Supporting Information

Dual Binding-sites Assisted Chromogenic & Fluorogenic Recognition and Discrimination of Fluoride and Cyanide by a Peripherally Borylated Metalloporphyrin: Overcoming Anion-interference in Organoboron Based Sensors

Chinna Ayya Swamy P, Sanjoy Mukherjee and Pakkirisamy Thilagar *

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India. Fax: 91-80-2360-1552; Tel; 91-80-2293-3353

E-mail: <u>thilagar@ipc.iisc.ernet.in</u>

TABLE OF CONTENTS

1)	NMR and MALDI-TOF characterisation data	Page S2-S4
2)	Photophysical Properties and Anion Binding Studies	Page S5-S21
3)	Digital Photographs	Page S22
4)	DFT Computational Data	Page S23-S26
5)	Crystallographic Data Tables	Page S27
6)	Photophysical Data Tables	Page S28
7)	DFT computational data	Page S29-S38
8)	Reference	Page S38

Figure S2: ¹³C NMR of **2**

Figure S4: ¹H NMR of **3**

Figure S5: ¹³C NMR of **3**

Figure S6: MALDI-TOF for **3**

Figure S7: UV-Vis titration of 2 (1µM) in DCM upon addition of fluoride (as TBAF)

Figure S8: Fluorescence titration of 2 (λ_{ex} = 350 nm, 10µM solution) in DCM upon addition of fluoride (as TBAF)

Figure S9: Fluorescence titration of **2** ($\lambda_{ex} = 425$ nm, 10µM solution) in DCM upon addition of

Figure S10: UV-Vis titration of 2 (1µM solution) in DCM upon addition of cyanide (as TBA-

CN)

Figure S11: Fluorescence titration of 2 (λ_{ex} = 350 nm, 10µM solution) in DCM upon addition of cyanide (as TBA-CN)

Figure S12: Fluorescence titration of 2 (λ_{ex} = 425 nm, 10µM solution) in DCM upon addition of cyanide (as TBA-CN)

Figure S13: UV-Vis titration of 2 in presence of different anions (in DCM, 10µM solution)

Figure S14: Fluorescence response of 2 in presence of different anions (in DCM, 10µM solution,

 $\lambda_{ex} = 350 \text{ nm}$)

Figure S15: Fluorescence response of 2 in presence of different anions (in DCM, 10µM solution,

 $\lambda_{ex} = 425 \text{ nm}$)

Figure S16: UV-Vis titration of 3 (1µM solution) in DCM upon addition of fluoride (as TBAF)

Figure S17: Fluorescence titration of **3** (λ_{ex} = 350 nm, 10µM solution) in DCM upon addition of fluoride (as TBAF)

Figure S18: Fluorescence titration of **3** (λ_{ex} = 425 nm, 10µM solution) in DCM upon addition of fluoride (as TBAF)

Figure S19: UV-Vis titration of **3**(1µM solution) in DCM upon addition of cyanide (as TBA-CN)

Figure S20: Fluorescence titration of **3** (λ_{ex} = 350 nm, 10µM solution) in DCM upon addition of cyanide (as TBA-CN)

Figure S21: Fluorescence titration of **3** (λ_{ex} = 425 nm, 10µM solution) in DCM upon addition of cyanide (as TBA-CN)

Figure S22: UV-Visible titration of **3** in presence of different anions (in DCM, 10µM solution)

Figure S23: Fluorescence response of 3 in presence of different anions (in DCM, 10µM solution,

 $\lambda_{ex} = 350 \text{ nm}$)

Figure S24: Fluorescence response of 3 in presence of different anions (in DCM, 10µM solution,

 $\lambda_{ex} = 425 \text{ nm}$)

Figure S25: UV-Vis titration of **Zn-TPP** (1µM solution) in DCM upon addition of cyanide (as TBA-CN)

Figure S26: UV-Visible spectra of **2** (1 μ M) with 5.0 Eq of CN⁻ (as TBACN) followed by 1.0, 2.0, 3.0 and 4.0 Eq of F⁻ (as TBAF)

Figure S27: UV-Visible spectra of 2 (1 μ M) with 5.0 Eq of F⁻ (as TBAF) followed by 1.0, 2.0, 3.0 and 4.0 Eq of CN⁻ (as TBACN)

Figure S28: Fluorescence spectra of **2** (in DCM, 10 μ M solution, λ_{Ex} = 350 nm) with 5.0 Eq of CN⁻ (as TBACN) followed by 1.0, 2.0, 3.0 and 4.0 Eq of F⁻ (as TBAF)

Figure S29: Fluorescence spectra of **2** (in DCM, 10 μ M solution, λ_{Ex} = 350 nm) with 5.0 Eq of F⁻ (as TBAF) followed by 1.0, 2.0, 3.0 and 4.0 Eq of CN⁻ (as TBACN)

Figure S30: Fluorescence spectra of **2** (in DCM, 10 μ M solution, λ_{Ex} = 425 nm) with 5.0 Eq of CN⁻ (as TBACN) followed by 1.0, 2.0, 3.0 and 4.0 Eq of F⁻ (as TBAF)

Figure S31: Fluorescence spectra of **2** (in DCM, 10 μ M solution, λ_{Ex} = 425 nm) with 5.0 Eq of F⁻ (as TBAF) followed by 1.0, 2.0, 3.0 and 4.0 Eq of CN⁻ (as TBACN)

Figure S32: UV-Visible spectra of **3** (1 μ M) with 5.0 Eq of CN⁻ (as TBACN) followed by 1.0, 2.0, 3.0 and 4.0 Eq of F⁻ (as TBAF)

Figure S33: UV-Visible spectra of **3** (1 μ M) with 5.0 Eq of F⁻ (as TBAF) followed by 1.0, 2.0, 3.0 and 4.0 Eq of CN⁻ (as TBACN)

Figure S34: Fluorescence spectra of **3** (in DCM, 10 μ M solution, λ_{Ex} = 350 nm) with 5.0 Eq of CN⁻ (as TBACN) followed by 1.0, 2.0, 3.0 and 4.0 Eq of F⁻ (as TBAF)

Figure S35: Fluorescence spectra of **3** (in DCM, 10 μ M solution, λ_{Ex} = 350 nm) with 5.0 Eq of F⁻ (as TBAF) followed by 1.0, 2.0, 3.0 and 4.0 Eq of CN⁻ (as TBACN)

Figure S36: Fluorescence spectra of **3** (in DCM, 10 μ M solution, λ_{Ex} = 425 nm) with 5.0 Eq of CN⁻ (as TBACN) followed by 1.0, 2.0, 3.0 and 4.0 Eq of F⁻ (as TBAF)

Figure S37: Fluorescence spectra of **3** (in DCM, 10 μ M solution, λ_{Ex} = 425 nm) with 5.0 Eq of F⁻ (as TBAF) followed by 1.0, 2.0, 3.0 and 4.0 Eq of CN⁻ (as TBACN)

Figure S38: Emission spectra of 2 (left) and 3 (right) at different concentrations. (DCM solution, $\lambda_{ex} = 350 \text{ nm}$)

Figure S39: Comparison of UV-Vis absorption spectra and fluorescence emission spectra of **2** in free form (left) and upon addition of fluoride (middle) and cyanide (right) ions. (10 μ M DCM solution, $\lambda_{ex} = 350$ nm)

Figure S40: Comparison of UV-Vis absorption spectra and fluorescence emission spectra of **3** in free form (left) and upon addition of fluoride (middle) and cyanide (right) ions. (10 μ M DCM solution, $\lambda_{ex} = 350$ nm)

Figure S41: Comparison of emission spectra of 2 and 3 (10 μ M DCM solution, $\lambda_{ex} = 350$ nm) compared to the model building units (i.e. **PhBMes₂**, **H2-TPP** and **Zn-TPP**)

Figure S42: Photograph of **2** with different anions. From top to bottom: samples illuminated under Visible, Long wavelength UV, Both Long & Short wavelength UV and Short wavelength UV. Concentration: 10μ M in DCM; Fluoride and Cyanide were added in 5eq amount. Other anions were used in greater than 10eq amount.

Figure S43: Photograph of **3** with different anions. From top to bottom: samples illuminated under Visible, Long wavelength UV, Both Long & Short wavelength UV and Short wavelength UV. Concentration: 10μ M in DCM; Fluoride and Cyanide were added in 5eq amount. Other anions were used in greater than 10eq amount.

Figure S44: Model compounds used for DFT computation

Figure S45: DFT B3LYP/lanl2dz optimised structure of **2m** and its ESP surface

Figure S46: TD-SCF DFT Simulated UV-Vis Spectra of 2m

Figure S47: Selected MOs of **2m** (schematic, not to scale)

Figure S48: DFT B3LYP/lanl2dz optimised structure of **3m** and its ESP surface

Figure S49: TD-SCF DFT Simulated UV-Vis Spectra of **3m** (n=20)

Figure S50: Selected MOs of **3m** (schematic, not to scale)

Table S1. Crystallographic data and refinement parameters for **2** and **3**: The crystal quality was very poor. After several attempts, we got the reasonable diffraction data and solved the structure. In spite of the poor diffraction of **1**, **2** and **3**, the molecular structure refined well without any disorder and we don't find any residual electron density higher than 0.6 Å³ asymmetric unit. The high R1 and wR2 values may be due to the poor quality of the crystal.

Compound	2	3
empirical formula	C132 H114 B4 Cl12 N4	C129 H112 B4 Cl12 N4 Zn
fw	2224.91	2252.26
<i>T</i> (K)	100 K	100 K
crystal system	Monoclinic	Monoclinic
space group	C 2/c	C 2/c
a/Å	24.3381(17)	24.53000
b/Å	20.7253(16)	20.53900
c/Å	24.5830(19)	24.56800
α/deg	90	90
β/deg	103.632(4)	103.9300
γ/deg	90	90
$V/Å^3$	12050.7(16)	12013.864
Ζ	4	4
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.226	1.245
μ (Mo K α) (mm ⁻¹)	0.326	0.521
λ/Å	0.71073	0.71073
F (000)	4632.0	4672.0
collected reflns	13176	13022
unique reflns	8788	5118
GOF (F^2)	1.102	1.073
$R_{I} [I > 2\sigma(I)]^{[a]}$	0.1353	0.1035
$wR_2[I>2\sigma(I)]^{[b]}$	0.3640	0.3570

^[a] $R_1 = \Sigma \left[F_0 \right] - F_c \left[/ \Sigma F_0 \right]$. ^[b] $wR_2 = \left[\Sigma \{ w(F_0^2 - F_c^2)^2 \} / \Sigma \{ w(F_0^2)^2 \} \right]^{1/2}$

Compound	Absorption (λ _{max} /nm, ε/M ⁻¹ cm ⁻)	Emission (λ _{em} /nm) λ _{ex} =350nm	Emission (λ _{em} /nm) λ _{ex} =425nm	$\Phi_{\rm f}$ (DCM), $\lambda_{\rm ex}$
	$334, 4.3 \times 10^3$	395		
2	$425\ 3.0 \times 10^5$	445	655	27.0, 350
	$518 1.7 \times 10^4$	650		
	554 1.3×10^4	715	720	12.3, 515
	591 7.6×10 ³			
	$648 \ 6.3 \times 10^3$			
	$338, 4.3 \times 10^3$	400		
3	$428, 2.8 \times 10^5$	450	615	19.7, 350
	$514, 1.0 \times 10^4$	610		,
	590, 1.1×10^3	660	660	10.0, 515

Table S2a. Photophysical properties of 2 and 3

Table S2b. Time resolved fluorescence measurements of 2 and 3

$\tau_{\rm f}/{\rm ns}~(\lambda_{\rm em}/{\rm nm})$
1.5 (410)
1.6 (450)
8.4 (660)
8.1 (710)
1.5 (410)
1.8 (450)
1.8 (560)
1.7 (610)

All given data are for single exponential fitting of "Time-Resolved Fluorescence" decay profiles. Incorporation of more than one exponential function was not required in any case. ($\lambda_{ex} = 342 \text{ nm nano-LED}$) [$y = A \times exp(-t/\tau_f) + y_0$] where y is the fluorescence intensity at any given time t. $y_0 = 0$; and A = Pre-exponential constant. τ_f indicates the average fluorescence lifetime of the observed events.]

COMPUTED GEOMETRY OF MODEL COMPOUND 2m

E=-4492.36281329a.u.

Table S3. Coordinates of 2m

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	7	 0	-2 046132		0 042241
2	, 6	0	2.482569	-2.473873	0.010400
- 3	6	0	1.142821	-2.920459	0.008363
4	6	0	0.690742	-4.293367	0.000220
5	1	0	1.343242	-5.152632	-0.006321
6	6	0	-0.690614	-4.293397	-0.000576
7	1	0	-1.343080	-5.152687	0.005970
8	6	0	-1.142753	-2.920509	-0.008712
9	6	0	-2.482523	-2.473981	-0.010720
10	6	0	-2.885465	-1.115187	-0.002527
11	6	0	-4.290874	-0.690279	-0.087990
12	1	0	-5.141913	-1.350487	-0.163381
13	6	0	-4.289868	0.676990	-0.086374
14	1	0	-5.139384	1.339767	-0.158711
15	6	0	2.885456	-1.115060	0.002239
16	6	0	3.550212	-3.531014	0.029264
17	6	0	4.419113	-3.701785	-1.074094
18	1	0	4.304900	-3.060176	-1.944383
19	6	0	5.402396	-4.703169	-1.062791
20	1	0	6.042671	-4.825772	-1.933813
21	6	0	5.590150	-5.555375	0.059443
22	6	0	4.722464	-5.355603	1.16/480
23	1	0	4.842806	-5.9/5259	2.053256
24	8	0	3.713182	-4.380192	2 011014
25	1	0	-2 550110	-4.234303	_0 020522
20	6	0	-3.550118	-3.331171	-0.029555
28	1	0	-3 062898	-4 254449	-2 011312
29	6	0	-4 722344	-5 355845	-1 167640
30	1	0	-4.842714	-5.975523	-2.053397
31	-	0	-5.589922	-5.555670	-0.059529
32	6	0	-5.402146	-4.703429	1.062676
33	1	0	-6.042340	-4.826066	1.933753
34	6	0	-4.418932	-3.701978	1.073890
35	1	0	-4.304693	-3.060354	1.944164
36	7	0	2.046074	-0.008679	-0.042481
37	6	0	-2.481092	2.456838	-0.009847
38	6	0	-1.142324	2.903782	-0.008022
39	6	0	-0.690883	4.276808	-0.000922
40	1	0	-1.344976	5.135010	0.005294
41	6	0	0.690645	4.276836	0.000630
42	1	0	1.344706	5.135063	-0.005595
43	6	0	1.142144	2.903830	0.007740
44	6	0	2.480932	2.456945	0.009586
45	6	0	2.884142	1.099251	0.001565
46	6	0	4.289/81	0.6//1/4	0.086120
47	1	0	5.1392/4	1.339983	0.158453
48	8	0	4.290845	-0.690095	0.087719
49 50	1 2	0	_2 00/2//	1 000125	_0 001000
50	6	0	-2.004244 -3 510919	1.099123 3 515615	-0.001829
52	6	0	-4 278722	3 724510	1 007201
53	1	n	-4.235710	3,112179	1.984146
54	6	n	-5.374787	4,713707	1.078038
55	1	0 0	-6.005130	4.846919	1.954230
56	6	õ	-5.577582	5.549599	-0.053803
57	6	õ	-4.732044	5.326697	-1.174558
58	1	Ō	-4.859252	5.940396	-2.063761
59	6	0	-3.744538	4.329086	-1.168300
60	1	0	-3.125797	4.169692	-2.048181

61	6	0	3.548003	3.515799	0.027736
62	6	0	3.744237	4.329222	1.168125
63	1	0	3.125458	4.169782	2.047971
64	6	0	4.731694	5.326880	1.174456
65	1	0	4.858824	5.940563	2.063682
66	6	0	5.577277	5.549846	0.053748
67	6	0	5.374582	4.713966	-1.078119
68	1	0	6.004969	4.847222	-1.954272
69	-	0	4.378563	3.724732	-1.097355
70	1	0	4 235626	3 112404	-1 984320
71	- 5	0	6 684878	6 666611	0 064585
72	6	0	6 540570	7 878956	1 076316
73	6	0	7 900071	6 545128	-0 947400
74	6	0	7 578300	8 166118	2 021272
75	6	0	5 374950	8 708645	1 079276
76	6	0	8 763888	5 405245	-0 942676
77	6	0	8 139471	7 569589	-1 922931
78	6	0	7 434450	9 233344	2 932403
79	6	0	8 845294	7 325178	2 103082
80	6	0	5 273259	9 786686	1 995799
81 81	6	0	1 207937	9.700000	0 118669
02	6	0	4.207937	5 200200	_1 006057
02	6	0	9.810248	1 200/208	-1.880957
01	6	0	0.0/4/39	4.299430	2 050001
04	6	0	9.1049/1	7.429114	-2.858081
85	6	0	7.265633	8.812948	-2.01/988
86	6	0	6.290695	10.048241	2.915/4/
87	1	0	8.226970	9.428446	3.652034
88	1	0	9.424824	7.3/9/94	1.1/42/3
89	1	0	9.486/20	7.668078	2.922785
90	1	0	8.619919	6.265964	2.282701
91	1	0	4.388792	10.420829	1.958914
92	1	0	3.464191	7.813427	0.545411
93	1	0	3.701152	9.451949	-0.081571
94	1	0	4.513907	8.075181	-0.841977
95	6	0	10.022252	6.300242	-2.845290
96	1	0	10.460529	4.427098	-1.861204
97	1	0	9.496370	4.393007	0.828274
98	1	0	7.737779	4.313509	0.663205
99	1	0	8.770167	3.310725	-0.364477
100	1	0	9.342204	8.209792	-3.599626
101	1	0	6.224724	8.561183	-2.263341
102	1	0	7.250011	9.371061	-1.075527
103	1	0	7.630871	9.484037	-2.803457
104	5	0	6.707330	-6.661903	0.076873
105	6	0	7 <i>.253359</i>	-7.219693	-1.302451
106	6	0	7.239030	-7.185535	1.475971
107	6	0	8.650381	-7.159089	-1.612492
108	6	0	6.368752	-7.788695	-2.272910
109	6	0	7.809044	-6.292640	2.436956
110	6	0	7.126794	-8.572295	1.826194
111	6	0	9.124361	-7.639104	-2.851538
112	6	0	9.663451	-6.555798	-0.648272
113	6	0	6.878202	-8.285889	-3.492363
114	6	0	4.864360	-7.909307	-2.048485
115	6	0	8.230618	-6.775503	3.696565
116	6	0	8.074221	-4.819681	2.147134
117	6	0	7.546356	-9.019843	3.095537
118	6	0	6.524234	-9.599124	0.876698
119	6	0	8.247184	-8.206957	-3.789910
120	1	0	10.187091	-7.573080	-3.075853
121	1	0	9.717598	-7.125250	0.286955
122	1	0	10.664008	-6.543936	-1.095172
123	1	0	9.409264	-5.521319	-0.383168
124	1	0	6.193573	-8.735154	-4.209595
125	1	0	4.340359	-7.004267	-2.383517
126	1	0	4.458268	-8.755164	-2.616578
127	1	0	4.600259	-8.055235	-0.996666
128	6	0	8.097622	-8.129244	4.032913
129	1	0	8.668396	-6.079365	4.410417
130	1	0	9.151818	-4.646507	2.010044
131	1	0	7.565641	-4.461666	1.249924

132	1	0	7.751379	-4.190575	2.986803
133	1	0	7.440238	-10.072742	3.348940
134	1	0	5.470437	-9.381023	0.655008
135	1	0	7.056492	-9.628291	-0.080249
136	1	0	6.562454	-10.601944	1.316710
137	5	0	-6.707001	-6.662306	-0.076832
138	6	0	-7 252774	-7 220165	1 302566
139	6	0	-7 238818	-7 185993	-1 475861
140	6	0	-0 6/0750	-7 150702	1 612001
140	6	0	-0.049/50	-7.159703	1.012004
141	6	0	-0.30/909	-7.789069	2.2/2901
142	6	0	-7.809021	-6.293153	-2.436/89
143	6	0	-7.126517	-8.572747	-1.826085
144	6	0	-9.123511	-7.639759	2.851922
145	6	0	-9.663023	-6.556518	0.648723
146	6	0	-6.877193	-8.286303	3.492432
147	6	0	-4.863598	-7.909528	2.048259
148	6	0	-8.230703	-6.776060	-3.696344
149	6	0	-8.074300	-4.820218	-2.146939
1.50	6	0	-7.546193	-9.020339	-3.095375
151	6	0	-6 523772	-9 599530	-0 876656
152	6	0	0.323772	9.399330	2 700175
152	0	0	-0.240141	-0.20/309	3.790173
153	1	0	-10.186217	-7.5/3844	3.076389
154	1	0	-9.717219	-7.125956	-0.286509
155	1	0	-10.663525	-6.544788	1.095750
156	1	0	-9.408995	-5.522002	0.383608
157	1	0	-6.192413	-8.735486	4.209572
158	1	0	-4.339646	-7.004412	2.383159
159	1	0	-4.457331	-8.755309	2.616340
160	1	0	-4.599638	-8.055492	0.996410
161	-	0	-8 097638	-8 129793	-4 032696
162	1	0	-0 660622	6 070062	-4 410140
102	1	0	-0.000022	-0.079903	-4.410149
163	1	0	-9.151886	-4.64/156	-2.009624
164	1	0	-7.565568	-4.462133	-1.249844
165	1	0	-7.751708	-4.191095	-2.986691
166	1	0	-7.440024	-10.073232	-3.348781
167	1	0	-5.469957	-9.381372	-0.655113
168	1	0	-7.055897	-9.628715	0.080364
169	1	0	-6.561999	-10.602358	-1.316651
170	5	0	-6.685228	6.666319	-0.064547
171	6	0	-6.540982	7.878748	-1.076182
172	6	0	-7 900381	6 544738	0 947475
173	6	0	-7 578766	8 166000	-2 021052
174	C C	0	F 27525C	0.700000	1 070120
175	0	0	-3.373336	6.708429	-1.079138
175	6	0	-8./6418/	5.404850	0.942701
176	6	0	-8.139751	7.569129	1.923086
177	6	0	-7.434959	9.233301	-2.932102
178	6	0	-8.845779	7.325087	-2.102850
179	6	0	-5.273706	9.786542	-1.985569
180	6	0	-4.208289	8.499594	-0.118613
181	6	0	-9.810515	5.299740	1.887010
182	6	0	-8.675075	4.299109	-0.102908
183	6	0	-9.185215	7.428582	2.858265
184	6	0	-7 265921	8 812491	2 018183
105	6	0	-6 201102	10 040102	-2.015447
185	0	0	-6.291192	10.048183	-2.915447
186	1	0	-8.22/522	9.428470	-3.651667
187	1	0	-9.425259	7.379649	-1.174007
188	1	0	-9.487241	7.668055	-2.922497
189	1	0	-8.620432	6.265882	-2.282553
190	1	0	-4.389231	10.420673	-1.958697
191	1	0	-3.464450	7.813359	-0.545562
192	1	0	-3.701640	9.451678	0.081869
193	1	0	-4.514163	8.074580	0.841926
194	6	0	-10.022491	6,299704	2.845422
195	1	n n	-10 460701	4 426629	1 861210
104	1	0	_0 /067//	1 300275	_0 0000FC
107	1	0	2.420/44 _7 70010F	JJ20/J 1 212066	-0 663330
100	1	0	-/./30135	4.JLJ200	-0.003320
198	1	U	-8.770390	3.310362	0.364378
199	1	0	-9.342426	8.209201	3.599875
200	1	0	-6.224973	8.560717	2.263356
201	1	0	-7.250444	9.370723	1.075790
202	1	0	-7.631063	9.483477	2.803786

203	1	0	-0.000054	1.091405	-0.000154
204	1	0	-0.000005	-1.108195	-0.000187
205	7	0	-0.000073	2.109961	-0.000149
206	7	0	0.000016	-2.126762	-0.000185
207	1	0	8.420164	-8.488980	5.007593
208	1	0	8.626581	-8.586667	-4.736146
209	1	0	10.827382	6.206099	-3.570779
210	1	0	6.197247	10.877427	3.613730
211	1	0	-10.827594	6.205505	3.570932
212	1	0	-6.197778	10.877427	-3.613366
213	1	0	-8.625362	-8.587248	4.736470
214	1	0	-8.420265	-8.489564	-5.007334

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A $396 \rightarrow 390 \qquad 0.37776$	$2.0976 \ eV \ 591.07 \ nm \ f=0.0755 \ =0.000$
307 > 308 = 0.57770	
$J_{J} = J_{J} = J_{J$	- 4402 20572760
Total Energy, E(TD-HF/TD-KS)	4492.28372708
Excited State 2: Singlet-A	2.2581 eV 549.05 nm f=0.1217 <s**2>=0.000</s**2>
396 -> 398 -0.39303	
<i>397 -> 399 0.58546</i>	
Excited State 3. Singlet-A	2 9141 eV 425 46 nm f=0 0035 <s**2>=0 000</s**2>
$397 -> 400 \qquad 0.70117$	2.9111 cr 125.10 nm j 0.0055 35 2× 0.000
577 700 0.70117	
Excited State 4: Singlet-A	2.9304 eV 423.10 nm f=0.6516 <s**2>=0.000</s**2>
396 -> 398 -0.32530	
397 -> 399 -0.21622	
397 -> 402 0.58053	
Freited State 5: Singlet A	2.0311 eV 423.00 nm f=0.7282 < S**2>=0.000
$279 > 209 \qquad 0.10101$	2.9511 ev 425.00 nm j = 0.7282 (s) 2 (s) -0.000
3/8 - 398 = 0.10101	
390 -> 399 -0.33118	
$397 -> 398 \qquad 0.22924$	
$39/ -> 401 \qquad 0.29206$	
39/->403 0.46860	
Excited State 6: Singlet-A	2.9906 eV 414.58 nm f=0.0573 <s**2>=0.000</s**2>
396 -> 399 0.10710	U U
397 -> 401 0.63576	
<i>397 -> 403 -0.27003</i>	
Excited State 7: Singlet-A	$3.1226 \text{ eV} \ 39/.05 \text{ nm} \ f=0.304/ \ =0.000$
3/8 -> 398 -0.28500	
$396 -> 399 \qquad 0.39099$	
$396 \rightarrow 402 -0.14551$	
397 -> 398 -0.19834	
397 -> 403 0.43231	
Excited State 8: Singlet-A	3.2058 eV 386.74 nm f=0.0068 <s**2>=0.000</s**2>
379 -> 398 0 64067	
382 -> 398 -0.25753	
552 - 576 -0.25755	
Excited State 9: Singlet-A	3.2335 eV 383.44 nm f=0.8456 <s**2>=0.000</s**2>
<i>396 -> 398 0.43026</i>	
<i>396 -> 403</i> 0.22592	
397 -> 399 0.28131	
<i>397 -> 402</i> 0. <i>37319</i>	
Excited State 10: Singlet-A	$5.5100 \text{ eV} \ 5/3.90 \text{ nm} \ f=0.0000 \ <5^{**2} >=0.000$
$590 -> 400 \qquad 0.70272$	

Excited State 11: Singlet-A 396 -> 401 0.69460	$3.3621 \text{ eV} \ 368.77 \text{ nm} \ f=0.0185 \ =0.000$
Excited State 12: Singlet-A	$3.3755 \ eV \ 367.31 \ nm \ f=0.0845 \ =0.000$
378 -> 398 -0.42571	
380 -> 398 -0.21807	
<i>396 -> 402</i> 0. <i>49167</i>	
Excited State 13: Singlet-A	3.3974 eV 364.94 nm f=0.0017 <s**2>=0.000</s**2>
<i>394 -> 398</i> 0.50552	
394 -> 399 -0.10405	
<i>395 -> 398 0.15409</i>	
395 -> 399 0.40663	
Excited State 14: Singlet-A	3.3978 eV 364.90 nm f=0.0012 <s**2>=0.000</s**2>
394 -> 398 -0.15615	
<i>394 -> 399 0.40892</i>	
<i>395 -> 398 0.51378</i>	
<i>395 -> 399 0.10471</i>	
Excited State 15: Singlet-A	3.4135 eV 363.21 nm f=0.0022 <s**2>=0.000</s**2>
379 -> 399 -0.14326	
<i>392 -> 399 0.36095</i>	
393 -> 398 0.56286	
Excited State 16: Singlet-A	3.4139 eV 363.18 nm f=0.0007 <s**2>=0.000</s**2>
<i>392 -> 398 0.58140</i>	
393 -> 399 0.36612	
Excited State 17: Singlet-A	3.4202 eV 362.51 nm f=0.0000 <s**2>=0.000</s**2>
379 -> 399 0.57246	
382 -> 399 -0.28496	
$390 -> 399 \qquad 0.12822$	
$391 -> 398 \qquad 0.11822$	
393 -> 398 0.16199	
Excited State 18: Singlet-A	3.4207 eV 362.45 nm f=0.2115 <s**2>=0.000</s**2>
3/8 -> 399 -0.23858	
391 -> 399 -0.13425	
$396 -> 403 \qquad 0.59/8/$	
39/ -> 399 -0.10029	
39/->402 -0.10001	
Excited State 19: Singlet-A	3.4312 eV 361.34 nm f=0.0383 <s**2>=0.000</s**2>
390 -> 398 0.46733	
<i>390 -> 403</i> 0.11198	
<i>391 -> 399 0.40745</i>	
<i>391 -> 400 0.10080</i>	
<i>395 -> 398 0.10083</i>	
<i>396 -> 403</i> 0.17244	
Excited State 20: Singlet-A	3.4312 eV 361.34 nm f=0.0213 <s**2>=0.000</s**2>
<i>379 -> 399 -0.14295</i>	
<i>390 -> 399 0.39183</i>	
<i>390 -> 400 0.10174</i>	
<i>391 -> 398 0.46790</i>	
<i>391 -> 403</i> 0.11324	
394 -> 398 0.13240	

COMPUTED GEOMETRY OF MODEL COMPOUND 3m Energy -4556.85949007a.u.

Table S4. Coordinates of 3m

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
			· · · · · · · · · · · · · · · · · · ·		
1	30	0	0.008702	-0.000013	-0.000050
2	/ 7	0	0.008561	-2.068/52	0.036264
3		0	2.076997	-0.000025	-0.000054
4	6	0	2.480989	2.4/3341	0.007302
5	6	0	2.906289	1.122331	0.007406
6	6	0	4.29/1/1	0.687076	-0.000266
/	1	0	5.154/12	1.342814	-0.008192
8	6	0	4.29/162	-0.68/153	0.000165
9	1	0	5.154695	-1.342901	0.008097
10	6	0	2.906276	-1.122391	-0.007509
11	6	0	2.480961	-2.4/3396	-0.007394
12	6	0	1.129886	-2.8981/1	0.001998
13	8	0	1 240054	-4.20/413	-0.007794
15	1 6	0	_0 600424	-1 206407	-0.129839
15	1	0	-0.080424	-4.200407	-0.000122
10	1	0	-1.338637	-3.140314	-0.129089
10	6	0	2 542152	2.898151	0 022085
10	6	0	2 710062	J.JJ03J3 A A00772	-1 002571
20	1	0	2 070020	4.400772	-1.062571
20	5	0	A 724407	5 370012	-1.954040
22	1	0	4.724407	6 015200	_1 047602
22	5	0	4.0J1900 5 574830	5 569283	-1.947095
23	6	0	5 368595	A 7075A1	1 161097
25	1	0	5 987376	4 828714	2 047380
25	6	0	4 389107	3 702194	1 144574
20	1	0	4 260176	3 054580	2 008396
29	6	0	3 542115	-3 537022	-0 023032
20	6	0	1 389061	-3 702203	-1 111616
30	1	0	4.260126	-3 054706	-2 008488
31	6	0	5 368553	-4 707638	-1 161134
32	1	0	5 987329	-4 828838	-2 047426
33	-	0	5 574798	-5 569342	-0 049515
34	6	0	4 724389	-5 379930	1 073771
35	1	0	4 851956	-6 015280	1 947701
36	- 6	0	3.718940	-4.400795	1.082528
37	1	0	3.079920	-4.284760	1.954608
38	- 7	0	0.008584	2.068726	-0.036351
39	7	0	-2.059881	-0.000001	-0.000037
40	6	0	-2.463909	-2.471871	-0.011217
41	6	0	-2.889333	-1.121772	-0.009460
42	6	0	-4.280358	-0.687165	-0.002025
43	1	0	-5.136800	-1.344580	0.003770
44	6	0	-4.280350	0.687189	0.001972
45	1	0	-5.136784	1.344615	-0.003816
46	6	0	-2.889320	1.121780	0.009396
47	6	0	-2.463880	2.471873	0.011155
48	6	0	-1.113892	2.896969	-0.000156
49	6	0	-0.680373	4.286469	0.068054
50	1	0	-1.338573	5.140304	0.129030
51	6	0	0.693999	4.287380	0.067722
52	1	0	1.350018	5.142616	0.129771
53	6	0	-1.113925	-2.896982	0.000083
54	6	0	-3.526860	-3.534639	-0.032225
55	6	0	-3.744091	-4.364129	1.092111
56	1	0	-3.136161	-4.222557	1.982436
57	6	0	-4.737388	-5.356054	1.069564
58	1	0	-4.877303	-5.984951	1.945771
59	6	0	-5.569279	-5.556019	-0.065704
60	6	0	-5.337683	-4.712099	-1.186024

C1	1	0	E DADECA	1 036603	0 077551
61	1	0	-5.948564	-4.836603	-2.077551
62	6	0	-4.335915	-3.728941	-1.175996
63	1	0	-4.171532	-3.109859	-2.054672
64	6	0	-3.526822	3.534652	0.032185
65	ć	0	4 225050	2 720050	1 175060
65	b	0	-4.333639	5.728950	1.1/5969
66	1	0	-4.171468	3.109860	2.054637
67	6	0	-5.337617	4.712118	1.186021
68	7	0	-5 948482	4 836621	2 077559
60	-	ő	5.510102	F FF(047	0.005711
69	0	0	-5.569224	5.556047	0.065/11
70	6	0	-4.737350	5.356085	-1.069571
71	1	0	-4.877271	5.984992	-1.945770
72	6	0	-3 744063	4 364152	-1 092141
72	1	0	2 12/140	4.000102	1 000477
/3	1	0	-3.130148	4.222382	-1.9824//
74	5	0	-6.691341	6.657817	0.079891
75	6	0	-7.899095	6.508677	1.096413
76	6	0	-6 580158	7 872471	-0 934137
77	c	0	0 10001	7 546522	2 040526
	D	0	-0.100001	7.546555	2.040556
78	6	0	-8.722241	5.338471	1.104348
7 <i>9</i>	6	0	-5.445090	8.742579	-0.934514
ឧก	6	0	-7 609195	8 104933	-1 906463
00	C C	0	0.051000	7 200265	2.000400
81	6	0	-9.251899	7.398365	2.955/34
82	6	0	-7.354879	8.818501	2.116978
83	6	0	-9.796423	5.232385	2.015018
81	6	0	-8 510940	1 170770	0 145124
0-	0	0	0.510940	4.1/0//9	0.145124
85	6	0	-5.349049	9.788326	-1.880422
86	6	0	-4.335249	8.660673	0.107336
87	6	0	-7.477725	9.149979	-2.843471
00	6	0	_0 010200	7 224241	_1 005720
00	0	0	-0.040200	7.224341	-1.995720
89	6	0	-10.060348	6.249932	2.944098
90	1	0	-9.448933	8.191086	3.674626
91	1	0	-7.415922	9.395805	1.187186
02	-	0	_7 600701	0 150602	2 026522
92	1	0	-7.090701	9.439002	2.930323
93	1	0	-6.293797	8.599577	2.293529
94	1	0	-10.425610	4.344273	1.991986
95	1	0	-7.825300	3.427526	0.574037
96	7	0	-9 162105	3 663117	-0 056677
20	1	0	9.402405	5.005447	0.030077
97	1	0	-8.084102	4.4/582/	-0.814/9/
98	6	0	-6.353521	9.993585	-2.835594
99	1	0	-4.479507	10.443523	-1.858447
100	7	0	-1 131979	9 191122	0 833332
100	1	0	4.241205	7 702320	0.000002
101	1	0	-4.341385	1. 123396	0.66/34/
102	1	0	-3.348772	8.762933	-0.363323
103	1	0	-8.261838	9.301819	-3.582520
101	7	0	-8 591706	6 183626	-2 236787
101	1	0	0.391700	0.105020	2.250707
105	1	0	-9.4045/6	7.210080	-1.052168
106	1	0	-9.522458	7.582812	-2.781611
107	5	0	6.686886	6.680641	0.063245
108	6	0	7 248575	7 217279	-1 318388
100	e c	0	7.240070	7.217279	1.510500
109	6	0	7.211830	7.217020	1.460197
110	6	0	7.192723	8.612577	-1.636595
111	6	0	7.815946	6.325175	-2.282977
112	6	0	6 320746	7 797350	2 416706
112	c	0	0 507564	7 000064	1 012022
115	b	0	0.397364	7.099964	1.012933
114	6	0	7.675657	9.077887	-2.877847
115	6	0	6.591504	9.633011	-0.678862
116	6	0	8.315945	6.825970	-3.504864
117	ć	0	7 021025	1 021021	-2 040076
11/	B	0	7.951825	4.021921	-2.048978
118	6	0	6.804329	8.224856	3.674041
119	6	0	4.849063	8.066956	2.124289
120	6	0	9.045862	7.525864	3.079906
121	<u> </u>	0	9 622150	6 101262	0 860470
100	0	0	9.022130	0.404303	0.0094/8
122	6	U	8.241640	8.193475	-3.810501
123	1	0	7.613366	10.139533	-3.108327
124	1	0	7.159440	9.689967	0.257118
125	1	n	6.584164	10.631237	-1.131055
100		0	5.504104 E EEECOC	0 204010	_0 41 4000
120	1	U	5.555606	9.384010	-0.414283
127	1	0	8.763809	6.135754	-4.217592
128	1	0	7.022506	4.299100	-2.373862
129	1	0	8.772179	4,408399	-2,619820
120		0	0 004040	A 564707	_0 006200
130	1	U	8.084040	4.364/0/	-0.996290
131	6	0	8.157085	8.087745	4.012657

100	-	•	6 4 9 9 5 9 9	0 650504	
132	1	0	6.109538	8.670584	4.384296
133	1	0	4.679701	9.144736	1.983965
134	1	0	A A90A19	7 556844	1 228225
101	-		4.450415	7.550044	1.220225
135	1	0	4.217955	7.748654	2.964237
136	1	0	10.097961	7.416181	3.335114
137	7	0	9 102971	5 127602	0 663219
107	1	0	9.402974	5.427002	0.003219
138	1	0	9.649481	7.003204	-0.094779
139	1	0	10.625928	6.528065	1.306781
140	5	0	6 606066	-6 600600	_0 062227
140	5	0	0.000000	-0.000090	-0.003227
141	6	0	7.248602	-7.217233	1.318424
142	6	0	7.211784	-7.217140	-1.460162
112	c	0	7 102002	0 612514	1 626712
145	0	0	7.192802	-0.012314	1.030/12
144	6	0	7.815959	-6.325055	2.282951
145	6	0	6.320679	-7.797516	-2.416625
140	c c	0	0 507506	7 100001	1 01 20 4 4
140	0	0	8.39/306	-7.100081	-1.812944
147	6	0	7.675781	-9.077738	2.877979
148	6	0	6.591592	-9.633024	0.679053
140	c c	0	0.316006	C 0057C4	2 504054
149	6	0	8.316006	-6.825/64	3.504854
150	6	0	7.931775	-4.821810	2.048866
151	6	0	6 804230	-8 225071	-3 673051
151	0	0	0.804250	0.225071	5.075954
152	6	0	4.849002	-8.067109	-2.124161
153	6	0	9.045773	-7.526030	-3.079911
151	6	0	9 622111	-6 181127	-0 869517
134	8	0	9.022114	-0.40442/	-0.809347
155	6	0	8.241757	-8.193254	3.810569
156	1	0	7.613530	-10.139373	3.108521
1 5 7	1	0	7 150510	0 600010	0.050020
157	1	0	7.159510	-9.690019	-0.236936
158	1	0	6.584294	-10.631224	1.131306
159	1	0	5.555681	-9.384072	0.414482
100	-	0	0.763061	C 125401	4 017500
160	1	0	8.763861	-6.135491	4.21/533
161	1	0	7.022444	-4.299006	2.373747
162	1	0	8 772128	-4 408225	2 619665
102	-		0.772120	4.400225	2.015005
163	1	0	8.083951	-4.564646	0.996161
164	6	0	8.156976	-8.087962	-4.012613
165	7	0	6 109121	-8 670832	-1 38/172
105	1	0	0.109424	0.070052	4.504172
166	1	0	4.679640	-9.144885	-1.983800
167	1	0	4.490382	-7.556968	-1.228104
160	7	0	1 217072	7 740021	2 064102
100	1	0	4.21/8/3	-7.740031	-2.964103
169	1	0	10.097862	-7.416342	-3.335156
170	1	0	9.402898	-5.427677	-0.663276
171	-	0	0 640525	7 002000	0.004700
1/1	1	0	9.649525	-7.003266	0.094708
172	1	0	10.625870	-6.528080	-1.306907
173	5	0	-6 691414	-6 657771	-0 079855
170	5	0	5.051111	6.007772	1 00000
174	6	0	-7.899200	-6.508603	-1.096335
175	6	0	-6.580206	-7.872445	0.934146
176	6	0	-8 188953	-7 546440	-2 040465
170	0	0	0.100955	7.540440	2.040403
177	6	0	-8.722325	-5.338381	-1.104229
178	6	0	-5.445163	-8.742585	0.934448
170	6	0	-7 609202	-8 104900	1 006517
1/9	0	0	7.009202	0.104900	1.900317
180	6	0	-9.252075	-7.398239	-2.955629
181	6	0	-7.355052	-8.818419	-2.116955
182	6	n	-9 706532	-5 232262	-2 01/066
102	8	0	-9.790332	-5.252205	-2.014000
183	6	0	-8.510969	-4.170703	-0.145000
184	6	0	-5.349102	-9.788352	1.880332
195	2	0	-1 225276	-8 660600	-0 107461
105	D	U	-4.333370	-0.000092	-0.10/401
186	6	0	-7.477714	-9.149966	2.843498
187	6	0	-8.848191	-7.224280	1.995845
100	6	0	-10 060504	6 240702	2 042051
188	0	0	-10.060504	-0.249/93	-2.943951
189	1	0	-9.449144	-8.190947	-3.674527
190	1	0	-7.416077	-9.395740	-1.187172
101	-	0	_7 600000	_0 450400	-2 02/502
191	1	U	-1.098988	-9.439499	-2.936503
192	1	0	-6.293972	-8.599508	-2.293533
193	1	0	-10.425701	-4.344139	-1,991804
104	-	0	-7 005345	-2 407440	_0 572020
194	1	U	-1.825345	-3.42/449	-0.5/3938
195	1	0	-9.462420	-3.663367	0.056857
196	1	0	-8,084083	-4,475767	0.814894
107	-	0	-6 252521	_0 002001	2 025554
191	6	U	-0.353531	-9.993601	2.835551
198	1	0	-4.479580	-10.443573	1.858299
199	1	0	-4.432078	-9.481416	-0,833477
200	-	~	1. 202070	7 700000	0.0004//
200	Ţ	U	-4.341506	-1.123398	-0.667444
201	1	0	<i>-3.348877</i>	-8.763006	0.363139
202	1	n	-8 261701	-9 301201	3 582582
	-	0	0.201/24	2.201001	2.202333

203 204 205 206 207	1 1 1 1	0 0 0 0	-8.591653 -9.404602 -9.522413 -10.886452 -6.266362	-6.183574 -7.209991 -7.582747 6.153052 10.798305	2.236915 1.052319 2.781762 3.645270 -3.562413
207 208 209	1 1 1	0 0	-6.266362 8.623566 8.517433	10.798305 8.566131 8.415144	-3.562413 -4.758526 4.985491
210 211	1 1	0	8.623718 8.517300	-8.565843 -8.415396	4.758606
212 213	1 1	0 0	-6.266358 -10.886626	-10.798336 -6.152887	3.562350 -3.645098

Excitation energies and oscillator strengths:

Excited State 401 -> 404 402 -> 403 Total Energy	1: Singlet-A 0.41340 0.56620 , E(TD-HF/TD-KS)	2.2384 eV 553.90 nm f=0.0726 <s**2>=0.00 = -4556.77723132</s**2>	0
Excited State 401 -> 403 402 -> 404	2: Singlet-A -0.41338 0.56614	2.2387 eV 553.83 nm f=0.0735 <s**2>=0.00</s**2>	0
Excited State 401 -> 404 402 -> 403 402 -> 405 402 -> 407	3: Singlet-A 0.34379 -0.26374 -0.11530 0.53624	2.9534 eV 419.81 nm f=0.8117 <s**2>=0.00</s**2>	0
Excited State 402 -> 405	4: Singlet-A 0.69436	2.9636 eV 418.36 nm f=0.0212 <s**2>=0.00</s**2>	0
Excited State 401 -> 403 402 -> 404 402 -> 406 402 -> 408	5: Singlet-A -0.36119 -0.27423 -0.22441 0.48010	2.9695 eV 417.53 nm f=0.8674 <s**2>=0.00</s**2>	0
Excited State 402 -> 406 402 -> 408	6: Singlet-A 0.66499 0.20269	3.0344 eV 408.60 nm f=0.0467 <s**2>=0.00</s**2>	0
Excited State 401 -> 404 401 -> 408 402 -> 403 402 -> 407	7: Singlet-A -0.39152 0.27877 0.24798 0.41666	3.2008 eV 387.35 nm f=0.5659 <s**2>=0.00</s**2>	0
Excited State 401 -> 403 401 -> 407 402 -> 404 402 -> 408	8: Singlet-A 0.35616 -0.33537 0.21846 0.43276	3.2063 eV 386.69 nm f=0.4015 <s**2>=0.00</s**2>	0
Excited State 401 -> 405	9: Singlet-A 0.70333	3.2618 eV 380.11 nm f=0.0022 <s**2>=0.00</s**2>	0
Excited State 401 -> 406	10: Singlet-A 0.69684	3.3051 eV 375.13 nm f=0.0124 <s**2>=0.00</s**2>	00
Excited State 385 -> 404 401 -> 403 401 -> 407	11: Singlet-A -0.11131 0.18701 0.60547	3.3795 eV 366.87 nm f=0.5631 <s**2>=0.00</s**2>	00

402 -> 404 402 -> 408	0.16867 0.17144				
Excited State 385 -> 403 401 -> 404 401 -> 408 402 -> 403 402 -> 407	12: Singlet-A 0.11215 0.15463 0.62771 -0.14656 -0.13572	3.3988 eV	364.78 nm	f=0.4589	<s**2>=0.000</s**2>
Excited State 399 -> 403 399 -> 404 400 -> 403 400 -> 404	13: Singlet-A 0.46123 0.10650 0.12982 -0.45914	3.4436 eV	360.04 nm	f=0.0033	<s**2>=0.000</s**2>
Excited State 399 -> 404 400 -> 403	14: Singlet-A -0.46969 0.47564	3.4440 eV	360.00 nm	f=0.0042	<s**2>=0.000</s**2>
Excited State 397 -> 403 397 -> 405 398 -> 404 398 -> 406	15: Singlet-A -0.47004 -0.11464 0.48778 0.10705	3.4636 eV	357.96 nm	f=0.0008	<s**2>=0.000</s**2>
Excited State 397 -> 404 397 -> 406 398 -> 403 398 -> 405	16: Singlet-A 0.48322 0.10698 -0.47375 -0.11471	3.4638 eV	357.95 nm	f=0.0033	<s**2>=0.000</s**2>
Excited State 395 -> 403 395 -> 405 395 -> 407 396 -> 404 396 -> 408	17: Singlet-A -0.44540 0.12326 0.11997 0.45156 -0.13082	3.4731 eV	356.98 nm	f=0.0021	<s**2>=0.000</s**2>
Excited State 395 -> 404 395 -> 408 396 -> 403 396 -> 405 396 -> 407	18: Singlet-A -0.44451 0.13054 0.45534 -0.12362 -0.11992	3.4734 eV	356.95 nm	f=0.0310	<s**2>=0.000</s**2>
Excited State 393 -> 403 393 -> 405 394 -> 404 394 -> 406	19: Singlet-A 0.45341 0.15396 -0.45298 -0.14938	3.4952 eV	354.73 nm	f=0.0222	<s**2>=0.000</s**2>
Excited State 382 -> 403 383 -> 404 399 -> 403 400 -> 404	20: Singlet-A 0.10555 -0.12825 0.47624 0.47604	3.4980 eV	354.44 nm	f=0.0010	<s**2>=0.000</s**2>

References:

(1) P, C. A. Swamy.; Mukherjee, S.; Thilagar, P. *Chem. Commun.*, **2013**, *49*, 993. (Synthesis of 4-dimesitylborylbenzaldehyde)