Supporting Information

Symmetry Lowering in Triindoles: Impact on the Electronic and Photophysical Properties

Constanza Ruiz, Eva M. Garcia-Frutos, Demetrio A. da Silva Filho, Juan T. López Navarrete,*

M. Carmen Ruiz Delgado* and Berta Gómez-Lor*

*E-mail: bgl@icmm.csic.es, teodomiro@uma.es; carmenrd@uma.es

Supporting Information

		Pag.
1.	Characterization of compound 2c	S2
2.	Absorption spectra	S 3
3.	Cyclic Voltammetry Measurements	S4
4.	Spectroelectrochemistry and chemical oxidation	S5-S8
5.	DFT calculations	S9-S23

1. Characterization of compound 2c

Characterization of 5,6,11-trioctyl-6,11-dihydro-5H-diindolo[2,3-a:2',3'-c]carbazole (**2c**). ¹H NMR (200 MHz, CDCl₃, δ) δ 8.96 (d, J = 7.9Hz, 1 H; ArH), 8.90 (d, J = 7.7 Hz, 1 H; ArH), 8.41 (d, J = 8.1 Hz, 1 H; ArH), 7.70-7.63 (m; 3H, ArH), 7.57-7.33(m, 6 H; ArH), 4.95 (t, J = 7.9 Hz, 2 H; CH₂), 4.70 (t, J = 7.4 Hz, 2 H; CH₂), 4.58 (t, J = 7.5 Hz, 2 H; CH₂), 2.10 (m, 6 H; CH₂), 1.47-0.82 (m, 30 H; CH₂), 0.71 (m, 9 H; CH₃); ¹³C NMR (50 MHz, CDCl₃, δ) 144.7, 143.3, 140.8, 133.8, 131.8, 127.0, 126.8, 125.2, 124.5, 124.1, 123.9, 123.5, 123.1, 122.7, 122.2, 120.3, 119.6, 119.0, 112.7, 112.5, 112.0, 109.8, 48.5, 48.0, 46.8, 31.7, 31.6, 31.5, 30.4, 29.7, 29.3, 29.2, 28.9, 28.8, 27.4, 27.0, 26.8, 26.6, 26.4, 22.6, 22.5, 14.1, 14.0; UV-vis (CH₂Cl₂, 25 °C): λ_{max} (ε) = 263 (7447), 309 (7674), 343 (3219), 357 (4092), 390 (1681), 408 (1844) nm; MALDI-TOF MS *m/z* 681 [M⁺], HRMS (MALDI-TOF) calcd for C₄₈H₆₃N₃: 681.50165, found: 681.50189.

2. Absorption spectra

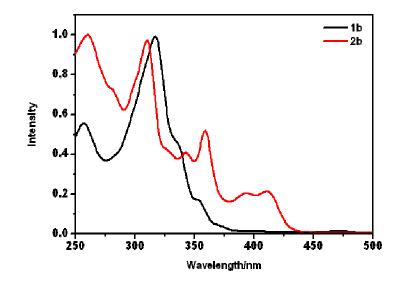
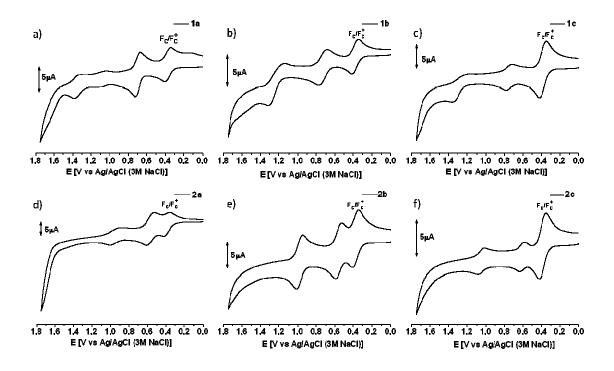
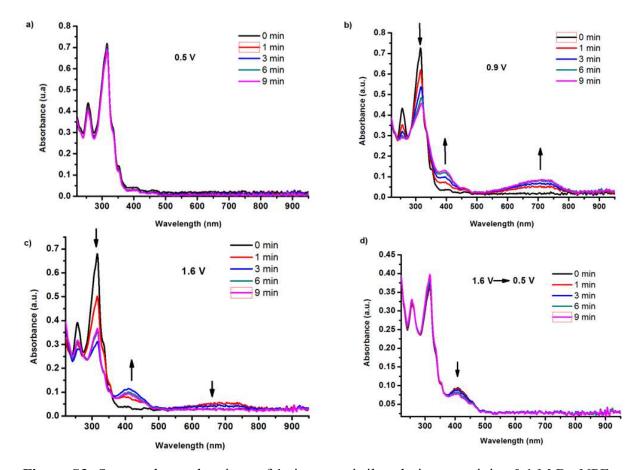




Figure S1. Experimental UV-Vis spectra of 1b and 2b in CH₂Cl₂ solutions.

3. Cyclic Voltammetry Measurements

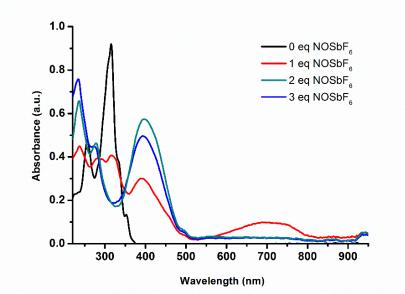


Figure S2. Cyclic voltammograms of **1a**, **1b**, **1c**, **2a**, **2b** and **2c** at $c = 1x10^{-3} molL^{-1}$ recorded in CH₃CN/ 0.1M tetra-*n*-butylammonium hexafluorophosphate (TBAPF₆) measured versus Ag/AgCl (3M NaCl) and containing ferrocene as internal standard. Measurements were performed at a scan rate 100mV/s using a Pt working electrode and a Pt wire auxiliary electrode.

4. Spectroelectrochemistry and chemical oxidation

Figure S3: Spectroelectrochemistry of **1c** in acetonitrile solution containing 0.1 M Bu₄NPF₆ as supporting electrolyte at a) 0.5 V, b) 0.9 V c) 1.6 V and d) recovery of the compound from 1.6 to 0.5 V.

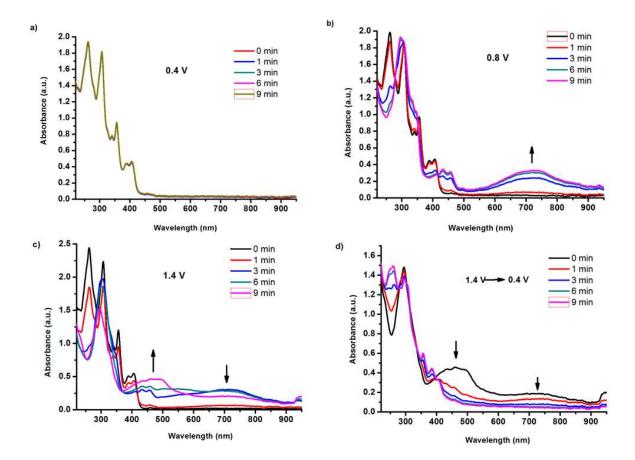


Figure S4: Chemical oxidation of 1c in acetonitrile with different equivalent of NOSbF₆.

Figure S5: Spectroelectrochemistry of **2c** in acetonitrile solution containing 0.1 M Bu₄NPF₆ as supporting electrolyte at a) 0.4 V, b) 0.8 V c) 1.4 V and d) recovery of the compound from 1.4 to 0.4 V.

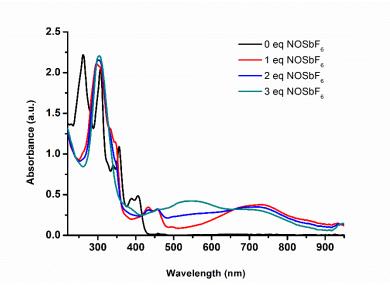
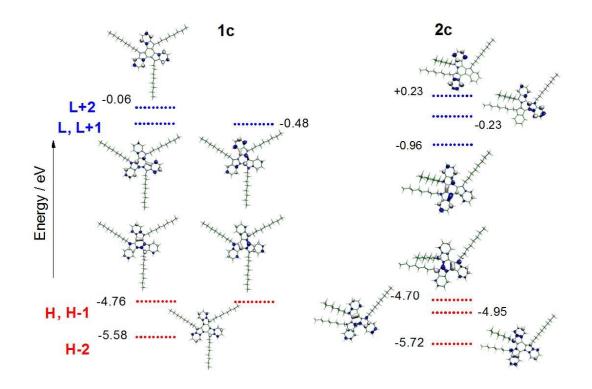
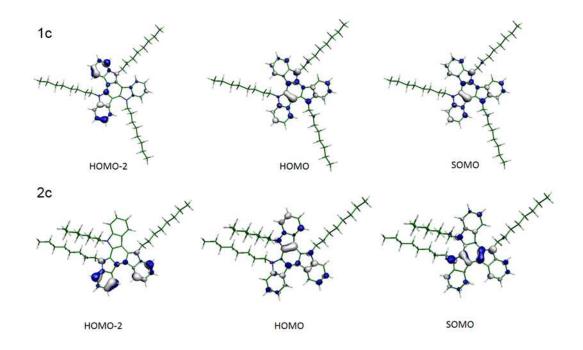
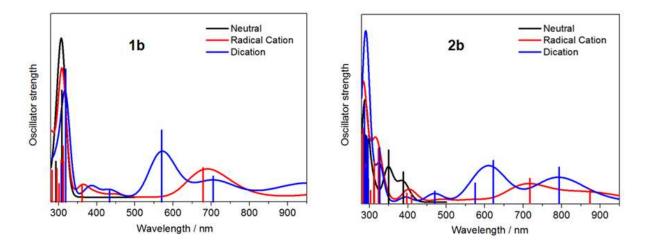
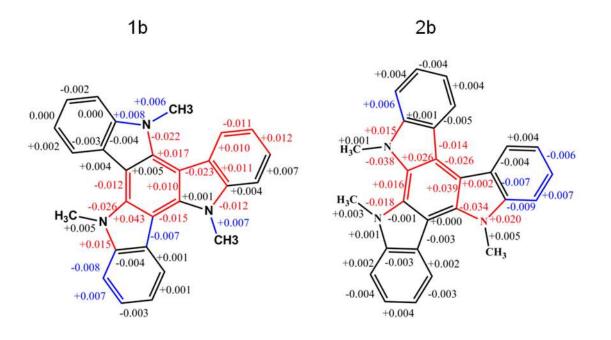


Figure S6 Chemical oxidation of 2c in acetonitrile with different equivalent of NOSbF₆.

5. DFT calculations


Figure S7. DFT//B3LYP/6-31G** molecular orbital energies and topologies for 1c and 2c.


Figure S8. DFT// B3LYP/6-31G** molecular orbitals involved in the orbital transitions associated with the optical bands of radical cation species of **1c** (top) and **2c** (bottom).

ompound	TDDFT//B3LYP/6-31G**		
	Calculated	description	
	Transition energy (eV)		
1b	4.02 (f=0.45)	H →L, H-1→L +1	
	4.02 (f=0.45)	H-1 →L, H →L+1	
	4.23 (f=0.16)	H →L+2	
	4.23 (f=0.16)	H-2 →L+2	
	4.89 (f=0.30)	H →L+5	
	4.89 (f=0.30)	H-1 →L+5	
1 b •+	1.11 (f=0.05)	H-1 → S	
	1.83 (f=0.14)	H-2 → S	
	3.96 (f=0.16)	H-1→L, H-9→S	
1 b ⁺	1.29 (f=0.09)	H-1 → L	
	1.76 (f=0.10)	H-3→L, H-2→L	
	2.17 (f=0.29)	H-2→L, H-3→L	
$2b^{+2}$	3.21 (f=0.13)	H→L	
	3.56 (f=0.21)	H-1 → L	
	3.99 (f=0.10)	H →L+1	
	4.19 (f=0.10)	H-2 →L	
	4.29 (f=0.27)	H-2 →L, H-1→L+1	
	4.34 (f=0.28)	H →L+2	
	4.79 (f=0.16)	H →L+4	
	4.93 (f=0.40)	H → L+5	
2b ^{•+}	1.42 (f=0.06)	H-1 →S	
	1.73 (f=0.10)	H-2 → S	
	3.85 (f=0.22)	H→L	
2b ⁺²	1.57 (f=0.15)	H-1 → L	
	2.00 (f=0.17)	H-2 → L	
	2.16 (f=0.08)	H-4→L	
	2.65 (f=0.05)	H-5 → L	

Table S1. Vertical transition energies and oscillator strengths (f) calculated using TD-DFT//B3LYP/6- $31G^{**}$ for the 1b and 2b systems.

Figure S9. Simulated absorption spectra for **1b** (left) and **2b** (right) in the neutral, cation and dication states together with the TD-DFT//B3LYP/6-31G** excitations (wavelenght vs. oscillator strength) shown as vertical bars.

Figure S10. DFT-B3LYP/6-31G** calculated bond-length modifications (Å) for **1b** and **2b** molecules upon oxidation. The bond length modifications (Δx) larger than 0.010 Å are highlighted in red and those highlighted in blue corresponds to 0.005 Å $<\Delta x > 0.010$ Å.

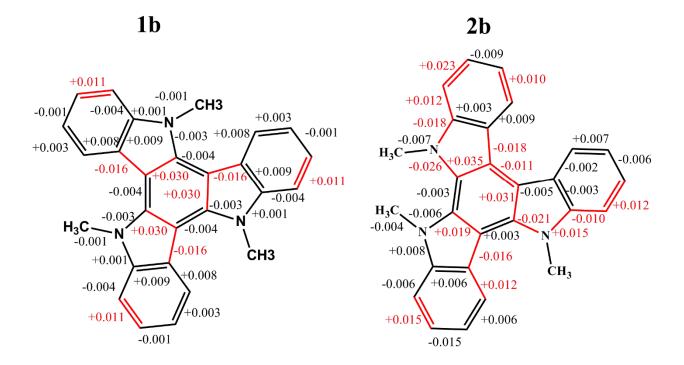


Figure S11. DFT-B3LYP/6-31G** calculated bond-length modifications (Å) for 1b and 2b molecules upon going from the S₀ ground state to the S₁ excited state. The bond length modifications (Δx) larger than 0.010 Å are highlighted in red.

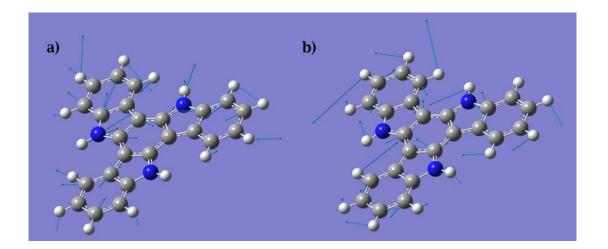


Figure S12. Representation of the 1a 632 cm-1 (a) mode and 1330 cm-1 (b) S_1 modes presented on Table S3.

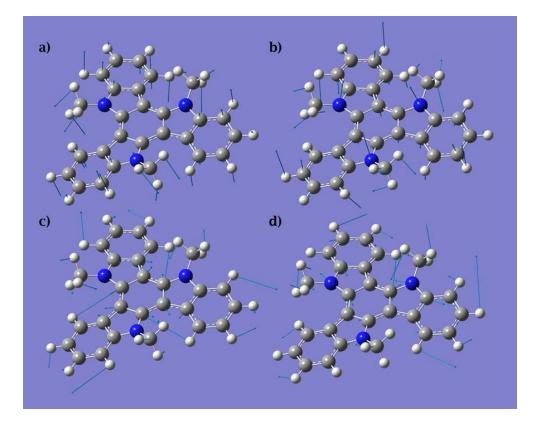


Figure S13. Representation of the 1b 120 cm⁻¹ (a), 333 cm⁻¹ (b), 1243 cm⁻¹ (c) and 1340 cm⁻¹ (d) S_1 modes presented in table S4.

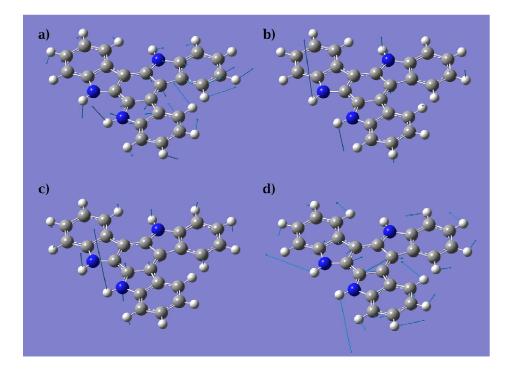


Figure S14. Representation of the 2a 243 cm⁻¹ (a), 293 cm⁻¹ (b), 397 cm⁻¹ (c) and 1329 cm⁻¹ (d) S_1 modes presented in Table S5.

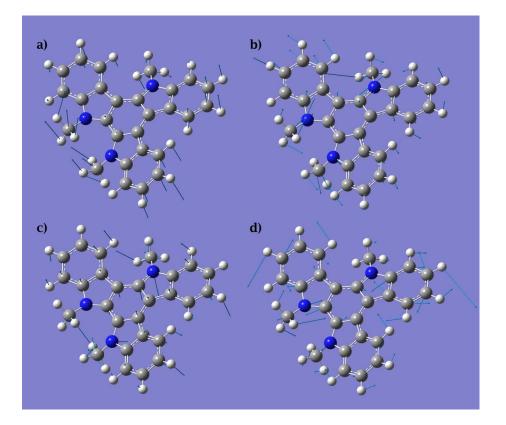


Figure S15. Representation of the 2b 39 cm⁻¹ (a), 262 cm⁻¹ (b), 303 cm⁻¹ (c) and 1394 cm⁻¹ (d) S_1 modes presented in table S6.

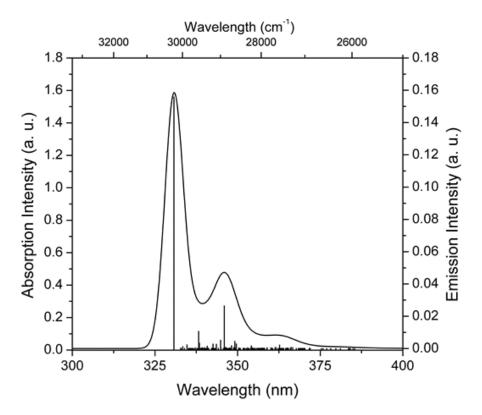
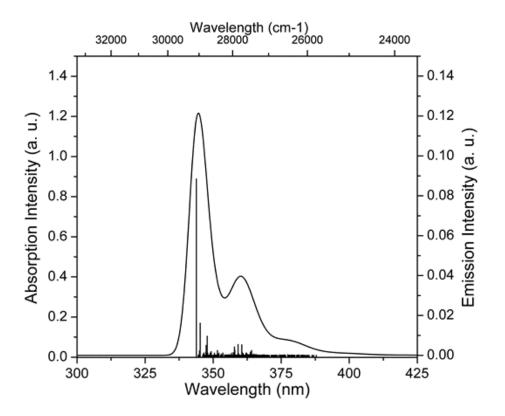
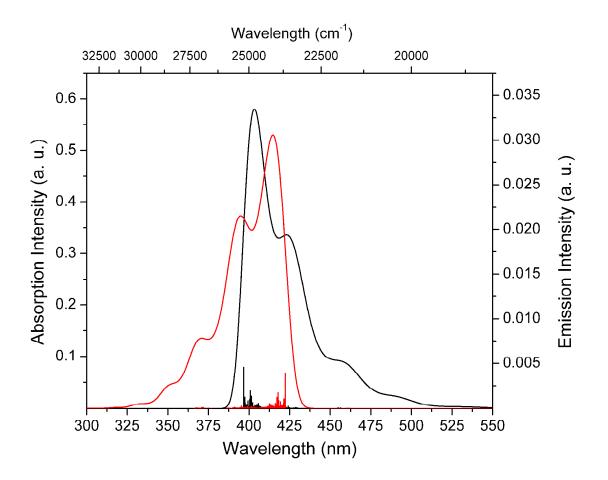




Figure S16. Emission $(S_1 \rightarrow S_0)$ vibrational progression of 1a together with the transitions with intensities larger than 1E-5.

Figure S17. Emission $(S_1 \rightarrow S_0)$ vibrational progression of **1b** together with the transitions with intensities larger than 1E-5.

Figure S18. Absorption $(S_0 \rightarrow S_1)$ (red) and emission $(S_1 \rightarrow S_0)$ (black) vibrational progression of **2a** together with the transitions with intensities larger than 1E-5.

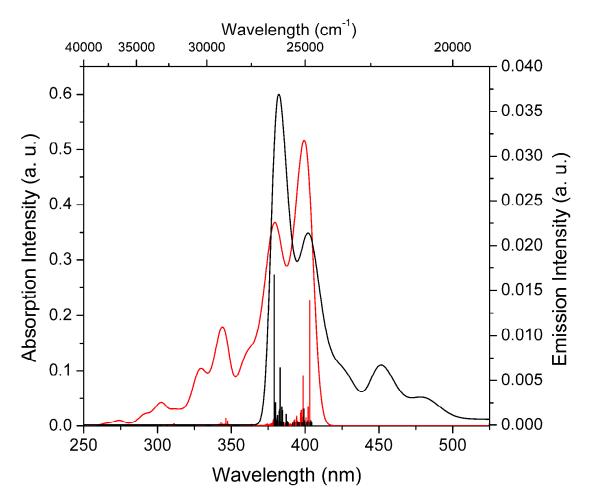


Figure S19. Absorption $(S_0 \rightarrow S_1)$ (red) and emission $(S_1 \rightarrow S_0)$ (black) vibrational progression of 2b together with the transitions with intensities larger than 1E-5.

Table S2. $S_1 \rightarrow S_0$ relaxation energies computed by substracting the ground state energy at the S_1 geometry and the ground state energy at the optimized ground state geometry.

compound	DFT//B3LYP/6-31G**	
	$\lambda^{S_{\pm} \to S_{0}}$ (meV)	
1a	67	
1b	80	
2a	143	
2b	177	

Table S3. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for **1a** emission. Only modes with S larger than 0.1 are presented.

Frequency	S	λ
(cm^{-1})		(meV)
632	0.1	5
1330	0.2	34

Table S4. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for **1b** emission. Only modes with S larger than 0.1 are presented.

Frequency (cm ⁻¹)	S	λ (meV)
120	0.2	3
303	0.1	2
333	0.1	5
1149	0.1	10
1243	0.1	15
1340	0.1	12

Frequency (cm^{-1})	S	۸ (meV)
69	0.1	1
89	0.1	1
139	0.1	1
162	0.1	1
243	0.3	8
264	0.1	4
293	0.2	7
397	0.2	8
1259	0.1	11
1329	0.2	29
1392	0.1	9
3667	0.1	27

Table S5. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for **2a** emission. Only modes with S larger than 0.1 are presented.

Frequency (cm ⁻¹)	S	λ (meV)
39	0.3	2
50	0.2	1
64	0.2	2
102	0.2	2
116	0.1	2
176	0.1	1
262	0.5	17
303	0.2	7
354	0.1	3
362	0.2	9
1145	0.1	10
1250	0.1	8
1394	0.1	15
1648	0.1	14

Table S6. Frequency, S (Huang-Rhys) factor and corresponding relaxation energy for **2b** emission. Only modes with S larger than 0.1 are presented.