Supporting Information

Supporting Information Materials and Methods

In-gel digestion

Gel pieces were sliced into $\sim 1 \mathrm{~mm}^{3}$ cubes and de-stained with 50 mM ammonium bicarbonate in a $50 \% \mathrm{ACN}$ aqueous solution at $37^{\circ} \mathrm{C}$ for 45 min . Subsequently, the gel pieces were dehydrated in $70 \% \mathrm{ACN}$, then $100 \% \mathrm{ACN}$, reduced with 10 mM DTT, and alkylated with 50 mM iodoacetamide. The gel pieces were once again washed and dehydrated. After the gels were fully dried, they were rehydrated with $25 \mathrm{ng} / \mu \mathrm{L}$ of sequencing-grade trypsin in freshly prepared reaction buffer (50 mM ammonium bicarbonate, $0.1 \mathrm{mM} \mathrm{CaCl}_{2}, \mathrm{pH} 8.0$). Any remaining solution was discarded from the gels, and $50 \mu \mathrm{~L}$ of additional reaction buffer was added. After overnight incubation at $37^{\circ} \mathrm{C}, 50 \mu \mathrm{~L}$ of 10% formic acid $/ 10 \% \mathrm{ACN}$ solution was added, and the digested peptides were extracted by ultrasonication. Then, the peptides were extracted using $100 \mu \mathrm{l}$ of a 0.1% trifluoroacetic acid (TFA)/50\% ACN solution, followed by a 0.1% TFA $/ 70 \%$ ACN solution, and finally a $0.1 \% \mathrm{TFA} / 100 \% \mathrm{ACN}$ solution. The collected peptides were dried in a SpeedVac vacuum evaporator and reconstituted in $10 \mu \mathrm{~L}$ of 0.1% formic acid in distilled water. The samples were centrifuged prior to LCMS/MS injection.

Solvent gradients and parameters for the LC-MS/MS analysis

The peptides were eluted using the mobile phase gradient of solvent $\mathrm{A}(0.1 \%$ formic acid in water) and $\mathrm{B}(0.1 \%$ formic acid in ACN$)$ with a flow rate of $200 \mathrm{~nL} / \mathrm{min}$. The gradient started with 2% solvent B and increased to 50% by 100 min , then increased to 100% by 105 min . After 5 min of maintaining 100% solvent B (washing), the column was equilibrated with 98% solvent A and 2% solvent B for another 10 min . The eluted peptides were ionized by nanospray with a voltage of 1.4 kV and submitted to the mass spectrometer. Peptide ions were first analyzed with a full-MS scan in a range of $300-2000 \mathrm{~m} / \mathrm{z}$, and the top 7 most intense ions from the full-MS scan were data-dependently selected for CID tandem MS analysis (normalized collision energy of 35 for 30 msec). The following dynamic exclusion parameters of the data-dependent scan were used: repeat count $=2$, repeat duration $=30 \mathrm{sec}$, list size $=300$, exclusion duration $=180 \mathrm{sec}$, low mass width $=0.8$, and high mass width $=2.2$.

Protein identification through database searching

In detail, SEQUEST was searched with a fragment ion mass tolerance of 1.00 Da and a parent ion tolerance of 1.00 Da . Iodoacetamide derivatives of cysteine and methionine oxidation were specified as a fixed modification and a variable modification, respectively. Peptide identifications were accepted if they exceeded the following thresholds: DeltaCn scores greater than 0.10 and XCorr scores greater than $1.8,2.5,3.5$ and 3.5 for singly, doubly, triply, and quadruply charged peptides. Protein identifications were accepted if they contained at least 2 identified peptides, and proteins that contained similar peptides that could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony.

Table S1. List of the down-regulated secretory proteins (70 proteins).

Gene symbol	Accession \#	MW	$\begin{gathered} \text { Mean } \pm \text { SD } \\ \text { of Control } \end{gathered}$	$\begin{gathered} \text { Mean } \pm \text { SD } \\ \text { of GKB treated } \end{gathered}$	p value $^{\text {a }}$	Rsc ${ }^{\text {a }}$
ADAM9	IPI00440932	91	0.8 ± 0.5	0.0 ± 0.0	0.039	$-\infty$
AGRN	IPI00374563	215	0.9 ± 0.2	0.0 ± 0.0	0.003	$-\infty$
ATRN	IPI00162735	141	1.0 ± 0.4	0.0 ± 0.0	0.010	$-\infty$
B4GALT1	IPI00215767	44	0.7 ± 0.4	0.0 ± 0.0	0.038	$-\infty$
BMP1	IPI00009054	111	2.3 ± 0.6	0.0 ± 0.0	0.004	$-\infty$
CILP2	IPI00216780	127	0.6 ± 0.2	0.0 ± 0.0	0.007	$-\infty$
COCH	IPI00012386	59	0.6 ± 0.1	0.0 ± 0.0	0.001	$-\infty$
COL18A1	IPI00022822	154	1.8 ± 0.4	0.0 ± 0.0	0.002	- -
COL6A2	IPI00304840	109	0.9 ± 0.3	0.0 ± 0.0	0.006	$-\infty$
CPE	IPI00031121	64	1.9 ± 0.6	0.0 ± 0.0	0.007	$-\infty$
CXCL16	IPI00004946	30	0.8 ± 0.5	0.0 ± 0.0	0.046	$-\infty$
DKK1	IPI00016353	29	0.8 ± 0.4	0.0 ± 0.0	0.023	$-\infty$
ECM1	IPI00003351	61	0.4 ± 0.1	0.0 ± 0.0	0.001	- -
F2	IPI00019568	70	0.4 ± 0.1	0.0 ± 0.0	0.001	$-\infty$
FBLN1	IPI00296534	77	0.7 ± 0.2	0.0 ± 0.0	0.007	- -
FBLN1	IPI00296537	74	1.0 ± 0.1	0.0 ± 0.0	0.000	$-\infty$
FGF19	IPI00032908	24	1.4 ± 0.1	0.0 ± 0.0	0.000	- -
FN1	IPI00022418	263	1.2 ± 0.5	0.0 ± 0.0	0.013	$-\infty$
FSTL1	IPI00029723	35	1.6 ± 0.9	0.0 ± 0.0	0.046	- -
FUCA2	IPI00012440	54	0.8 ± 0.0	0.0 ± 0.0	N/A ${ }^{\text {b }}$	$-\infty$
GALNT2	IPI00004669	65	1.2 ± 0.6	0.0 ± 0.0	0.017	- -
GDF15	IPI00306543	34	1.1 ± 0.1	0.0 ± 0.0	0.000	$-\infty$
HAPLN3	IPI00045527	48	1.4 ± 0.4	0.0 ± 0.0	0.003	- -
HSPG2	IPI00024284	469	7.4 ± 0.9	0.0 ± 0.0	0.000	$-\infty$
IGFBP6	IPI00029235	25	1.5 ± 0.5	0.0 ± 0.0	0.006	- -
KITLG	IPI00220142	28	1.0 ± 0.1	0.0 ± 0.0	0.000	$-\infty$
KLK10	IPI00480121	30	1.0 ± 0.6	0.0 ± 0.0	0.048	$-\infty$
LAMA3	IPI00377045	367	1.2 ± 0.7	0.0 ± 0.0	0.045	$-\infty$
LAMA5	IPI00783665	400	5.3 ± 1.1	0.0 ± 0.0	0.001	$-\infty$
LAMB1	IPI00013976	198	3.2 ± 0.3	0.0 ± 0.0	0.000	- -
LAMB2	IPI00296922	196	0.7 ± 0.1	0.0 ± 0.0	0.000	$-\infty$
LAMB3	IPI00299404	130	1.0 ± 0.5	0.0 ± 0.0	0.021	$-\infty$
LAMC1	IPI00298281	178	2.8 ± 0.6	0.0 ± 0.0	0.002	$-\infty$
LAMC2	IPI00015117	131	0.7 ± 0.4	0.0 ± 0.0	0.035	$-\infty$
LCN2	IPI00299547	23	1.8 ± 0.4	0.0 ± 0.0	0.002	- -
LOXL2	IPI00294839	87	1.0 ± 0.3	0.0 ± 0.0	0.005	$-\infty$
MAMDC2	IPI00183750	78	1.1 ± 0.1	0.0 ± 0.0	0.000	- -
PAM	IPI00177543	108	2.8 ± 1.2	0.0 ± 0.0	0.013	$-\infty$
PLAT	IPI00019590	63	0.6 ± 0.2	0.0 ± 0.0	0.004	$-\infty$

PLAU	IPI00296180	49	1.0 ± 0.4	0.0 ± 0.0	0.008	$-\infty$
PROS1	IPI00294004	75	0.6 ± 0.3	0.0 ± 0.0	0.021	$-\infty$
QSOX1	IPI00003590	83	7.4 ± 0.3	0.0 ± 0.0	0.000	$-\infty$
RNASE4	IPI00029699	17	1.3 ± 0.3	0.0 ± 0.0	0.001	$-\infty$
SCG2	IPI00009362	71	0.4 ± 0.0	0.0 ± 0.0	N/A	$-\infty$
SERPINE1	IPI00007118	45	1.4 ± 0.6	0.0 ± 0.0	0.017	$-\infty$
SERPINE2	IPI00914848	44	4.5 ± 0.9	0.0 ± 0.0	0.001	$-\infty$
SERPING1	IPI00879931	59	0.5 ± 0.1	0.0 ± 0.0	0.000	$-\infty$
SERPINI1	IPI00016150	46	0.7 ± 0.3	0.0 ± 0.0	0.017	$-\infty$
SPINT1	IPI00376403	58	0.9 ± 0.1	0.0 ± 0.0	0.000	$-\infty$
TF	IPI00945626	63	0.8 ± 0.1	0.0 ± 0.0	0.000	$-\infty$
TGFB1	IPI00000075	44	1.1 ± 0.5	0.0 ± 0.0	0.018	$-\infty$
THBS 1	IPI00296099	129	1.1 ± 0.3	0.0 ± 0.0	0.003	$-\infty$
TINAGL1	IPI00005563	52	0.5 ± 0.2	0.0 ± 0.0	0.018	$-\infty$
VCAN	IPI00009802	373	1.4 ± 0.8	0.0 ± 0.0	0.029	$-\infty$
VWA1	IPI00396383	47	0.4 ± 0.2	0.0 ± 0.0	0.019	$-\infty$
COL6A1	IPI00291136	109	7.2 ± 1.7	0.3 ± 0.6	0.002	-4.430
COL12A1	IPI00329573	333	20.9 ± 4.0	1.0 ± 1.0	0.001	-4.382
APP	IPI00219187	83	6.0 ± 0.8	0.3 ± 0.6	0.000	-4.174
PCSK9	IPI00387168	74	6.0 ± 0.4	0.7 ± 0.6	0.000	-3.164
GAS6	IPI00032532	75	2.9 ± 0.1	0.3 ± 0.6	0.002	-3.116
LSR	IPI00409640	71	2.3 ± 0.2	0.3 ± 0.6	0.005	-2.814
TIMP2	IPI00027166	24	2.2 ± 0.5	0.3 ± 0.6	0.015	-2.714
IGFBP2	IPI00297284	35	3.8 ± 0.5	0.7 ± 0.6	0.002	-2.507
MSLN	IPI00793649	71	1.7 ± 0.4	0.3 ± 0.6	0.026	-2.333
KLK6	IPI00023845	27	3.1 ± 0.2	0.7 ± 1.2	0.023	-2.229
FRAS1	IPI00455316	444	3.1 ± 0.4	0.7 ± 1.2	0.027	-2.211
CLU	IPI00400826	58	4.4 ± 0.5	1.0 ± 1.0	0.006	-2.142
NUCB1	IPI00295542	54	2.3 ± 0.5	0.7 ± 0.6	0.021	-1.814
CST6	IPI00019954	17	2.2 ± 0.3	0.7 ± 0.6	0.015	-1.740
CPA4	IPI00008894	47	4.3 ± 1.2	1.3 ± 0.6	0.020	-1.675

${ }^{\text {a }}$ Rsc: the $\log _{2}$ ratio of protein abundance between the GKB-treated and control-treated group calculated using equation (1).
${ }^{\mathrm{b}} \mathrm{N} / \mathrm{A}$: not available, where standard deviations for both groups were 0 .

Table S2. List of the up-regulated secretory proteins (56 proteins).

Gene symbol	Accession \#	MW	$\begin{gathered} \text { Mean } \pm \text { SD } \\ \text { of Control } \\ \hline \end{gathered}$	$\begin{gathered} \text { Mean } \pm \text { SD } \\ \text { of GKB treated } \end{gathered}$	p value	Rsc ${ }^{\text {a }}$
STXBP2	IPI00943192	66	0.1 ± 0.2	9.3 ± 2.9	0.005	6.316
LAMB4	IPI00295437	194	0.1 ± 0.1	5.3 ± 1.5	0.004	6.093
HSPD1	IPI00784154	61	1.4 ± 0.6	75.0 ± 15.7	0.001	5.778
HDLBP	IPI00894287	138	0.1 ± 0.1	4.3 ± 2.1	0.025	5.209
TLN1	IPI00298994	270	1.7 ± 0.6	44.3 ± 6.1	0.000	4.689
CAPZA2	IPI00026182	33	0.5 ± 0.2	10.7 ± 2.1	0.001	4.508
YARS	IPI00007074	59	1.2 ± 0.5	25.0 ± 5.3	0.001	4.368
COPA	IPI00646493	139	0.9 ± 0.4	18.0 ± 7.2	0.015	4.325
AIMP1	IPI00793201	37	0.5 ± 0.3	10.0 ± 3.6	0.011	4.193
RBMX	IPI00304692	42	0.6 ± 0.2	10.3 ± 4.5	0.020	4.047
KARS	IPI00307092	71	0.9 ± 0.4	14.0 ± 2.0	0.000	4.026
CAPZA1	IPI00005969	33	0.9 ± 0.5	14.3 ± 1.2	0.000	3.935
ISG15	IPI00375631	18	0.3 ± 0.2	4.7 ± 1.5	0.008	3.901
PPIA	IPI00419585	18	3.9 ± 0.5	57.7 ± 1.2	0.000	3.870
HMGB1	IPI00419258	25	2.4 ± 0.1	34.7 ± 2.3	0.000	3.839
FLNA	IPI00333541	281	7.6 ± 0.8	105.3 ± 6.0	0.000	3.790
HSPH1	IPI00218993	92	2.3 ± 1.0	31.0 ± 5.6	0.001	3.774
SERPINB5	IPI00783625	42	1.0 ± 0.4	13.3 ± 2.9	0.002	3.715
GARS	IPI00783097	83	3.7 ± 0.8	48.3 ± 9.8	0.001	3.703
ACTN4	IPI00013808	105	9.7 ± 1.1	125.0 ± 11.3	0.000	3.684
C19orf10	IPI00056357	19	0.9 ± 0.1	11.3 ± 1.5	0.000	3.657
ACTN1	IPI00013508	103	6.4 ± 0.9	79.7 ± 14.0	0.001	3.645
PEBP1	IPI00219446	21	2.5 ± 1.0	28.7 ± 6.5	0.002	3.520
TUBA4A	IPI00007750	50	6.3 ± 1.1	70.7 ± 2.3	0.000	3.490
VCL	IPI00307162	124	6.1 ± 1.5	68.3 ± 1.5	0.000	3.478
HMGB2	IPI00219097	24	1.7 ± 0.4	18.3 ± 4.0	0.002	3.415
HDGF	IPI00020956	27	0.6 ± 0.3	6.0 ± 3.0	0.037	3.263
IL18	IPI00290198	22	1.2 ± 0.2	11.3 ± 2.1	0.001	3.227
RNPEP	IPI00642211	73	1.4 ± 0.5	13.3 ± 3.1	0.003	3.206
GPI	IPI00908881	60	6.2 ± 1.2	56.3 ± 4.2	0.000	3.181
TXN	IPI00216298	12	0.9 ± 0.2	8.0 ± 1.7	0.002	3.155
WDR1	IPI00746165	66	3.8 ± 0.3	33.0 ± 2.0	0.000	3.123
TPT1	IPI00550900	20	3.4 ± 0.2	29.7 ± 5.0	0.001	3.110
SORD	IPI00216057	38	2.1 ± 0.8	17.0 ± 2.6	0.001	2.984
P4HB	IPI00010796	57	3.8 ± 0.9	30.0 ± 4.4	0.001	2.970
PRDX4	IPI00011937	31	1.8 ± 0.3	13.3 ± 2.5	0.001	2.923
YBX1	IPI00031812	36	2.4 ± 0.6	18.3 ± 4.9	0.005	2.920
SOD1	IPI00218733	16	2.4 ± 0.3	18.0 ± 2.0	0.000	2.917
CALM3	IPI00075248	17	0.9 ± 0.1	7.0 ± 1.7	0.004	2.901

LGALS1	IPI00219219	15	2.2 ± 1.1	16.3 ± 1.5	0.000	2.901	
SFN	IPI00013890	28	5.5 ± 0.6	41.0 ± 2.6	0.000	2.886	
ALDOA	IPI00465439	39	17.4 ± 3.4	128.3 ± 8.5	0.000	2.881	
SERPINB1	IPI00027444	43	1.9 ± 0.4	13.7 ± 3.8	0.006	2.866	
GSR	IPI00759575	52	2.5 ± 0.3	18.0 ± 2.6	0.001	2.848	
LGALS3	IPI00465431	26	0.9 ± 0.2	6.7 ± 0.6	0.000	2.830	
ANXA2	IPI00418169	40	4.8 ± 0.9	33.0 ± 4.0	0.000	2.768	
MIF	IPI00293276	12	0.9 ± 0.6	6.0 ± 2.6	0.032	2.740	
CA2	IPI00220373	118	1.7 ± 0.4	5.0 ± 1.0	0.003	2.477	
IDE	IPI00015102	65	29	0.5 ± 0.5	9.3 ± 3.2	0.015	2.441
ALCAM	IPI00020599	48	2.1 ± 0.2	12.3 ± 5.0	0.028	2.280	
CALR	IPI00453473	11	2.9 ± 0.3	8.7 ± 2.5	0.011	2.012	
HIST1H4B	IPI00012503	58	1.5 ± 0.6	11.7 ± 4.2	0.022	1.994	
PSAP	IPI00026314	86	4.2 ± 0.4	5.7 ± 0.6	0.001	12.0 ± 1.7	0.002
GSN	IPI00215997	25	2.5 ± 0.4	5.7 ± 1.2	0.012	1.53	
CD9	IPI00232571	62	0.5 ± 0.1	1.0 ± 0.0	0.001	1.158	
GPC4				1.093			

${ }^{\mathrm{a}}$ Rsc: the $\log _{2}$ ratio of protein abundance between the GKB-treated and the controltreated group calculated using equation (1).

Table S3. Summary of the secretory proteins that have a high degree of interaction.

Gene Symbol	$\begin{gathered} \mathrm{N} \text { of } \\ \text { interactions }^{\text {a }} \end{gathered}$	Rsc	GO term related to apoptosis	Function ${ }^{\text {b }}$	Ref.
FN1	37	$-\infty$		pro-apoptotic	1
TGFB1	24	- -	Induction of apoptosis	Induces B lymphoid cell apoptosis by first blocking cells at the G1/S transition, followed by apoptosis	2
APP	22	$-\infty$	Neuron apoptosis	NMDA (N-methyl-D-aspartate) induced neuronal apoptosis was associated with an increase in cytoplasmic APP immunoreactivity	3
HSPD1	16	5.85	Caspase activation, negative or positive regulation of apoptosis	Pro- and anti-apoptotic function	4
SERPINE1	15	- -	Negative regulation of apoptosis	Anti-apoptotic	5
PLAT	15	$-\infty$		Pro-apoptotic	6
TF	14	- -		Tumor associated transplantation antigen that can serve as an antiapoptotic agent	7
PLAU	12	- -		Anti-apoptotic effect especially in mouse embryonic fibroblasts	8
HSPG2	11	$-\infty$		N.R. ${ }^{\text {c }}$	
SERPING1	11	$-\infty$		N.R.	
CLU	11	-1.73	Induction of apoptosis by intracellular signals	Reduction of CLU-induced apoptosis	9
SOD1	11	2.92	DNA fragmentation during apoptosis	Anti-apoptotic	10
TXN	11	3.17		Both anti-apoptotic and antiinflammatory agent	11
ACTN4	11	3.69	Regulation of apoptosis	Increases the rate of apoptosis by interacting with and activating DNase Y during apoptosis	12

${ }^{\mathrm{a}}$ Number of interactions acquired from the STRING analysis.
${ }^{\mathrm{b}}$ Apoptosis-related functions described in the references.
${ }^{\text {c }}$ No references found in PubMed when the gene name was searched with 'apoptosis'.

Table S4. Summary of the secretory proteins with low degrees of interaction.

Gene symbol	$\begin{gathered} \mathrm{N} \text { of } \\ \text { interactions }^{\mathrm{a}} \\ \hline \end{gathered}$	Rsc	GO term related to apoptosis	Function ${ }^{\text {b }}$	Ref.
FGF19	0	- ∞		Increases proliferation and invasion capabilities of human hepatocellular carcinoma cell lines and inhibits apoptosis	13
FUCA2	0	- -		N.R. ${ }^{\text {c }}$	
KLK10	0	- -		Changes in KLK expression are not related to apoptosis or cell death	14
MAMDC2	0	$-\infty$		N.R.	
RNASE4	0	$-\infty$		N.R.	
TINAGL1	0	$-\infty$		N.R.	
PCSK9	0	-3.164	positive regulation of neuron apoptosis	Regulates neuronal apoptosis by adjusting ApoER2 levels and signaling	15
LSR	0	-2.814		Not significant	
MSLN	0	-2.333		Inhibits paclitaxel-induced apoptosis through the PI3K pathway	16
FRAS1	0	-2.211		N.R.	
NUCB1	0	-1.814		Induces autoimmune phenomena and thymic apoptosis when exogenously administered to mice	17
CST6	0	-1.740		Anti-apoptotic effect in TNF- α induced apoptosis	18
CPA4	0	-1.675		N.R.	
PSAP	0	1.933		Induces Apaf-1 and Smac-dependent mitochondrial apoptotic pathway	19
HIST1H4B	0	1.994		N.R.	
ALCAM	0	2.280		Induces apoptosis	20
TPT1	0	3.110	anti-apoptosis	Target of p 53 , thus acts as an antiapoptotic protein	21
RNPEP	0	3.206		N.R.	
COPA	0	4.325		Knockdown of COPA induces apoptosis and suppresses tumor growth in a mesothelioma mouse model	22
HDLBP	0	5.209		N.R.	
LAMB4	0	6.093		N.R.	
STXBP2	0	6.316		N.R.	

${ }^{\text {a }}$ Number of interactions acquired from the STRING analysis.
${ }^{\mathrm{b}}$ Apoptosis-related functions described in the references.
'No references found in PubMed when the gene name was searched with 'apoptosis'.

Figure S1.

A

D

Figure S1. Induction of apoptotic cell death by GKB in HepG2 human hepatoma cells. (A) The sub-G1 content (\%) was evaluated by flow cytometric DNA content analysis. HepG2 cells were treated with GKB (40 or $80 \mu \mathrm{M}$) for 24 and 48 h . (B, C) Changes in cell morphology. HepG2 cells were treated with GKB (40 or $80 \mu \mathrm{M}$) for 48 h . (B) Phase contrast microscope images ($\mathrm{bar}=20 \mu \mathrm{~m}$). (C) Confocal microscope images. The cells were stained with annexin V-fluorescein and propidium iodide ($\mathrm{bar}=20 \mu \mathrm{~m}$). (D) Expression levels of PARP and Cyclin D1 were measured by western blot analysis. HepG2 cells were treated with GKB $(20,40$, or $80 \mu \mathrm{M})$ for 24 and 48 h .

Figure S2.

Figure S2. Experimental scheme for the analysis of the secreted proteome of HCT116 cells treated with GKB.

Supporting Information References

1. Sugahara, H.; Kanakura, Y.; Furitsu, T.; Ishihara, K.; Oritani, K.; Ikeda, H.; Kitayama, H.; Ishikawa, J.; Hashimoto, K.; Kanayama, Y., Induction of programmed cell death in human hematopoietic cell lines by fibronectin via its interaction with very late antigen 5. J. Exp. Med. 1994, 179, 1757-1766.
2. Arsura, M.; Wu, M.; Sonenshein, G. E., TGF $\beta 1$ inhibits NF-кB/Rel activity inducing apoptosis of B cells: transcriptional activation of IкB α. Immunity 1996, 5, 31-40.
3. Lesort, M.; Esclaire, F.; Yardin, C.; Hugon, J., NMDA induces apoptosis and necrosis in neuronal cultures. Increased APP immunoreactivity is linked to apoptotic cells. Neurosci. Lett. 1997, 221, 213-216.
4. Kim, S.-C.; Stice, J. P.; Chen, L.; Jung, J. S.; Gupta, S.; Wang, Y.; Baumgarten, G.; Trial, J.; Knowlton, A. A., Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ. Res. 2009, 105, 1186-1195.
5. Chen, Y.; Kelm, R. J.; Budd, R. C.; Sobel, B. E.; Schneider, D. J., Inhibition of apoptosis and caspase-3 in vascular smooth muscle cells by plasminogen activator inhibitor type-1. J. Cell. Biochem. 2004, 92, 178-188.
6. Kenagy, R. D.; Min, S.-K.; Mulvihill, E.; Clowes, A. W., A link between smooth muscle cell death and extracellular matrix degradation during vascular atrophy. J. Vasc. Surg. 2011, 54, 182-191.
7. Lesnikov, V.; Lesnikovaa, M.; Deega, H. J., Pro-apoptotic and anti-apoptotic effects of transferrin and transferrin-derived glycans on hematopoietic cells and lymphocytes. Exp. Hematol. 2001, 29, 477-489.
8. Mazzieri, R.; Furlan, F.; D'Alessio, S.; Zonari, E.; Talotta, F.; Verde, P.; Blasi, F., A direct link between expression of urokinase plasminogen activator receptor, growth rate and oncogenic transformation in mouse embryonic fibroblasts. Oncogene 2006, 26, 725-732.
9. Yan, Y.; Luo, K.; Zhang, H.; Chai, W., RNA interference-mediated secretory clusterin gene silencing inhibits proliferation and promotes apoptosis of human non-small cell lung cancer cells. Hepato-Gastroenterology 2013, 60, 70-5.
10. Liang, H.; Arsenault, J.; Mortensen, J.; Park, F.; Johnson, C.; Nilakantan, V., Partial attenuation of cytotoxicity and apoptosis by SOD1 in ischemic renal epithelial cells. Apoptosis 2009, 14, 1176-1189.
11. Ono, R.; Masaki, T.; Dien, S.; Yu, X.; Fukunaga, A.; Yodoi, J.; Nishigori, C., Suppressive effect of recombinant human thioredoxin on ultraviolet lightinduced inflammation and apoptosis in murine skin. J. Dermatol. 2012, 39, 843851.
12. Liu, Q. Y.; Lei, J. X.; LeBlanc, J.; Sodja, C.; Ly, D.; Charlebois, C.; Walker, P. R.; Yamada, T.; Hirohashi, S.; Sikorska, M., Regulation of DNaseY activity by actinin-alpha4 during apoptosis. Cell Death Differ. 2004, 11, 645-654.
13. Miura, S.; Mitsuhashi, N.; Shimizu, H.; Kimura, F.; Yoshidome, H.; Otsuka, M.; Kato, A.; Shida, T.; Okamura, D.; Miyazaki, M., Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 2012, 12, 56.
14. Paliouras, M.; Diamandis, E. P., Intracellular signaling pathways regulate hormone-dependent kallikrein gene expression. Tumour Biol. 2008, 29, 63-75.
15. Kysenius, K.; Muggalla, P.; Mätlik, K.; Arumäe, U.; Huttunen, H., PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell. Mol. Life Sci. 2012, 69, 1903-1916.
16. Chang, M. C.; Chen, C. A.; Hsieh, C. Y.; Lee, C. N.; Su, Y. N.; Hu, Y. H.; Cheng, W. F., Mesothelin inhibits paclitaxel-induced apoptosis through the PI3K pathway. Biochem. J. 2009, 424, 449-448.
17. Kanai, Y.; Kyuwa, S.; Miura, K.; Kurosawa, Y., Induction and natural occurrence of serum nucleosomal DNA in autoimmune MRL/lpr/lpr mice: its relation to apoptosis in the thymus. Immunol. Lett. 1995, 46, 207-14.
18. Vigneswaran, N.; Wu, J.; Zacharias, W., Upregulation of cystatin M during the progression of oropharyngeal squamous cell carcinoma from primary tumor to metastasis. Oral Oncol. 2003, 39, 559-568.
19. Li, T.; Zeng, L.; Gao, W.; Cui, M.-Z.; Fu, X.; Xu, X., PSAP induces a unique Apaf-1 and Smac-dependent mitochondrial apoptotic pathway independent of Bcl-2 family proteins. Biochim. Biophys. Acta 2013, 1832, 453-474.
20. Hein, S.; Müller, V.; Köhler, N.; Wikman, H.; Krenkel, S.; Streichert, T.; Schweizer, M.; Riethdorf, S.; Assmann, V.; Ihnen, M.; Beck, K.; Issa, R.; Jänicke, F.; Pantel, K.; Milde-Langosch, K., Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue. Breast Cancer Res. Treat. 2011, 129, 347-360.
21. Chen, W.; Wang, H.; Tao, S.; Zheng, Y.; Wu, W.; Lian, F.; Jaramillo, M.; Fang, D.; Zhang, D. D., Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 2013, 12, 2321-2328.
22. Sudo, H.; Tsuji, A. B.; Sugyo, A.; Kohda, M.; Sogawa, C.; Yoshida, C.; Harada, Y.-n.; Hino, O.; Saga, T., Knockdown of COPA, identified by loss-of-function screen, induces apoptosis and suppresses tumor growth in mesothelioma mouse model. Genomics 2010, 95, 210-216.
