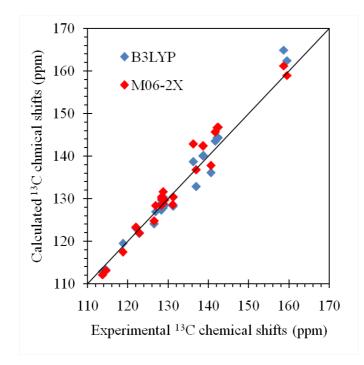
Orientational Order of Two Fluoro- and Isothiocyanate-Substituted Nematogens by Combination of ¹³C NMR Spectroscopy and DFT Calculations

Lucia Calucci,^{a,*} Elisa Carignani,^b Marco Geppi,^{b,*} Sara Macchi,^b Benedetta Mennucci,^b Stanislaw Urban^c


^a Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche – CNR, via
G. Moruzzi 1, 56124, Pisa.

^b Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126, Pisa, Italy.

^c Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Kraków, Poland.

1. Comparison of NMR data calculated by M06-2X and B3LYP functionals

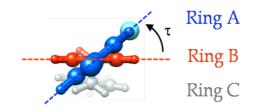
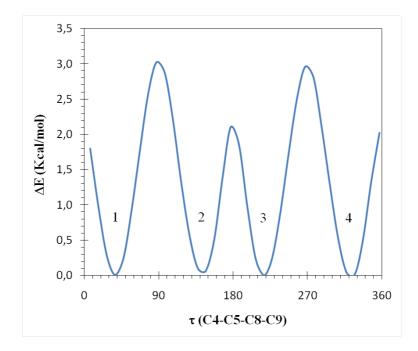

We performed in vacuo NMR calculations using B3LYP and M06-2X functionals and 6-311+G(d,p) basis set (Figure S1). Both sets of calculations satisfactorily reproduce the experimental ¹³C isotropic chemical shifts. The root mean square deviation (RMS) between experimental and computed data is 5.7 and 6.7 ppm for B3LYP and M06-2X functional, respectively; the B3LYP functional was selected for all the following NMR calculations.

Figure S1. Correlation of experimental and calculated¹³C NMR chemical shifts (ppm) at B3LYP and M06-2X levels of theory for the two mesogens.


2. Conformational analysis by Potential Energy Surface scan

In order to evaluate the conformational effects on NMR parameters we performed a relaxed Potential Energy Surface (PES) scan along the τ (C4-C5-C8-C9) dihedral angle (Figure S2) for both the molecules in the gas-phase.

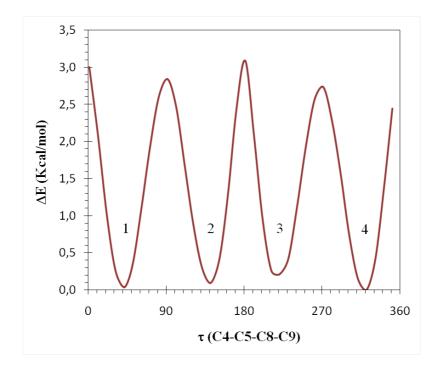


Figure S2. Schematic representation of τ (C4-C5-C8-C9) angle.

For this purpose we used M06-2X functional and 6-31G(d) basis set, and we varied the τ angle between 0 and 360 degrees with steps of 10 degrees. Figures S3 and S4 show the energy profiles for **ORTHO** and **META**, respectively. We found four minima differing by less than 0.04 and 0.06 Kcal/mol for **ORTHO** and **META**, respectively. ¹³C isotropic chemical shifts calculated for the different conformers differed by less than 1.3 ppm and 1 ppm for **ORTHO** and META, respectively, with respect to the absolute minimum (minimum number 4 in figures S3 and S4).

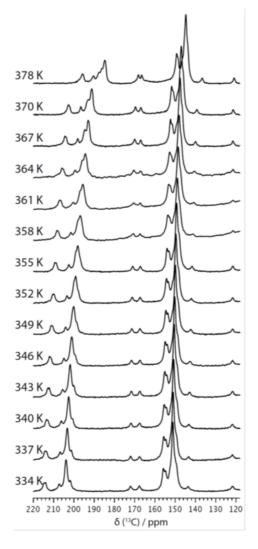


Figure S3. Potential Energy Surface (PES) scan along the τ (C4-C5-C8-C9) dihedral angle for **ORTHO** molecule. On y axis the differences of energy are represented with respect to the energy of the absolute minimum conformation (minimum number 4).

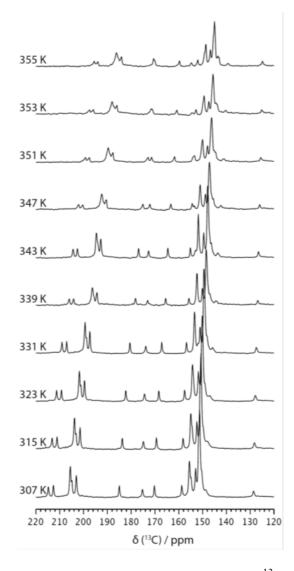


Figure S4. Potential Energy Surface (PES) scan along the τ (C4-C5-C8-C9) dihedral angle for **META** molecule. On y axis the differences of energy are represented with respect to the energy of the absolute minimum conformation (minimum number 4).

3. Temperature dependence of ¹³C NMR spectra of ORTHO and META in the N phase

Figure S5. Temperature dependence of the aromatic region of the ¹³C DE NMR spectra of **ORTHO** within the N phase.

Figure S6. Temperature dependence of the aromatic region of the ¹³C DE NMR spectra of **META** within the N phase.