Supporting Information

for

Photophysical Characterization of a Helical Peptide Based Chromophore-Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy

Stephanie E. Bettis, Derek M. Ryan, Melissa K. Gish, Leila Alibabaei, Thomas J. Meyer, Marcey L. Waters, John M. Papanikolas*

Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599

1.	Figure S1. Electron Efficiency Calculation.	S2
2.	Table S1. Summary of the fits for electron injection into TiO ₂	S2
3.	Table S2. Summary of the fits of time-resolved emission.	S3
4.	Table S3. Summary of the fit of change in red edge of bleach	S3
5.	Figure S2. Transient absorption spectra and kinetics of ZrO ₂ -[Ru _b ^{II} -OH ₂] ²⁺	S4
6.	Figure S3. Residuals from the global analysis of TiO ₂ -[Ru _a ^{II}] ²⁺	S5
7.	Figure S4. Residuals from the global analysis of TiO ₂ -[Ru _a ^{II} -Ru _b ^{II} -OH ₂] ⁴⁺	S5

Figure S1. The electron injection efficiency for TiO_2 -[Ru_a^{II}]²⁺ is calculated from the ratio of the difference between the transient absorption intensity at 380 nm of [Ru_a^{II}]²⁺ on TiO_2 (blue) and ZrO_2 (black) at 1 ns and the difference between intensity of ZrO_2 at 1 ns (black) and the inverse of the ground state absorption on ZrO_2 (red) at 380 nm. The electron injection efficiency for TiO_2 - Ru_a^{II} is 72%. The 9% ultrafast injection is seen in the ratio between ZrO_2 -[Ru_a^{II}]²⁺ (black) and TiO_2 -[Ru_a^{II}]²⁺ at 500 fs (green). These efficiencies are used to determine the initial concentrations of [$-Ru_a^{III*}$ -]²⁺ and [$-Ru_a^{III}$ -]³⁺ in the global analysis.

Table S1. Summary of fit for electron injection kinetics at 380 nm of $[Ru_a^{II}]^{2+}$, $[Ru_a^{II}-Ru_b^{II}-OH_2]^{4+}$, and $[Ru^{II}(pbpy)_2(bpy)]^{2+}$ on TiO_2 and ZrO_2 .

	A_1	τ_1	A_2	τ_2	Offset
$\text{TiO}_2\text{-}[\text{Ru}_a^{\text{II}}]^{2+}$	0.59 ± 0.31	19.3 ± 1.5	0.69 ± 0.03	201.7 ± 18.5	-0.34 ± 0.14
ZrO_2 - $[Ru_a^{II}]^{2+}$	0.03 ± 0.02	9.7 ± 17.6			0.87 ± 0.12
$\text{TiO}_2\text{-}[\text{Ru}^{\text{II}}(\text{pbpy})_2(\text{bpy})]^{2+}$	0.71 ± 0.20	14.3 ± 4.3	0.46 ± 0.20	77.5 ± 36.1	$-0.33 \pm .02$
$\text{TiO}_2\text{-}[\text{Ru}_a^{\text{II}}\text{-}\text{Ru}_b^{\text{II}}\text{-}\text{OH}_2]^{4+}$	0.57 ± 0.02	6.85 ± 0.55	0.53 ± 0.02	77.10 ± 6.44	-0.11 ± 0.07
ZrO_2 - $[Ru_a^{II}$ - Ru_b^{II} - $OH_2]^{4+}$	0.33 ± 0.02	101.3 ± 23.7			0.55 ± 0.02

 $\label{eq:control_control_control} Table~S2.~Summary~of~the~fits~of~time-resolved~emission~for~ZrO_2-[Ru_a{}^{II}]^{2+}~and~ZrO_2-[Ru_a{}^{II}-Ru_b{}^{II}-OH_2]^{4+}.$

	A_1	$k_1, x10^6 s^{-1}$	A_2	$k_1, x_10^6 s^{-1}$	Average k ₁ ,
		(τ_1, ns)		(τ_2, ns)	$x10^6 s^{-1} (\tau, ns)$
ZrO_2 - $[Ru_a^{II}]^{2+}$	0.4 ± 0.01	14.2 ± 0.2	0.6 ± 0.01	2.57 ± 0.01	3.82 ± 0.02
		(70.4 ± 1.0)		(389 ± 1.4)	(261.5 ± 1.2)
ZrO_2 - $[Ru_a^{II}$ - Ru_b^{II} - $OH_2]^{4+}$	0.87 ± 0.01	73.6 ± 1.1	0.13 ± 0.01	14.3 ± 0.4	47.8 ± 0.9
		(13.6 ± 0.2)		(70.0 ± 2.1)	(20.9 ± 0.4)

Table S3. Summary of the fit to the change in wavelength of the bleach (at 50% point) for TiO_2 -[Ru_a^{II}]²⁺ and TiO_2 -[Ru_a^{II}-Ru_b^{II}-OH₂]⁴⁺.

	A_1	τ ₁ (ps)	A_2	τ_2 (ps)
TiO_2 - $[Ru_a^{II}]^{2+}$	1 ± 0.05	80.84 ± 12.34		
TiO ₂ -Ru _a ^{II} -Ru _b ^{II}	0.3 ± 0.03	25.51 ± 3.89	0.7 ± 0.03	342.91 ± 48.52

Figure S2. a) Transient absorption spectra of ZrO₂-[Ru(4,4'-(CH₂PO₃H₂)₂bpy)(mebimpy)(H₂O)]²⁺ from 1 ps (dark line) to 1 ns (light line) after laser excitation. b) Transient absorption kinetics of ZrO₂-[Ru(4,4'-(CH₂PO₃H₂)₂bpy)(mebimpy)(H₂O)]²⁺ at 490 nm. The biexponential fit (black line) has an offset of -2.2 and two time components 5.45 x 10^{10} s⁻¹, 18.3 ps (-2.4) and 2.75 x 10^9 s⁻¹, 363.6 ps (-3.0). The fast component is due to vibrational relaxation on ZrO₂ surface and the long component is the catalyst excited-state decay. The sample was on 3 μm thick nanocrystalline ZrO₂ in aqueous 0.1 M HClO₄ at 25 °C. The excitation wavelength was 420 nm.

Figure S3. Residuals from the global analysis of TiO_2 -[Ru_a II] $^{2+}$.

 $\textbf{Figure S4.} \ \text{Residuals from the global analysis of TiO}_2 \text{-} [Ru_a{}^{II} \text{-} Ru_b{}^{II} \text{-} OH_2]^{4+}.$