathrm{L}+5$
$2 b^{\text {- }}$	1.42 ($\mathrm{f}=0.06$)	$\mathrm{H}-1 \rightarrow \mathrm{~S}$
	1.73 (f=0.10)	$\mathrm{H}-2 \rightarrow \mathrm{~S}$
	3.85 ($\mathrm{f}=0.22$)	$\mathrm{H} \rightarrow \mathrm{L}$
$2 \mathbf{b}^{+2}$	1.57 (f=0.15)	$\mathrm{H}-1 \rightarrow \mathrm{~L}$
	2.00 (f=0.17)	$\mathrm{H}-2 \rightarrow \mathrm{~L}$
	2.16 (f=0.08)	$\mathrm{H}-4 \rightarrow \mathrm{~L}$
	2.65 (f=0.05)	$\mathrm{H}-5 \rightarrow \mathrm{~L}$

Figure S9. Simulated absorption spectra for $\mathbf{1 b}$ (left) and $\mathbf{2 b}$ (right) in the neutral, cation and dication states together with the TD-DFT//B3LYP/6-31G** excitations (wavelenght vs. oscillator strength) shown as vertical bars.

1b

2b

Figure S10. DFT-B3LYP/6-31G** calculated bond-length modifications (\AA) for $\mathbf{1 b}$ and 2b molecules upon oxidation. The bond length modifications ($\Delta \mathrm{x}$) larger than $0.010 \AA$ are highlighted in red and those highlighted in blue corresponds to $0.005 \AA<\Delta x>0.010 \AA$.

1b

2b

Figure S11. DFT-B3LYP/6-31G** calculated bond-length modifications (\AA) for $\mathbf{1 b}$ and $\mathbf{2 b}$ molecules upon going from the S_{0} ground state to the S_{1} excited state. The bond length modifications ($\Delta \mathrm{x}$) larger than $0.010 \AA$ are highlighted in red.

Figure S12. Representation of the 1a $632 \mathrm{~cm}-1$ (a) mode and $1330 \mathrm{~cm}-1$ (b) S_{1} modes presented on Table S3.

Figure S13. Representation of the $1 \mathrm{~b} 120 \mathrm{~cm}^{-1}$ (a), $333 \mathrm{~cm}^{-1}$ (b), $1243 \mathrm{~cm}^{-1}$ (c) and $1340 \mathrm{~cm}^{-1}$ (d) S_{1} modes presented in table S 4 .

Figure S14. Representation of the 2a $243 \mathrm{~cm}^{-1}$ (a), $293 \mathrm{~cm}^{-1}$ (b), $397 \mathrm{~cm}^{-1}$ (c) and $1329 \mathrm{~cm}^{-1}$ (d) S_{1} modes presented in Table S5.

Figure S15. Representation of the 2b $39 \mathrm{~cm}^{-1}$ (a), $262 \mathrm{~cm}^{-1}$ (b), $303 \mathrm{~cm}^{-1}$ (c) and $1394 \mathrm{~cm}^{-1}$ (d) S_{1} modes presented in table S 6 .

Figure S16. Emission $\left(S_{1} \rightarrow S_{\mathfrak{a}}\right)$ vibrational progression of 1a together with the transitions with intensities larger than 1E-5.

Figure S17. Emission $\left(S_{1} \rightarrow S_{0}\right)$ vibrational progression of $\mathbf{1 b}$ together with the transitions with intensities larger than 1E-5.

Figure S18. Absorption $\left(S_{0} \rightarrow S_{1}\right)($ red $)$ and emission $\left(S_{1} \rightarrow S_{0}\right)$ (black) vibrational progression of $\mathbf{2 a}$ together with the transitions with intensities larger than 1E-5.

Figure S19. Absorption $\left(S_{0} \rightarrow S_{1}\right)$ (red) and emission $\left(S_{1} \rightarrow S_{0}\right)$ (black) vibrational progression of $\mathbf{2 b}$ together with the transitions with intensities larger than 1E-5.

Table S2. $S_{1} \rightarrow S_{0}$ relaxation energies computed by substracting the ground state energy at the S_{1} geometry and the ground state energy at the optimized ground state geometry.

compound	DFT//B3LYP/6-31G**
	$\lambda^{s_{1}+s_{0}}(\mathrm{meV})$
$\mathbf{1 a}$	67
1b	80
2a	143
2b	177

Table S3. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for 1a emission. Only modes with S larger than 0.1 are presented.

Frequency $\left(\mathrm{cm}^{-1}\right)$	S	λ (meV)
632	0.1	5
1330	0.2	34

Table S4. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for 1b emission. Only modes with S larger than 0.1 are presented.

Frequency $\left(\mathrm{cm}^{-1}\right)$	S	$\lambda(\mathrm{meV})$
120	0.2	3
303	0.1	2
333	0.1	5
1149	0.1	10
1243	0.1	15
1340	0.1	12

Table S5. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for 2a emission. Only modes with S larger than 0.1 are presented.

Frequency $\left(\mathrm{cm}^{-1}\right)$	S	$\lambda(\mathrm{meV})$
69	0.1	1
89	0.1	1
139	0.1	1
162	0.1	1
243	0.3	8
264	0.1	4
293	0.2	7
397	0.2	8
1259	0.1	11
1329	0.2	29
1392	0.1	9
3667	0.1	27

Table S6. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for 2b emission. Only modes with S larger than 0.1 are presented.

Frequency $\left(\mathrm{cm}^{-1}\right)$	S	$\lambda(\mathrm{meV})$
39	0.3	2
50	0.2	1
64	0.2	2
102	0.2	2
116	0.1	2
176	0.1	1
262	0.5	17
303	0.2	7
354	0.1	3
362	0.2	9
1145	0.1	10
1250	0.1	8
1394	0.1	15
1648	0.1	14

