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Materials and Methods:

All reagents were obtained from commercial vendors and used as received unless otherwise stated.
Thiobenzoic acid was purified via vacuum distillation. All other thioacids and S-aroylthiohydroxylamines
were prepared as previously described.'” NMR spectra were measured on Agilent 400 MHz or Bruker
500 MHz spectrometers. 'H and *C NMR chemical shifts are reported in ppm relative to internal solvent
resonances. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise
stated. Infrared spectra were obtained on a Varian 670-IR spectrometer. HPLC was carried out on an
Agilent 1220 system using water and CH;CN as mobile phases with each containing 0.1% NH,OH or
0.1% trifluoroacetic acid (TFA). Flow was maintained at 20 mL/min over gradients described for each
purification on an Agilent PLRP-S column (100 A, 10 pm, 25 x 150 mm). Fractions were analyzed by
mass spectrometry (Advion Expression Compact Mass Spectrometer), and product-containing fractions
were combined, rotovapped to remove CH;CH, and lyophilized (LabConco). UV-Vis absorbance spectra
were recorded on a Cary 5000 UV-Vis (Agilent) from 450 to 220 nm or on a Spectramax M2 plate reader
(Molecular Devices). Reactions were performed in screw-cap scintillation vials over 3 A molecular
sieves.

Thiooxime synthesis representative procedure:

o) o)
TFA (cat ) YO
_N
S AN
CH,Cly, -H,0 @ H
1a

S-Benzoylthiohydroxylamine (SBTHA) (200 mg, 1.3 mmol) was dissolved in 3 mL of CH,Cl, in a
scintillation vial charged with molecular sieves. To the vial was added benzaldehyde (135 pL, 1.3 mmol)
followed by 10 pL of TFA. The vial was sealed, and the mixture was allowed to stand for 1-5 h at rt. The
reaction mixture was filtered and the solvent was removed under reduced pressure to give the pure
product as a white powder (309 mg, 98% yield). "H NMR (CDCly): & 7.47 (m, 5H), 7.61 (t, 1H), 7.85 (d,
2H), 7.94 (d, 2H), 8.81 (s, 1H). >C NMR (CDCLy): § 189.12, 164.40, 135.79, 135.73, 133.92, 131.83,
129.05, 128.88, 128.49, 127.05. IR (ATR crystal) (cm™): 1673, 1203, 898, 751, 685, 641. HR-MS: [M +

H]" calculated 242.0634; found 242.0640.
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Compound 1b was prepared from SBTHA (50 mg, 0.33 mmol) and 4-fluorobenzaldehyde (35 uL, 0.33
mmol) using the same procedure as 1a. The product was isolated as an off-white powder (81 mg, 96%
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yield). '"H NMR (CDCls): § 7.13 (t, 2H), 749 (t, 2H), 7.61 (t, 1H), 7.84 (t, 2H), 7.93 (d, 2H), 8.77 (s, 1H).
C NMR (CDCLy): & 189.07, 166.18, 163.73, 162.96, 135.77, 133.98, 132.21, 132.18, 130.60, 130.51,
129.08, 127.05, 116.26, 116.04. IR (ATR crystal) (cm™): 1675, 1597, 1505, 1228, 1201, 898, 767, 688,
640. HR-MS: [M + H]" calculated 260.0540; found 260.0557.
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Compound 1¢ was prepared from SBTHA (100 mg, 0.65 mmol) and 4-formylbenzoic acid (107 mg, 0.71
mmol) using the same procedure as 1a. The crude product was recrystallized from EtOAc to afford the
pure product as a white powder (133 mg, 71.4% yield). '"H NMR (DMSO-dq): § 7.61 (t, 2H), 7.74 (t, 1H),
7.92 (t, 4H), 8.07 (d, 2H), 9.07 (s, 1H). C NMR (DMSO-dy): & 187.77, 166.92, 164.44, 138.65, 134.95,
134.39, 133.96, 129.79, 129.44, 128.00, 126.58. IR (ATR crystal) (cm™): 2950, 2811, 2657, 1677, 1284,
1198, 896, 764, 680, 638. HR-MS: [M + H]" calculated 286.0532; found 286.0531.
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Compound 1d was prepared from SBTHA (50 mg, 0.33 mmol) and anisaldehyde (40 pL, 0.33 mmol)
using the same procedure as 1a. The product was isolated as a white powder (79 mg, 89% yield). 'H
NMR (CDCl;): 6 3.85 (s, 3H), 6.95 (d, 2H), 7.48 (t, 3H), 7.60 (t, 1H), 7.79 (d, 2H), 7.93 (d, 2H), 8.71 (s,
1H). "C NMR (CDCl;): & 189.63, 164.42, 162.68, 135.95, 133.78, 130.35, 129.01, 128.88, 126.97,
114.32, 55.55. IR (ATR crystal) (cm™): 2930, 2834, 1674, 1592, 1556, 1590, 1251, 1202, 1169, 1024,
898, 825, 788, 684, 639. HR-MS: [M + H]" calculated 272.0740; found 272.0760.

le

Compound 1e was prepared from SBTHA (50 mg, 0.33 mmol) and furfural (27 uL, 0.33 mmol) using the
same procedure as 1a. The product was isolated as a white powder as a mixture of cis/trans isomers (71
mg, 94% yield in a ratio of 65:35). "H NMR (CDCl;): § 6.53 (dd, 0.65H, J = 2Hz), 6.62 (dd, 0.35H, J =
2Hz), 6.94 (d, 0.65H, J = 4Hz), 7.10 (d, 0.35H, J = 4Hz), 7.49 (q, 2H, J = 8Hz), 7.60 (t, 1.7H, J = 8Hz),
7.67 (d, 0.3H, J=2Hz), 7.90 (d, 1.3H, J = 8Hz), 8.00 (d, 0.7H, J = 8Hz), 8.47 (s, 0.35H), 8.62 (s, 0.65H).
PC NMR (CDCls): & 188.78, 152.48, 151.31, 149.64, 147.15, 146.26, 145.95, 135.83, 135.68, 134.04,
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133.94, 129.06, 127.37, 127.03, 118.48, 116.06, 112.88, 112.36. IR (ATR crystal) (cm™): 1669, 1596,
1204, 900, 769, 747, 681, 641. HR-MS: [M + Na]" calculated 254.0246; found 254.0259.

1f

Compound 1f was prepared from SBTHA (176 mg, 1.15 mmol) and trans-cinnamaldehyde (145 pL, 1.15
mmol) using the same procedure as 1a. The product was purified by HPLC (gradient of 30% to 90%
CH;CN) to afford the pure product as a light yellow powder as a mixture of cis/trans isomers (224 mg,
79% yield in a ratio of 65:35). "H NMR (CDCls): & 6.98 (t, 0.35H), 7.02 (t, 0.65H), 7.10 (d 0.2H, J = 15
Hz), 7.15 (d, 0.5H, J =5 Hz), 7.19 (d, 0.3H, J = 10 Hz), 7.39 (m, 3H), 7.49 (m, 3.6H), 7.57 (m, 0.4H),
7.62 (m, 1H), 7.93 (d, 1.5H, J =5 Hz), 7.99 (d, 0.5H, J= 10 Hz), 8.34 (d, 0.2H, J = 10 Hz), 8.56 (d, 0.8H,
J =35 Hz). °C NMR (CDCl):  188.92, 165.63, 161.90, 144.96, 143.32, 135.79, 135.60, 135.24, 134.85,
133.78, 130.41, 129.80, 128.99, 128.94, 128.89, 128.87, 128.00, 127.89, 127.61, 127.14, 126.93, 121.72.
IR (ATR crystal) (cm'l): 1676, 1592, 1446, 1200, 899, 682, 642, HR-MS: [M + H]" calculated 268.0791;

found 268.0788.
O
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1g

Compound 1g was prepared from SBTHA (156 mg, 1.02 mmol) and pivalaldehyde (140 pL, 1.29 mmol)
using the same procedure as 1a. The crude product was purified on a silica gel column (0.5% NEt; + 10%
EtOAc in hexanes) to afford the pure product as an off-white powder (84 mg, 37% yield). '"H NMR
(CDCl3): & 1.18 (s, 9H), 7.45 (t, 2H), 7.57 (t, 1H), 7.86 (d, 2H), 8.14 (s, 1H). °C NMR (CDCl5): & 189.66,
179.07, 135.91, 133.68, 128.94, 126.89, 39.68, 26.57. IR (ATR crystal) (cm™): 2963, 1667, 1603, 1200,
899, 776, 688, 644. HR-MS: [M + H]" calculated 222.0947; found 222.0954.
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Compound 1h was prepared from SBTHA (200 mg, 1.31 mmol) and acetophenone (152 pL, 1.31 mmol)
using the same procedure as 1a. The crude product was dried under vacuum overnight and then purified
on a silica gel column (0.5% NEt; in CH,Cl,) to afford the pure product as an off-white white powder
(180 mg, 54% yield). 'H NMR (CDCL): & 2.54 (s, 3H), 7.43 (d, 2H), 7.50 (t, 2H), 7.62 (t, 1H), 7.94 (m,
2H), 7.99 (d, 2H). °C NMR (CDCl;) & 188.13, 167.41, 139.05, 136.29, 133.76, 130.56, 129.02, 128.58,
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127.27, 127.08, 77.16, 21.57. IR (ATR crystal) (cm™): 1679, 1563, 1446, 1369, 1201, 896, 754, 677, 637.
HR-MS: [M + H]" calculated 256.0791; found 256.0803.
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Compound 1i was prepared from SBTHA (200 mg, 1.31 mmol) and 4-fluoroacetophenone (158 uL, 1.31
mmol) using the same procedure as 1a. The crude product was purified via recrystallization from hexanes
to afford the pure product as a white powder (188 mg, 53% yield). 'H NMR (CDCls): & 2.51 (s, 3H), 7.09
(t, 2H), 7.50 (t, 2H), 7.61 (t, 1H), 7.94 (m, 2H), 7.96 (d, 2H). °C NMR (CDCl;) & 188.03, 166.03, 165.61,
163.11, 136.17, 135.30, 135.27, 133.81, 129.23, 129.14, 129.02, 127.23, 115.65, 115.43, 21.47. IR (ATR
crystal) (cm™): 1683, 1592, 1562, 1501, 1203, 896, 830, 768, 683, 641. HR-MS: [M + H]" calculated
274.0696; found 274.0714.
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1j

Compound 1j was prepared from SBTHA (100 mg, 0.65 mmol) and 4-methoxyacetophenone (98 mg,
0.65 mmol) using the same procedure as 1a. The crude product was purified via HPLC (30% to 90%
CH;CN with 0.1% NH4OH) to afford the pure product as an off-white white powder (40 mg, 22% yield).
'H NMR (CDCl5): & 2.50 (s, 3H), 3.85 (s, 3H), 6.92 (d, 2H), 7.49 (t, 2H), 7.60 (t, 1H), 7.92 (d, 2H), 7.99
(d, 2H). C NMR (CDCl;) & 188.53, 166.88, 161.65, 136.35, 133.66, 131.90, 128.97, 128.78, 127.18,
113.81, 55.50, 21.28. IR (ATR crystal) (cm™): 1672, 1582, 1554, 1506, 1254, 1200, 1172, 900, 683, 645.
HR-MS: [M + H]" calculated 286.0896; found 286.0910.

O
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Compound 1k was prepared from S-(4-fluorobenzoyl)thiohydroxylamine (105 mg, 0.61 mmol) and
benzaldehyde (63 pL, 0.61 mmol) using the same procedure as 1a. The product was isolated as an off-
white powder (78 mg, 91% yield). '"H NMR (CDCls): & 7.17 (t, 2H), 7.47 (m, 3H), 7.84 (d, 2H), 7.97 (d,
2H), 8.80 (s, 1H). >C NMR (CDCly): § 187.75, 167.49, 164.98, 164.64, 135.71, 132.18, 132.15, 131.93,
129.71, 129.62, 128.93, 128.52, 116.42, 116.20. IR (ATR crystal) (cm™): 1676, 1593, 1196, 904, 833,
752, 693, 630. HR-MS: [M + H]" calculated 260.0540; found 260.0564.
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Compound 11 was prepared from S-(4-clorobenzoyl)thiohydroxylamine (100 mg, 0.53 mmol) and
benzaldehyde (55 pL, 0.53 mmol) using the same procedure as 1a. The product was isolated as a white
powder (142 mg, 97% yield). "H NMR (CDCl;): § 7.47 (m, 5H), 7.84 (d, 2H), 7.88 (d, 2H), 8.80 (s, 1H).
C NMR (CDCls):  188.07, 164.80, 140.32, 135.70, 134.17, 131.99, 129.43, 128.95, 128.56, 128.44. IR

(ATR crystal) (cm™): 1674, 1586, 1481, 1395, 1195, 1081, 893, 858, 829, 751, 692, 629. HR-MS: [M +
H]" calculated 276.0244; found 276.0249.
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Compound 1m was prepared from S-(4-trifluoromethylbenzoyl)thiohydroxylamine (75 mg, 0.34 mmol)
and benzaldehyde (35 pL, 0.34 mmol) using the same procedure as 1a. The crude product was purified on
a silica gel column (10% EtOAc + 0.5% NEt; in hexanes) to give the pure product as a white powder (78
mg, 74.4% yield). '"H NMR (CDCl): § 7.48 (m, 3H), 7.76 (d, 2H), 7.85 (d, 2H), 8.04 (d, 2H), 8.81 (s,
1H). ®C NMR (CDCly): & 188.38, 165.24, 138.66, 135.58, 135.35, 135.03, 134.70, 132.14, 128.98,
128.61, 127.47, 126.22, 126.11, 124.93, 122.21. IR (ATR crystal) (cm™): 1671, 1319, 1109, 1063, 906,
842, 750, 689, 647. HR-MS: [M + H]" calculated 310.0508; found 310.0518.

O [ ]
/©)J\S/N\
NC

In

Compound 1In was prepared from 4-((aminothio)carbonyl)benzonitrile (100 mg, 0.56 mmol) and
benzaldehyde (57 pL, 0.56 mmol) using the same procedure as 1a. The product was isolated as an off-
white powder (143 mg, 96% yield). "H NMR (CDCL): § 7.47 (m, 3H), 7.79 (d, 2H), 7.83 (d, 2H), 8.01 (d,
2H), 8.79 (s, 1H). °C NMR (CDCl;): & 188.07, 165.53, 138.99, 135.46, 132.90, 132.24, 129.00, 128.62,
127.56, 117.80, 117.12. IR (ATR crystal) (cm™): 1664, 1587, 1561, 1372, 903, 761, 696, 629. HR-MS:
[M + H]" calculated 267.0587; found 267.0592.
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Compound 1o was prepared from S-(4-methylbenzoyl)thiohydroxylamine (100 mg, 0.60 mmol) and
benzaldehyde (61 uL, 0.60 mmol) using the same procedure as 1a. The product was isolated as a white
powder (139 mg, 91% yield). "H NMR (CDCls): § 2.43 (s, 3H), 7.29 (d, 2H), 7.45 (m, 3H), 7.84 (d, 4H),
8.81 (s, 1H). °C NMR (CDCl;): 188.72, 164.21, 144.91, 135.87, 133.30, 131.76, 129.73, 128.89, 128.49,
127.15,21.91. IR (ATR crystal) (cm™): 1674, 1603, 1565, 1204, 1169, 900, 815, 751, 686, 639. [M + H]"

calculated 256.0791; found 256.0804.
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MeO

Compound 1p was prepared from S-(4-methoxybenzoyl)thiohydroxylamine (21 mg, 0.12 mmol) and
benzaldehyde (12 uL, 0.12 mmol) using the same procedure as 1a. The product was isolated as a white
powder (29 mg, 94% yield). 'H NMR (CDCls): & 3.87 (s, 3H), 6.96 (d, 2H), 7.45 (m, 3H), 7.83 (d, 2H),
7.92 (d, 2H), 8.80 (s, 1H). °C NMR (CDCly): 5 187.58, 164.22, 163.96, 135.89, 131.68, 129.26, 128.86,
128.59, 128.43, 114.28, 55.68. IR (ATR crystal) (cm™): 1670, 1596, 1262, 1211, 1164, 900, 832, 755,
690. 641. HR-MS: [M + H]" calculated 272.0740; found 272.0750.

Calibration of H,S Selective Probe

An EDTA solution was prepared at 154 uM by dissolving 1.43 mg of EDTA in 25 mL of DI water in a
volumetric flask. The solution was purged vigorously with nitrogen for 20 min. 7.7 mg of anhydrous
Na,S was added to a vial under inert atmosphere, followed by 20 mL of the EDTA solution (to make 5
mM H,S). A small stir bar was added to a scintillation vial containing 20 mL of 1X PBS buffer (pH =
7.4). The vial was placed on a stir plate. The H,S sensor was immersed in the solution and the background
current was allowed to stabilize for several minutes. Five aliquots of the H,S solution were injected
sequentially into the vial (20 uL, 40 uL, 60 uL, 80 puL, 100 uL). The current increased rapidly after each
injection before reaching a plateau. The second aliquot was injected as soon as the current had stabilized.
The other aliquots were injected similarly. The recorded data was used to construct a linear calibration
curve of concentration vs. current.
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Fig S1. Standard curve for H,S release in PBS buffer.

H,S Release in the Presence of Cysteine and other Additives

A stock solution of cysteine or other additive (lysine, N-acetylcysteine, serine, glutathione, or none) was
prepared in PBS buffer at 400 mM. 50 pL of this solution was added to a vigorously stirred vial
containing 20 mL of PBS buffer. The current was allowed to equilibrate for several minutes. Once a
stable current was observed, an aliquot of S-aroylthiooxime stock solution (100 uL, 8 mM in THF) was
added rapidly via pipette. The current was monitored over a period of approximately 1h. A plot of H,S
concentration vs. time was constructed using the calibration curve. No background subtraction was
performed. H,S release was only observed upon addition of compounds containing a thiol functionality.

25 1
20 1
f 151 =Cys
S - ;
7 Glutathione
= 10 1 N-Acetylcys
—Ser
—Lys
5 P
0 v . r v
0 20 40 60 80
Time (min)

Fig S2. H,S release in the presence of various nucleophiles.
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H,S Release as a Function of Cysteine Concentration

A stock solution of cysteine was prepared in PBS buffer at 400 mM. 12.5, 50, or 100 pL of this solution
was added to a vigorously stirred vial containing 20 mL of PBS buffer. The current was allowed to
equilibrate for several minutes. Once a stable current was observed, an aliquot of a 1a stock solution (100
uL, 8 mM in THF) was added rapidly via pipette. The current was monitored over a period of
approximately 1 h. A plot of H,S concentration vs. time was constructed using the calibration curve. No
background subtraction was performed.

e =2 mM Cys
45 1 —1 mM Cys
40 - =250 uM Cys

35 1
30 A
25 A

[H,S] (n M)

0 10 20 30 40 50 60
Time (min)

Fig S3. Effect of [cysteine] on H,S release profile.

Calibration of H,S Selective Probe in Bovine Plasma

A 100 mL of an 0.05 mg/mL EDTA solution was prepared and purged vigorously with N, for 20 min.
Na,S was then added to make 1 mM Na,S. A small stir bar was added to a scintillation vial containing 15
mL of deionized water and 5 mL of bovine plasma. The vial was placed on a stir plate. The H,S sensor
was immersed in the solution and the background current was allowed to stabilize for several minutes.
Three aliquots of the H,S solution were injected sequentially into the vial (20 uL, 40 pL, 80 uL). The
current increased rapidly after each injection before reaching a plateau. The second aliquot was injected
as soon as the current had stabilized. The other aliquots were injected similarly. The recorded data was
used to construct a linear calibration curve of concentration vs. current.
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Fig S4. Standard curve for H,S release in 25% v/v plasma.
H,S release from Plasma

H,S release from 1a was conducted in bovine plasma. 5 pL of an 8 mM solution of 1a in THF was added
to 20 mL of a 25% v/v mixture of bovine plasma/deionized water. Thiols are known to be unstable in
isolated plasma, having half-lives of disappearance on the order of minutes due to autooxidation and
mixed disulfide formation reactions.*® It has been reported that human plasma contains an average
reduced cysteine concentration of 10 uM.” Therefore, we supplemented the commercial plasma with 10
UM cysteine before each run. The H,S release profile of 1a in plasma with 10 uM added cysteine is
shown below (Fig S5 blue trace). As expected based on thiol autoxidation noted above, H,S release was
not observed in plasma in the absence of added cysteine (Fig S5 red trace). These results indicate that
thiooximes would release H,S in vivo where reduced cysteine is present.

0.8 1
0.7 1
0.6
0.5 A \
0.4 A

0.3 1

0.2 1
0.1 A

H,S (uM)
/

0 20 40 60 80 100
Time (min)

Fig S5. H,S release in plasma. Blue curve shows H,S evolution from 2 uM 1a in bovine plasma
supplemented with 10 pM cysteine. Red curve shows the same experiment with no cysteine supplement.
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H,S Release Kinetics via Methylene Blue Method

Reactions for kinetics were run in triplicate, with each reaction vial containing 1.296 mL PBS, 200 pL
thiooxime solution (1 mM in THF), 400 uL THF, 100 uL Zn(OAc), solution (40 mM in H,0), and 4 uL
cysteine solution (500 mM in PBS). Final concentrations were 100 uM thiooxime, 2 mM ZnOAc, and 1
mM cysteine. A control solution was also run for each experiment using lysine in place of cysteine at the
same concentration. At predetermined timepoints, 100 pL was removed from each vial. Each 100 pL
aliquot was diluted with 100 pL FeCl; solution (30 mM in 1.2 M HCI) followed by 100 uL N,N-dimethyl-
p-phenylenediamine (20 mM in 7.2 M HCI). Aliquots were stored until 3-5 h after the final aliquot had
been taken. A spectrum of each aliquot was collected from 500 to 800 nm on a plate reader. A
background solution was also made using THF in place of the substrate solution. Three aliquots of this
background solution were diluted with FeCl; and N,N-dimethyl-p-phenylenediamine as described above.
Kinetic analysis was done by subtracting the absorbance of the background solution from the average
absorbance at each timepoint at 676 nm. First-order half-life of H,S release was determined by plotting
time vs. In(1/(1-% released), with t;,=In(2)/slope.

Hydrolysis kinetics

Solutions for hydrolysis kinetics were prepared at 50 uM in S-aroylthiooxime in 20% CH;CN in PBS.
Spectra were taken at timepoints over the course of several days from 450 nm to 220 nm on a UV-Vis
spectrophotometer. A background spectrum of 20% CH3;CN in PBS was subtracted from each sample
spectrum, and all spectra were normalized at 450 nm, where absorbance was negligible for all samples.

Kinetic analysis was done by comparing the absorbance peak of the thiooxime (usually around 310-340
nm) to an isosbestic point for each hydrolysis experiment. The following equation was used to calculate
% hydrolysis.*

Apeak __ ESBTHApeak[SBTHA]‘l' Sspentpeak[Spent] _

Aiso giso ([SBTHA]+[Spent])
ESBTHApeak ( [SBTHA] ) (ESBTHApeak_Sspentpeak)
Eiso ([SBTHA]+[Spent]) Eiso
Therefore,
SBTHA A £ &
% hydroylsis — [ ] — ( peak _ SBTHApeak)( iso )
([SBTHA] + [Spent]) Aiso Eiso €sBTHApeak — Espentpeak
Where

EsBTHApeak = €Xtinction coefficient of thiooxime at peak absorbance

Espentpeak = €Xtinction coefficient of the SBTHA/carbonyl mixture at equilibrium
€iso = extinction coefficient at the isosbestic point

Aca = absorbance at the peak maximum at a given timepoint

Ajs, = absorbance at the isosbestic point at a given timepoint
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The extinction coefficient at the peak SBTHA absorbance of the SBTHA/carbonyl mixture was
determined by making a sample of each SBTHA/carbonyl mixture matching the components of each S-
aroylthiooxime. These were prepared at 50 uM SBTHA and 50 uM carbonyl (ketone or aldehyde) in 20%
CH;CN in PBS. Samples were allowed to sit for 3 d to ensure that equilibrium had been reached before

taking spectra.

Fitting to a first-order rate was accomplished by plotting time versus In(1/(1-% hydrolysis) with with
t1»= In(2)/slope.

1- 3 4

0.8
=
22
w»
06 z
g £
a8 >
2 =
2 2
)
-] J i y=0.0157x
<04 < R? =0.9999
-
E 1
0.2
220 240 260 280 300 320 340 360 380 400 420 440 0 50 100 150 200
Time (h)

Wavelength (nm)

Fig S6. Example hydrolysis spectra and kinetic data for compound 1a. A, and Aj, for this compound
were 316 and 262 nm, respectively.

H;S Release Mechanism (Scheme 3)

The proposed mechanism is supported by several pieces of evidence. Figure S2 shows the H,S release
profile of 1a in the presence of various nucleophiles. H,S release was not observed in the absence of thiol
functionality. Additionally, the rate of H,S release is slower for the reaction of 1a with N-acetylcysteine
compared with cysteine (peaking time of 33 min vs. 24 min). The acetyl group of N-acetylcysteine
prohibits S — N acyl transfer. The apparent dependence of the H,S release rate on the ability of the S-
benzoylcysteine byproduct to undergo S — N acyl transfer, coupled with the need of thiol reactivity to
promote reversible thiol exchange, provides evidence for the proposed mechanism.

Product Analysis (Scheme 3)

Compound 1a (40 mg, 0.16 mmol) in 10 mL of CH;CN was added to a stirred solution of cysteine (250
mg, 2.06 mmol) in 10 mL of PBS buffer (pH = 7.4) in a round bottom flask. The solution was stirred at
room temperature overnight. The following day, the solution was filtered and concentrated to remove the
organic solvent. The resulting aqueous solution was purified via preparative HPLC (gradient of 2% to
90% CH;3;CN with 0.5% NH,OH). The isolated products were characterized by NMR and HRMS as

shown below.
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N-benzoylcysteine

N-benzoylcysteine was isolated by HPLC. The resulting solid was found to contain a small quantity of
the disulfide dimer 3,3'-disulfanediylbis(2-benzamidopropanoic acid). "H NMR (D,0): & 3.10 (qd, 2H),
3.43 (dd, 0.2H), 4.66 (m, 1H), 4.76 (m, 0.2H), 7.48 (t, 0.4H), 7.58 (t, 2H), 7.86 (t, 1H), 7.76 (d, 0.4H),
7.88 (d, 2H). C NMR (D,0): & 176.12, 170.36, 133.32, 132.21, 128.71, 127.15, 57.07, 26.23. [M - H|
calculated 224.0387; found 224.0396.

COOH

HN
/
S

2-Phenylthiazolidine-4-carboxylic acid

2-Phenylthiazolidine-4-carboxylic acid was isolated by HPLC, a product of reaction of benzaldehyde
with excess cysteine.’ The resulting solid was a 50:50 mixture of diastereomers. 'H NMR (D,0): & 3.02
(dd, 0.5H), 3.09 (dd, 0.5H), 3.28 (dd, 0.5H), 3.35 (dd, 0.5H), 3.78 (dd, 0.5H), 4.14 (dd, 0.5H), 5.48 (s,
0.5H), 5.70 (s, 0.5H), 7.25 (t, 0.5 H), 7.32 (m, 1.5H), 7.36 (t, 1H), 7.42 (d, 1H), 7.50 (d, 1H). "C NMR
(D,0): 6 173.22, 172.85, 141.96, 139.24, 128.50, 128.22, 128.17, 127.36, 127.22, 126.79, 72.10, 71.10,
66.65, 65.45, 59.76, 38.37,20.78, 14.10. [M + H]" calculated 210.0583; found 210.0596.

. H
! oJﬁAs sjﬁ(o
NH, o)
Cystine

Cystine was isolated as the HCI salt via filtration from the product analysis reaction mixture and
subsequent purification by HPLC (gradient of 2% to 90% CH;CN with 0.1% TFA). 'H NMR (D,0): &
3.13 (m, 2H), 3.31 (dd, 2H), 4.26 (m, 1H). >C NMR (D,0): & 170.84, 51.93, 36.46. [M + H]" calculated
241.03; found 240.96 (LRMS).
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'H NMR (400 MHz, CDCl;) spectrum of 1a

JUJ

8.0

18'8—

s N

N

k86t
FSO'T

+90'¢C
FE0'C

=00'T

6.5

7.0

7.5

PPM

9.0

9.5

10.0

10.5

C NMR (400 MHz, CDCl;) spectrum of 1a

88'8CT
SO'6CT

€8'TET
/L

C6'EET
mm.mma*
6L'SET

S0ZeT
mv.wNaW

0P P9T—

T68T—

S/N\

|

60

80

100

120

PPM

140

160

180

200

514



'H NMR (400 MHz, CDCl;) spectrum of 1b
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COOH

'H NMR (400 MHz, DMSO-dg) spectrum of 1¢

L06—

A

8oz
0T
Fe6'€

k6T

—— F00'T

7.0

75

8.0

PPM

8.5

9.0

9.5

C NMR (400 MHz, DMSO-d,) spectrum of 1c¢

85'9ZT
00'82T\
b 62T~
62621/
96'EET—
6EHET
S6HET
S9'8ET

PP YIT—
¢6'99T—

LLL8T—

COOH

S,N\

190 180 170 160 150 F]’.g& 130 120 110 100 90 80

200

S16



'H NMR (400 MHz, CDCl;) spectrum of 1d
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'H NMR (400 MHz, CDCl;) spectrum of 1e
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'H NMR (400 MHz, CDCL;) spectrum of 1f
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'H NMR (400 MHz, CDCl;) spectrum of 1g
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'H NMR (400 MHz, CDCl;) spectrum of 1h
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'H NMR (400 MHz, CDCl;) spectrum of 1i

L0

T2
b/

057

157

657
197
€97/
€67~
v61

567

967

161

66

5 FOT'E

Ji £00'Z

— 71T
= 00T

00y

PPM

C NMR (400 MHz, CDCls) spectrum of 1i

LY'TC—

EV'STT
mw.m:v
€Lt
20'6CT
SH.mNﬁW
£T6CT
T8'EET
LTSET
0€'SET
LT9ET

TTEIT

T9'S9T~
£0'991/

€0'88T—

F

20

40

60

80

100

120

140

160

180

200

PPM

S22



'H NMR (400 MHz, CDCl;) spectrum of 1j
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'H NMR (400 MHz, CDCl;) spectrum of 1k
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'H NMR (400 MHz, CDCl;) spectrum of 11
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'H NMR (400 MHz, CDCl;) spectrum of 1m
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'H NMR (400 MHz, CDCl;) spectrum of 1n
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'H NMR (400 MHz, CDCl;) spectrum of 10
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'H NMR (400 MHz, CDCL;) spectrum of 1p
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'H NMR (400 MHz, D,0) spectrum of N-benzoylcysteine.
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'H NMR (400 MHz, DMSO-d) spectrum of 2-Phenylthiazolidine-4-carboxylic acid.

00'€
20°€
pO'E-
Loef
80'¢]
60°€]
or'e’
9z'e
8z'e]
wN.m%
0c'E

£6'€
se'e ﬁ
se'e

LE€
oLe
8L'€
6L'€
€Th
Ei
9ITp

8v'S—

0L'S—

COOH

YL
S¢L
JA4/A
T€L
€L
YEL
9L
8€YL
6€L
WL
&L
6v'L
18¢

I

R/S: 50/50

£95°0f
k

280
€50
950

FES'0

=050

F1s0
F05°0

h\mv.o
TE'T
mNm.o
5C6'0
/Nm.o

PPM
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'H NMR (400 MHz, D,0) spectrum of cystine (impure).
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Fig S7. Methylene Blue Kinetics for Compound 1a (R, = H).
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Fig S8. Methylene Blue Kinetics for Compound 1k (R, = F).
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Fig S9. Methylene Blue Kinetics for Compound 11 (R, = CI).
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Fig S10. Methylene Blue Kinetics for Compound 1m (R, = CF3).
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Fig S11. Methylene Blue Kinetics for Compound 1n (R, = CN).
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Fig S12. Methylene Blue Kinetics for Compound 10 (R, = CHj3).
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Fig S13. Methylene Blue Kinetics for Compound 1p (R, = CHj).
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