Supporting Information for Photophysical Characterization of a Helical Peptide Based Chromophore-Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy Stephanie E. Bettis, Derek M. Ryan, Melissa K. Gish, Leila Alibabaei, Thomas J. Meyer, Marcey L. Waters, John M. Papanikolas* Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599 | 1. | Figure S1. Electron Efficiency Calculation. | S2 | |----|---|----| | 2. | Table S1. Summary of the fits for electron injection into TiO ₂ | S2 | | 3. | Table S2. Summary of the fits of time-resolved emission. | S3 | | 4. | Table S3. Summary of the fit of change in red edge of bleach | S3 | | 5. | Figure S2. Transient absorption spectra and kinetics of ZrO ₂ -[Ru _b ^{II} -OH ₂] ²⁺ | S4 | | 6. | Figure S3. Residuals from the global analysis of TiO ₂ -[Ru _a ^{II}] ²⁺ | S5 | | 7. | Figure S4. Residuals from the global analysis of TiO ₂ -[Ru _a ^{II} -Ru _b ^{II} -OH ₂] ⁴⁺ | S5 | **Figure S1.** The electron injection efficiency for TiO_2 -[Ru_a^{II}]²⁺ is calculated from the ratio of the difference between the transient absorption intensity at 380 nm of [Ru_a^{II}]²⁺ on TiO_2 (blue) and ZrO_2 (black) at 1 ns and the difference between intensity of ZrO_2 at 1 ns (black) and the inverse of the ground state absorption on ZrO_2 (red) at 380 nm. The electron injection efficiency for TiO_2 - Ru_a^{II} is 72%. The 9% ultrafast injection is seen in the ratio between ZrO_2 -[Ru_a^{II}]²⁺ (black) and TiO_2 -[Ru_a^{II}]²⁺ at 500 fs (green). These efficiencies are used to determine the initial concentrations of [$-Ru_a^{III*}$ -]²⁺ and [$-Ru_a^{III}$ -]³⁺ in the global analysis. Table S1. Summary of fit for electron injection kinetics at 380 nm of $[Ru_a^{II}]^{2+}$, $[Ru_a^{II}-Ru_b^{II}-OH_2]^{4+}$, and $[Ru^{II}(pbpy)_2(bpy)]^{2+}$ on TiO_2 and ZrO_2 . | | A_1 | τ_1 | A_2 | τ_2 | Offset | |--|-----------------|------------------|-----------------|------------------|------------------| | $\text{TiO}_2\text{-}[\text{Ru}_a^{\text{II}}]^{2+}$ | 0.59 ± 0.31 | 19.3 ± 1.5 | 0.69 ± 0.03 | 201.7 ± 18.5 | -0.34 ± 0.14 | | ZrO_2 - $[Ru_a^{II}]^{2+}$ | 0.03 ± 0.02 | 9.7 ± 17.6 | | | 0.87 ± 0.12 | | $\text{TiO}_2\text{-}[\text{Ru}^{\text{II}}(\text{pbpy})_2(\text{bpy})]^{2+}$ | 0.71 ± 0.20 | 14.3 ± 4.3 | 0.46 ± 0.20 | 77.5 ± 36.1 | $-0.33 \pm .02$ | | $\text{TiO}_2\text{-}[\text{Ru}_a^{\text{II}}\text{-}\text{Ru}_b^{\text{II}}\text{-}\text{OH}_2]^{4+}$ | 0.57 ± 0.02 | 6.85 ± 0.55 | 0.53 ± 0.02 | 77.10 ± 6.44 | -0.11 ± 0.07 | | ZrO_2 - $[Ru_a^{II}$ - Ru_b^{II} - $OH_2]^{4+}$ | 0.33 ± 0.02 | 101.3 ± 23.7 | | | 0.55 ± 0.02 | $\label{eq:control_control_control} Table~S2.~Summary~of~the~fits~of~time-resolved~emission~for~ZrO_2-[Ru_a{}^{II}]^{2+}~and~ZrO_2-[Ru_a{}^{II}-Ru_b{}^{II}-OH_2]^{4+}.$ | | A_1 | $k_1, x10^6 s^{-1}$ | A_2 | $k_1, x_10^6 s^{-1}$ | Average k ₁ , | |---|-----------------|---------------------|-----------------|----------------------|---------------------------| | | | (τ_1, ns) | | (τ_2, ns) | $x10^6 s^{-1} (\tau, ns)$ | | ZrO_2 - $[Ru_a^{II}]^{2+}$ | 0.4 ± 0.01 | 14.2 ± 0.2 | 0.6 ± 0.01 | 2.57 ± 0.01 | 3.82 ± 0.02 | | | | (70.4 ± 1.0) | | (389 ± 1.4) | (261.5 ± 1.2) | | ZrO_2 - $[Ru_a^{II}$ - Ru_b^{II} - $OH_2]^{4+}$ | 0.87 ± 0.01 | 73.6 ± 1.1 | 0.13 ± 0.01 | 14.3 ± 0.4 | 47.8 ± 0.9 | | | | (13.6 ± 0.2) | | (70.0 ± 2.1) | (20.9 ± 0.4) | Table S3. Summary of the fit to the change in wavelength of the bleach (at 50% point) for TiO_2 -[Ru_a^{II}]²⁺ and TiO_2 -[Ru_a^{II}-Ru_b^{II}-OH₂]⁴⁺. | | A_1 | τ ₁ (ps) | A_2 | τ_2 (ps) | |--|----------------|---------------------|----------------|--------------------| | TiO_2 - $[Ru_a^{II}]^{2+}$ | 1 ± 0.05 | 80.84 ± 12.34 | | | | TiO ₂ -Ru _a ^{II} -Ru _b ^{II} | 0.3 ± 0.03 | 25.51 ± 3.89 | 0.7 ± 0.03 | 342.91 ± 48.52 | **Figure S2.** a) Transient absorption spectra of ZrO₂-[Ru(4,4'-(CH₂PO₃H₂)₂bpy)(mebimpy)(H₂O)]²⁺ from 1 ps (dark line) to 1 ns (light line) after laser excitation. b) Transient absorption kinetics of ZrO₂-[Ru(4,4'-(CH₂PO₃H₂)₂bpy)(mebimpy)(H₂O)]²⁺ at 490 nm. The biexponential fit (black line) has an offset of -2.2 and two time components 5.45 x 10^{10} s⁻¹, 18.3 ps (-2.4) and 2.75 x 10^9 s⁻¹, 363.6 ps (-3.0). The fast component is due to vibrational relaxation on ZrO₂ surface and the long component is the catalyst excited-state decay. The sample was on 3 μm thick nanocrystalline ZrO₂ in aqueous 0.1 M HClO₄ at 25 °C. The excitation wavelength was 420 nm. Figure S3. Residuals from the global analysis of TiO_2 -[Ru_a II] $^{2+}$. $\textbf{Figure S4.} \ \text{Residuals from the global analysis of TiO}_2 \text{-} [Ru_a{}^{II} \text{-} Ru_b{}^{II} \text{-} OH_2]^{4+}.$