Supporting Information

Asymmetric Synthesis of *P*-Stereogenic Diarylphosphinites by Palladium-Catalyzed Enantioselective Addition of Diarylphosphines to Benzoquinones

Yinhua Huang, †,‡ Yongxin Li,† Pak-Hing Leung,*,† and Tamio Hayashi*,‡,§

Email: pakhing@ntu.edu.sg; tamioh@imre.a-star.edu.sg; chmtamh@nus.edu.sg

Contents of Supporting Information:

1.	General information	S2
2.	Materials	S2
3.	Preparation of racemic secondary phospines Ar ¹ Ar ² PH	S 3
4.	Palladium-catalyzed asymmetric addition of Ph(Mes)PH (1a)	
	to 2,5-diphenyl-1,4-benzoquinone (2m) (Table 1)	S7
5.	Palladium-catalyzed asymmetric addition of diarylphosphine 1	
	to benzoquinone 2m (Table 2)	S8
6.	Determination of the absolute configuration of phosphinite 3am	S8
7.	A typical procedure for the preparation of racemic 4 and 5	S9
8.	Characterization of the products 4 and 5	S10
9.	Addition of Ph₂PH to 2,5- diphenyl -1,4-benzoquinone (2m)	S16
10.	Studies on kinetic resolution	S17
11.	Transformations of the products, (S)-3am, (R)-4am, and (S)-5am	S18
12.	References	S22
13.	Single Crystal X-Ray Diffraction Data	S23
14.	³¹ P{ ¹ H}, ¹ H, ¹³ C NMR spectra and chiral HPLC charts	S29

[†]Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

[‡]Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore [§]Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602, Singapore

1. General information

All air-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or argon. Solvents were degassed prior to use when necessary. Low Temp PAIRSTIRRER PSL-1800 machine was used for controlling temperatures for the reactions. Column chromatography was conducted on Silica gel 60 (Merck). NMR spectra are recorded on Bruker ACF-300 spectrometer (300 MHz for 1 H, 75 MHz for 13 C, and 121 MHz for 31 P), ACF-400 spectrometer (400 MHz for 1 H, 100 MHz for 13 C, and 162 MHz for 31 P), and ACF-500 spectrometer (500 MHz for 1 H, 125 MHz for 13 C, and 202 MHz for 31 P). Chemical shifts are reported in δ (ppm) referenced to an internal SiMe₄ standard (δ = 0 ppm) for 1 H NMR, chloroform-d (δ = 77.23 ppm) for 13 C NMR, and to an external 85% H₃PO₄ (δ = 0 ppm) standard for 31 P NMR. The following abbreviations were used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad. Optical rotations were measured on a Perkin-Elmer 341 polarimeter, and an ATAGO AP-300 polarimeter. HRMS(ESI) were recorded on a time-of-fligh (TOF) LC/MS instrument.

2. Materials

The commercially available solvents and chemicals listed below were used as received for the reaction without further purification: degassed dichloromethane (Alfa), degassed chloroform (Alfa), degassed THF (Alfa), degassed MeCN (Alfa), quinones **2m** (CAS:844-51-9) (Aldrich), **2n** (CAS:137-18-8) (Aldrich), **2o** (CAS:106-51-4) (Aldrich), and **2p** (CAS:615-93-0) (Aldrich).

Complex PdL1* (CAS:1335292-75-5)¹ and PdL2* (CAS:142216-18-0)² were prepared according to the reported procedures.

Caution! Perchlorate salts of metal complexes are potentially explosive compounds and should be handled with care.

3. Preparation of racemic secondary phospines Ar¹Ar²PH

$$PhPCl_{2} \xrightarrow{1) Ar^{1}MgBr} Ph PH (A)$$

$$2) LiAlH_{4} Ar^{1}$$

The racemic secondary phosphines **1a** (CAS: 217975-66-1),³ **1b, 1c, 1d, 1e, 1f** (CAS: 141868-58-8),⁴ **1g** (CAS: 179117-27-2)⁵ were prepared according to reported procedure⁵ with modifications (**eq A**). A typical procedure for the synthesis of **1a** is shown below.

To a solution of PhPCl₂ (4.49 g, 25.1 mmol) in THF (50 mL) was added slowly MesMgBr (25.1 mmol in 50 mL of THF, prepared from MesBr (5.00 g, 25.1 mmol) and Mg (0.72 g, 30.1 mmol) in 50 mL of THF) (Mes = 2,4,6-Me₃C₆H₂) at -80 °C under N₂, and the mixture was stirred at -80 °C for 2 h before it was warmed to room temperature and stirred for another 2 h. The mixture was cooled to 0 °C and LiAlH₄ (1.14 g, 30.1 mmol) was added slowly. The mixture was kept stirring at room temperature for 2 h. Degassed water (10 mL) was added dropwise at 0 °C and the mixture was extracted with ether (40 mL × 3). The organic layer was combined and dried over MgSO₄. The solvent was removed by distillation and the residue was subjected to high vacuum microdistillation to give Ph(Mes)PH (1a) (4.30 g, 75%).

PCl₃
$$\xrightarrow{1) \text{Ar}^1 \text{MgBr}}$$
 $\xrightarrow{2) \text{Ar}^2 \text{MgBr}}$ $\xrightarrow{Ar^1}$ PH (B)

The racemic secondary phosphines **1h** and **1i** were prepared similarly with modifications (**eq B**). A typical procedure for the synthesis of **1h** is shown below.

To a solution of PCl₃ (2.07 g, 15.1 mmol) in THF (40 mL) was added slowly MesMgBr (15.1 mmol in 40 mL of THF, prepared from MesBr (3.00 g, 15.1 mmol) and Mg (0.43 g, 18.1 mmol) in 40 mL of THF) at -80 °C under N₂, and the mixture was stirred at -80 °C for 2 h. 4-MeC₆H₄MgBr (15.1 mmol in 40 mL of THF, prepared from 4-MeC₆H₄Br (2.58 g, 15.1 mmol) and Mg (0.43 g, 18.1 mmol) in 40 mL of THF) was added dropwise, and the mixture was stirred at -80 °C for 2 h before it was warmed to room temperature and stirred for another 2 h. The mixture was cooled to 0 °C and LiAlH₄ (0.69 g, 18.1 mol) was added slowly. The mixture was kept stirring at room temperature for 2 h. Degassed water (10 mL) was added dropwise at 0 °C and the mixture was extracted with ether (40 mL × 3). The combined organic layer was dried over MgSO₄. The solvent was removed by distillation and the residue

was subjected to high vacuum microdistillation to give $(4-\text{MeC}_6\text{H}_4)(\text{Mes})\text{PH }(1\text{h})$ (1.57 g, 43%).

p-H

Compound 1a (CAS: 217975-66-1)³ was prepared by the reaction of 2,4,6-Me₃C₆H₂MgBr with PhPCl₂ followed by reduction with LiAlH₄ according to the typical procedure (eq A) (75% yield). 31 P{ 1 H} NMR (CDCl₃, 202 MHz) δ –76.6. 1 H NMR (CDCl₃, 500 MHz) δ 2.29 (s, 3H), 2.40 (s, 6H), 4.70-5.90 (br s, 1H), 6.94 (s, 2H), 7.19-7.28 (m, 5H).

Compound 1b was prepared by the reaction of 2,6-Me₂C₆H₃MgBr with PhPCl₂ followed by reduction with LiAlH₄ according to the typical procedure (eq A) (78% yield). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ –76.0. ¹H NMR (CDCl₃, 400 MHz) δ 2.43 (s, 6H), 5.39 (d, J_{HP} = 223.5 Hz, 1H), 7.09 (d, J_{HH} = 7.4 Hz, 2H), 7.18 (t, J_{HH} = 7.9 Hz, 1H), 7.19-7.29 (m, 5H). ¹³C NMR (CDCl₃, 100 MHz) δ 23.4 (d, J_{CP} = 11.5 Hz, 2C), 128.0 (s, 1C), 128.3 (d, J_{CP} = 3.1 Hz, 2C), 128.6 (d, J_{CP} = 6.0 Hz, 2C), 129.2 (s, 1C), 132.2 (d, J_{CP} = 12.1 Hz, 1C), 132.4 (d, J_{CP} = 16.4 Hz, 2C), 134.2 (d, J_{CP} = 12.6 Hz, 1C), 143.1 (d, J_{CP} = 12.4 Hz, 2C). HRMS (ESI) calcd for C₁₄H₁₆P [M+H]⁺ 215.0991, found 215.0990.

Compound 1c was prepared by the reaction of 2,3,5,6-Me₄C₆HMgBr with PhPCl₂ followed by reduction with LiAlH₄ according to the typical procedure (eq A) (68% yield). ³¹P{¹H} NMR (CDCl₃, 121 MHz) δ –72.2. ¹H NMR (CDCl₃, 300 MHz) δ 2.24 (s, 6H), 2.36 (s, 6H), 5.45 (d, J_{HP} = 222.2 Hz, 1H), 7.01 (s, 1H), 7.18-7.27 (m, 5H). ¹³C NMR (CDCl₃, 75 MHz) δ 19.5 (d, J_{CP} = 14.6 Hz, 2C), 20.9 (d, J_{CP} = 0.9 Hz, 2C), 127.7 (s, 1C), 128.5 (d, J_{CP} = 5.6 Hz, 2C), 132.1 (d, J_{CP} = 16.2 Hz, 2C), 132.3 (d, J_{CP} = 10.7 Hz, 1C), 133.2 (s, 1C), 134.2 (d, J_{CP} = 3.7 Hz, 2C), 135.2 (d, J_{CP} = 13.2 Hz, 1C), 139.0 (d, J_{CP} = 12.5 Hz, 2C). HRMS (ESI) calcd for C₁₆H₂₀P [M+H]⁺ 243.1306, found 243.1303.

Compound 1d was prepared by the reaction of 2,3,4,5,6-Me₅C₆MgBr with PhPCl₂

followed by reduction with LiAlH₄ according to the typical procedure (eq A) (65% yield). $^{31}P\{^{1}H\}$ NMR (CDCl₃, 162 MHz) δ –69.9. ^{1}H NMR (CDCl₃, 300 MHz) δ 2.24 (s, 6H), 2.27 (s, 3H), 2.44 (s, 6H), 5.46 (d, J_{HP} = 219.4 Hz, 1H), 7.19-7.24 (m, 5H). ^{13}C NMR (CDCl₃, 100 MHz) δ 17.4 (s, 3C), 20.8 (d, J_{CP} = 15.6 Hz, 2C), 127.5 (s, 1C), 128.5 (d, J_{CP} = 5.5 Hz, 2C), 129.2 (d, J_{CP} = 9.3 Hz, 1C), 131.9 (d, J_{CP} = 15.6 Hz, 2C), 133.2 (d, J_{CP} = 3.5 Hz, 2C), 135.8 (d, J_{CP} = 13.7 Hz, 1C), 136.8 (s, 1C), 138.8 (d, J_{CP} = 12.3 Hz, 2C). HRMS (ESI) calcd for $C_{17}H_{22}P$ [M+H]⁺ 257.1462, found 257.1459.

Compound 1e was prepared by the reaction of 2-Me-1-naphthylMgBr with PhPCl₂ followed by reduction with LiAlH₄ according to the typical procedure (eq A) (53% yield). 31 P{ 1 H} NMR (CDCl₃, 202 MHz) δ –79.6. 1 H NMR (CDCl₃, 500 MHz) δ 2.68 (s, 3H), 5.68 (d, J_{HP} = 223.1 Hz, 1H), 7.16-7.19 (m, 3H), 7.22-7.26 (m, 2H), 7.37-7.46 (m, 3H), 7.80 (d, J_{P} = 8.4 Hz, 2H), 8.42 (d, J_{P} = 8.0 Hz, 1H). 13 C NMR (CDCl₃, 125 MHz) δ 24.0 (d, J_{P} = 13.2 Hz, 1C), 125.2 (s, 1C), 126.9 (s, 1C), 126.9 (d, J_{P} = 15.9 Hz, 1C), 127.8 (s, 1C), 128.5 (d, J_{P} = 12.8 Hz, 1C), 128.6 (d, J_{P} = 5.5 Hz, 2C), 128.8 (s, 1C), 129.3 (d, J_{P} = 3.8 Hz, 1C), 130.2 (s, 1C), 132.1 (d, J_{P} = 16.3 Hz, 2C), 132.5 (d, J_{P} = 3.3 Hz, 1C), 134.8 (d, J_{P} = 12.0 Hz, 1C), 136.4 (d, J_{P} = 10.8 Hz, 1C), 142.8 (d, J_{P} = 13.3 Hz, 1C). HRMS (ESI) calcd for $C_{17}H_{16}P$ [M+H] $^{+}$ 251.0993, found 251.0990.

Compound 1f (CAS: 141868-58-8)⁴ was prepared by the reaction of 2-MeC₆H₄MgBr with PhPCl₂ followed by reduction with LiAlH₄ according to the typical procedure (eq A) (78% yield). ³¹P{¹H} NMR (CDCl₃, 202 MHz) δ –48.7. ¹H NMR (CDCl₃, 500 MHz) δ 2.37 (s, 3H), 5.18 (d, J_{HP} = 220.9 Hz, 1H), 7.12 (t, J_{HH} = J_{HP} = 7.3 Hz, 1H), 7.17 (dd, J = 7.5 Hz, 3.5Hz, 1H), 7.23 (td, J = 7.5 Hz, 1.0 Hz, 1H), 7.28-7.31 (m, 3H), 7.35 (t, J = 7.5 Hz, 1H), 7.40-7.45 (m, 2H).

Compound 1g (CAS: 179117-27-2)⁵ was prepared by the reaction of 1-naphthylMgBr with PhPCl₂ followed by reduction with LiAlH₄ according to the typical procedure (eq A) (48% yield). ³¹P{¹H} NMR (CDCl₃, 202 MHz) δ –50.3. ¹H NMR (CDCl₃,

500 MHz) δ 5.51 (d, J_{HP} = 221.6 Hz, 1H), 7.24-7.28 (m, 3H), 7.43-7.49 (m, 5H), 7.80-7.85 (m, 3H), 8.23-8.25 (m, 1H).

Compound 1h was prepared by the reaction of MesMgBr, 4-MeC₆H₄MgBr and PCl₃ followed by reduction with LiAlH₄ according to the typical procedure (eq B) (43% yield). 31 P{ 1 H} NMR (CDCl₃, 162 MHz) δ –77.6. 1 H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 6H), 2.39 (s, 6H), 5.33 (d, J_{HP} = 223.2 Hz, 1H), 6.92 (s, 2H), 7.03 (d, J = 7.6 Hz, 2H), 7.15 (t, J = 7.8 Hz, 2H). 13 C NMR (CDCl₃, 100 MHz) δ 21.3 (s, 1C), 21.4 (s, 1C), 23.3 (d, J_{CP} = 11.5 Hz, 2C), 128.9 (d, J_{CP} = 10.8 Hz, 1C), 129.2 (d, J_{CP} = 3.5 Hz, 2C), 129.4 (d, J_{CP} = 6.2 Hz, 2C), 132.5 (d, J_{CP} = 16.7 Hz, 2C), 134.1 (d, J_{CP} = 17.1 Hz, 1C), 137.8 (s, 1C), 138.9 (s, 1C), 142.9 (d, J_{CP} = 12.6 Hz, 2C). HRMS (ESI) calcd for C₁₆H₂₀P [M+H]⁺ 243.1304, found 243.1303.

Compound 1i was prepared by the reaction of MesMgBr, 2-thienylMgBr, and PCl₃ followed by reduction with LiAlH₄ according to the typical procedure (eq B) (53% yield). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ –97.1. ¹H NMR (CDCl₃, 400 MHz) δ 2.26 (s, 3H), 2.46 (s, 6H), 5.56 (d, J_{HP} = 230.1 Hz, 1H), 6.89 (d, J = 1.6 Hz, 2H), 6.98 (td, J = 4.8 Hz, 1.2 Hz, 1H), 7.20 (t, J = 4.0 Hz, 1H), 7.40 (dd, J = 4.8 Hz, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.3 (s, 1C), 23.3 (d, J_{CP} = 11.3 Hz, 2C), 127.9 (d, J_{CP} = 7.5 Hz, 1C), 129.3 (d, J_{CP} = 3.3 Hz, 2C), 129.5 (d, J_{CP} = 8.9 Hz, 1C), 131.0 (s, 1C), 133.3 (d, J_{CP} = 30.3 Hz, 1C), 135.3 (d, J_{CP} = 25.2 Hz, 1C), 138.9 (s, 1C), 142.0 (d, J_{CP} = 12.4 Hz, 2C). HRMS (ESI) calcd for C₁₃H₁₆PS [M+H]⁺ 235.0711, found 235.0710.

4. Palladium-catalyzed asymmetric addition of Ph(Mes)PH (1a) to 2,5-diphenyl-1,4-benzoquinone (2m) (Table 1)

A typical prodecure (Table 1, entry 1): To a solution of phenyl(2,4,6-trimethyl)-phosphine (1a) (68.5 mg, 0.300 mmol) in degassed CHCl₃ (7 mL) was added PdL1* (9.4 mg, 0.015 mmol, 5 mol%). The solution was stirred at room temperature for 2 min, before it was cooled to –45 °C. 2,5-Diphenyl-1,4-benzoquinone (2m) (82.0 mg, 0.315 mmol) was added, followed by dropwise addition of Et₃N (30.3 mg, 0.300 mmol) in CHCl₃ (0.5 mL). The mixtrue was stirred at –45 °C for 12 h to give a CHCl₃ solution containing phosphinite 3am as a major component. The phosphinite 3am was found to undergo decomposition/oxidation during the isolation by silica-gel chromatography, and it was isolated and characterized as thiophosphinate 4am or phosphinate 5am.

For the conversion into thiophosphinate **4am**, excess sulfur powder (14.4 mg, 0.450 mmol) was added to the reaction mixture. After stirring at room temperature for 15 min, the reaction mixture was passed through a short celite pad and the solution was concentrated on a rotary evaporator. The residue was subjected to silica-gel chromatography (EtOAc/hexane = 1/7) to give **4am** (150 mg, 96%).

For the conversion into phosphinate 5am, excess 30% H_2O_2 (2 mL) was added to the reaction mixture in CHCl₃, and the mixture was stirred vigorously at room temperature for 15 min. The mixture was extracted with CH_2Cl_2 (15 mL × 3). The organic extracts were washed with H_2O , and dried over MgSO₄. The solvent was removed by a rotary evaporator. The residue was subjected to silica-gel chromatography (acetone/ $CH_2Cl_2 = 1/10$) to give 5am

(142 mg, 94%).

5. Palladium-catalyzed asymmetric addition of diarylphosphines

1 to benzoquinone 2m (Table 2)

$$\begin{array}{c} \text{Ar}^1 \\ \text{P-H} \\ \text{Ar}^2 \\ \text{1} \\ \text{2m} \\ \end{array} \begin{array}{c} \text{PdL1*} \\ \text{(5 mol \%)} \\ \text{Et}_3 \text{N, CHCl}_3 \\ \text{-45 °C, 20 h} \\ \end{array} \begin{array}{c} \text{Ar}^1 \\ \text{Ar}^2 \\ \text{3am-3im} \\ \end{array}$$

$$\begin{array}{c} \text{1a: Ar}^1 = \text{Ph, Ar}^2 = 2,4,6-\text{Me}_3\text{C}_6\text{H}_2 \\ \text{1b: Ar}^1 = \text{Ph, Ar}^2 = 2,6-\text{Me}_2\text{C}_6\text{H}_3 \\ \text{1c: Ar}^1 = \text{Ph, Ar}^2 = 2,3,5,6-\text{Me}_4\text{C}_6\text{H} \\ \text{1d: Ar}^1 = \text{Ph, Ar}^2 = 2,3,4,5,6-\text{Me}_5\text{C}_6 \\ \text{1e: Ar}^1 = \text{Ph, Ar}^2 = 2-\text{Me-1-naphthyl} \\ \text{1f: Ar}^1 = \text{Ph, Ar}^2 = 2-\text{MeC}_6\text{H}_4 \\ \text{1g: Ar}^1 = \text{Ph, Ar}^2 = 1-\text{naphthyl} \\ \text{1h: Ar}^1 = 4-\text{MeC}_6\text{H}_4, \text{Ar}^2 = 2,4,6-\text{Me}_3\text{C}_6\text{H}_2 \\ \text{1i: Ar}^1 = 2-\text{thienyl, Ar}^2 = 2,4,6-\text{Me}_3\text{C}_6\text{H}_2 \\ \end{array}$$

A general procedure: To a solution of diarylphosphine **1** (0.300 mmol) in degassed CHCl₃ (7 mL) was added **PdL1*** (9.4 mg, 0.015 mmol, 5 mol%). The solution was stirred at room temperature for 2 min, before it was cooled to –45 °C. 2,5-Diphenyl-1,4-benzoquinone (**2m**) (82.0mg, 0.315 mmol) was added, followed by dropwise addition of Et₃N (30.3 mg, 0.300 mmol) in CHCl₃ (0.5 mL). The solution was subsequently stirred at –45 °C for 20 h to give a CHCl₃ solution containing phosphinite **3** as a major component.

For the conversion into thiophosphinate **4**, excess sulfur powder (14.4 mg, 0.450 mmol) was added to the reaction mixture. After stirring at room temperature for 15 min, the reaction mixture was passed through a short celite pad and the solution was concentrated on a rotary evaporator. The residue was subjected to silica-gel chromatography (EtOAc/hexane = 1/7) to give **4**.

6. <u>Determination of the absolute configuration of phosphinite</u> 3am

To the reaction mixture containing phosphinite 3am, which was obtained by the reaction of diarylphosphine 1a (0.300 mmol) with benzoquinone 2m (Table 1, entry 1), was added palladium complex (R)-6 (107.2 mg, 0,157 mmol, 0.315 mol of Pd) (CAS: 80145-77-3). The mixture was stirred at room temperature for 30 min and was concentrated on a rotary evaporator. The residue was subjected to silica-gel chromatography (EtOAc/hexane = 1/4) to give the phosphinite comeplex 7 (236.2 mg, 95%).

Colorless crystals of complex 7 suitable for X-ray crystallographic analysis were obtained by recrystallization from dichloromethane/ether/hexane. The ORTEP drawing of compelx 7 is shown in Figure S1 (page S23). The X-ray analysis revealed that absolute configuration of **3am** is *S*.

7. A typical procedure for the preparation of racemic 4 and 5

The rac-4 and rac-5 were prepared at room temperature employing Pd(OAc)₂ as a catalyst. A typical procedure for the synthesis of rac-4a and rac-5a is shown below.

To a solution of phenyl(2,4,6-trimethylphenyl)phosphine (1a) (68.5 mg, 0.300 mmol) in degassed CHCl₃ (7 mL) was added Pd(OAc)₂ (3.4 mg, 0.015 mmol, 5 mol%) and 2,5-diphenyl-1,4-benzoquinone (2m) (82.0 mg, 0.315 mmol) at room temperature. Subsequently, Et₃N (30.3 mg, 0.300 mmol) in CHCl₃ (0.5 mL) was added dropwise. The solution was stirred at room temperature and the reaction was monitored by ³¹P{¹H} NMR. Upon completion (about 2 h), the reaction mixture was treated with excess sulfur powder (14.4 mg, 0.450 mmol) or excess 30% H₂O₂ (2 mL) to give racemic thiophosphinate *rac*-4am (85%) or phosphinate *rac*-5am (84%), respectively, which were isolated and purified as described above for the asymmetric addition.

8. Characterization of the products 4 and 5

Ph....P O Ph

Compound 4am. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 97/3, flow 1.0 mL/min, 280 nm, t_1 = 34.9 min (major), t_2 = 38.7 min (minor). [α]_D²⁰ +202 (c 1.28, CH₂Cl₂) for 98% ee (S). ³¹P{¹H} NMR (CDCl₃, 202 MHz) δ 85.3. ¹H NMR (CDCl₃, 500 MHz) δ 2.24 (s, 3H), 2.27 (s, 6H), 5.25 (s, 1H), 6.75 (s, 1H), 6.81 (d, J = 4.6 Hz, 2H), 7.06 (td, J = 7.7 Hz, 3.5 Hz, 2H), 7.12-7.20 (m, 5H), 7.27 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.42-7.48 (m, 6H), 7.64 (d, J = 1.1 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.1 (s, 1C), 23.9 (d, J_{CP} = 4.5 Hz, 2C), 118.3 (s, 1C), 124.9 (d, J_{CP} = 4.9 Hz, 1C), 127.0 (s, 1C), 127.2 (s, 1C), 128.06 (s, 1C), 128.08 (d, J_{CP} = 13.5 Hz, 2C), 128.08 (s, 2C), 128.8 (d, J_{CP} = 117.0 Hz, 1C), 129.2 (s, 2C), 129.35 (s, 2C), 129.44 (s, 2C), 131.0 (d, J_{CP} = 12.4 Hz, 2C), 131.3 (d, J_{CP} = 13.3 Hz, 2C), 131.4 (d, J_{CP} = 2.8 Hz, 1C), 135.2 (d, J_{CP} = 101.0 Hz, 1C), 135.3 (d, J_{CP} = 4.6 Hz, 1C), 136.5 (s, 1C), 137.8 (s, 1C), 140.4 (d, J_{CP} = 9.3 Hz, 1C), 141.3 (d, J_{CP} = 2.8 Hz, 1C), 141.6 (d, J_{CP} = 11.7 Hz, 2C), 149.1 (s, 1C). HRMS (ESI) calcd for C₃₃H₃₀O₂PS [M+H]⁺ 521.1704, found 521.1701.

Ph....P O Ph

Compound 5am. The ee was measured by HPLC (Daicel Chiralpak IC), hexane/2-propanol = 90/10, flow 1.0 mL/min, 280 nm, t_1 = 16.8 min (minor), t_2 = 19.4 min (major). [α]_D²⁰ –52 (c 1.16, CH₂Cl₂) for 98% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 35.0. ¹H NMR (CDCl₃, 400 MHz) δ 2.27 (s, 3H), 2.36 (s, 6H), 6.12 (s, 1H), 6.85 (d, J = 4.2 Hz, 2H), 6.87 (s, 1H), 7.06 (d, J = 1.3 Hz, 1H), 7.22-7.27 (m, 5H), 7.28-7.34 (m, 5H), 7.36-7.43 (m, 5H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.3 (s, 1C), 23.5 (d, J_{CP} = 3.4 Hz, 2C), 118.7 (s, 1C), 121.9 (d, J_{CP} = 4.0 Hz, 1C), 124.0 (d, J_{CP} = 129.5 Hz, 1C), 127.4 (s, 1C), 127.7 (s, 1C), 127.9 (s, 1C), 128.1 (s, 2C), 128.5 (d, J_{CP} = 13.8 Hz, 2C), 129.0 (s, 2C), 129.2 (s, 2C), 129.8 (s, 2C), 130.6 (d, J_{CP} = 11.5 Hz, 2C), 131.1 (d, J_{CP} = 13.3 Hz, 2C), 131.8 (d, J_{CP} = 2.9 Hz, 1C), 134.2 (d, J_{CP} = 137.2 Hz, 1C), 134.6 (d, J_{CP} = 5.0 Hz, 1C), 136.8 (s, 1C), 137.7 (s, 1C), 141.1 (d, J_{CP} = 8.4 Hz, 1C), 142.6 (d, J_{CP} = 2.8 Hz, 1C), 144.1 (d, J_{CP} = 11.8 Hz, 2C), 149.6 (s, 1C). HRMS (ESI) calcd for C₃₃H₃₀O₃P [M+H]⁺ 505.1933, found 505.1938.

Ph....PO

Compound 4an. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 97/3, flow 1.0 mL/min, 280 nm, t_1 = 22.1 min (major), t_2 = 39.1 min (minor). [α]_D²⁰ +112 (c 2.67, CH₂Cl₂) for 87% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 84.4. ¹H NMR (CDCl₃, 400 MHz) δ 1.91 (s, 3H), 2.00 (s, 3H), 2.30 (s, 3H), 2.43 (s, 6H), 6.43 (s, 1H), 6.76 (s, 1H), 6.91 (d, J = 4.6 Hz, 2H), 7.39 (td, J = 7.6 Hz, 3.4 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.86 (dd, J = 14.0 Hz, 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 15.6 (s, 1C), 17.3 (s, 1C), 21.2 (s, 1C), 24.3 (d, J_{CP} = 4.4 Hz, 2C), 117.5 (s, 1C), 121.5 (d, J_{CP} = 1.4 Hz, 1C), 124.3 (d, J_{CP} = 4.2 Hz, 1C), 128.5 (d, J_{CP} = 13.2 Hz, 2C), 128.6 (d, J_{CP} = 115.8 Hz, 1C), 128.9 (d, J_{CP} = 4.7 Hz, 1C), 131.3 (d, J_{CP} = 11.9 Hz, 2C), 131.5 (d, J_{CP} = 3.0 Hz, 1C), 141.9 (d, J_{CP} = 11.6 Hz, 2C), 142.0 (d, J_{CP} = 9.6 Hz, 1C), 150.4 (d, J_{CP} = 1.6 Hz, 1C). HRMS (ESI) calcd for C₂₃H₂₆O₂PS [M+H]⁺ 397.1391, found 397.1386.

S OH

Compound 4ao. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 96/4, flow 0.8 mL/min, 280 nm, t_1 = 34.5 min (major), t_2 = 37.1 min (minor). [α]_D²⁰ +60 (c 1.00, CH₂Cl₂) for 68% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 85.1. ¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H), 2.36 (s, 6H), 5.16 (s, 1H), 6.55 (d, J = 8.8 Hz, 2H), 6.67 (dd, J = 8.8 Hz, 1.7 Hz, 2H), 6.88 (d, J = 4.7 Hz, 2H), 7.43 (td, J = 7.6 Hz, 3.6 Hz, 2H), 7.52 (td, J = 7.6 Hz, 2.0 Hz, 1H), 7.91 (dd, J = 14.0 Hz, 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.2 (s, 1C), 24.0 (d, J_{CP} = 4.9 Hz, 2C), 115.9 (s, 1C), 123.1 (d, J_{CP} = 4.4 Hz, 1C), 128.57 (d, J_{CP} = 13.5 Hz, 2C), 128.63 (d, J_{CP} = 118.4 Hz, 1C), 131.3 (d, J_{CP} = 13.0 Hz, 2C), 131.8 (d, J_{CP} = 11.7 Hz, 2C), 132.2 (d, J_{CP} = 2.8 Hz, 1C), 135.9 (d, J_{CP} = 99.9 Hz, 1C), 141.60 (d, J_{CP} = 3.8 Hz, 1C), 141.64 (d, J_{CP} = 11.5 Hz, 2C), 143.1 (d, J_{CP} = 9.2 Hz, 1C), 152.7 (d, J_{CP} = 1.6 Hz, 1C). HRMS (ESI) calcd for C₂₁H₂₂O₂PS [M+H]⁺ 396.1078, found 369.1080.

S CI OF

Compound 4ap. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 11.8 min (major), t_2 = 18.3 min

(minor). $[\alpha]_D^{20}$ –27 (*c* 1.13, CH₂Cl₂) for 7% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 87.9. ¹H NMR (CDCl₃, 400 MHz) δ 2.30 (s, 3H), 2.39 (s, 6H), 6.90 (s, 1H), 6.90 (d, J = 3.1 Hz, 2H), 7.39 (td, J = 7.7Hz, 3.5 Hz, 2H), 7.48 (td, J = 7.1 Hz, 1.4 Hz, 1H), 7.61 (d, J = 1.3 Hz, 1H), 7.92 (dd, J = 14.4 Hz, 7.1 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.2 (s, 1C), 24.1 (d, J_{CP} = 4.8 Hz, 2C), 117.4 (s, 1C), 117.8 (s, 1C), 122.7 (d, J_{CP} = 4.9 Hz, 1C), 125.9 (d, J_{CP} = 5.7 Hz, 1C), 128.47 (d, J_{CP} = 116.8 Hz, 1C), 128.55 (d, J_{CP} = 13.5 Hz, 2C), 131.5 (d, J_{CP} = 13.2 Hz, 2C), 131.7 (d, J_{CP} = 12.3 Hz, 2C), 132.5 (d, J_{CP} = 2.9 Hz, 1C), 134.8 (d, J_{CP} = 99.2 Hz, 1C), 140.3 (d, J_{CP} = 8.7 Hz, 1C), 141.7 (d, J_{CP} = 11.9 Hz, 2C), 141.8 (d, J_{CP} = 3.1 Hz, 1C), 148.4 (d, J_{CP} = 1.2 Hz, 1C). HRMS (ESI) calcd for C₂₁H₂₀Cl₂O₂PS [M+H]⁺ 437.0299, found 437.0292.

Compound 4bm. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 97/3, flow 1.0 mL/min, 280 nm, t_1 = 36.6 min (minor), t_2 = 41.6 min (major). [α]_D²⁰ +199 (c 1.71, CH₂Cl₂) for 98% ee. ³¹P{¹H} NMR (CDCl₃, 202 MHz) δ 84.6. ¹H NMR (CDCl₃, 500 MHz) δ 2.31 (s, 6H), 5.14 (s, 1H), 6.79 (s, 1H), 7.00 (dd, J = 7.4 Hz, 5.1 Hz, 2H), 7.10 (td, J = 7.7 Hz, 3.5 Hz, 2H), 7.16-7.24 (m, 6H), 7.30 (t, J = 6.9 Hz, 1H), 7.38-7.50 (m, 7H), 7.66 (d, J = 1.3 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 24.0 (s, J_{CP} = 4.7 Hz, 2C), 118.4 (s, 1C), 124.9 (d, J_{CP} = 4.8 Hz, 1C), 127.1 (s, 1C), 127.3 (s, 1C), 128.16 (s, 2C), 128.17 (d, J_{CP} = 13.3 Hz, 2C), 128.23 (s, 1C), 129.2 (s, 2C), 129.50 (s, 2C), 129.54 (s, 2C), 130.4 (d, J_{CP} = 12.6 Hz, 2C), 131.1 (d, J_{CP} = 2.5 Hz, 1C), 131.2 (d, J_{CP} = 98.1 Hz, 1C), 135.3 (d, J_{CP} = 3.0 Hz, 1C), 136.5 (s, 1C), 137.8 (s, 1C), 140.4 (d, J_{CP} = 9.2 Hz, 1C), 141.6 (d, J_{CP} = 11.0 Hz, 2C), 149.1 (s, 1C). HRMS (ESI) calcd for C₃₂H₂₈O₂PS [M+H]⁺ 507.1549, found 507.1548.

Compound 4cm. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 16.7 min (minor), t_2 = 22.4 min (major). [α]_D²⁰ +164 (c 1.58, CH₂Cl₂) for 97% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 84.3. ¹H NMR (CDCl₃, 400 MHz) δ 2.05 (s, 6H), 2.09 (s, 6H), 5.16 (s, 1H), 6.75 (d, J = 0.9 Hz, 1H), 7.02 (s, 1H), 7.13 (td, J = 8.0 Hz, 3.6 Hz, 2H), 7.16-7.23 (m, 5H), 7.28-7.36 (m, 2H),

7.39-7.45 (m, 4H), 7.49 (dd, J = 14.0 Hz, 8.4 Hz, 2H), 7.73 (d, J = 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 20.1 (d, $J_{CP} = 6.4$ Hz, 2C), 20.2 (d, $J_{CP} = 1.7$ Hz, 2C), 118.1 (s, 1C), 123.3 (d, $J_{CP} = 5.4$ Hz, 1C), 127.0 (s, 1C), 127.2 (s, 1C), 127.9 (s, 2C), 128.0 (s, 1C), 128.1 (d, $J_{CP} = 11.3$ Hz, 2C), 129.1 (s, 2C), 129.4 (s, 2C), 129.5 (s, 2C), 131.3 (d, $J_{CP} = 11.9$ Hz, 2C), 131.4 (d, $J_{CP} = 2.8$ Hz, 2C), 133.1 (d, $J_{CP} = 119.0$ Hz, 1C), 134.5 (d, $J_{CP} = 5.2$ Hz, 1C), 134.6 (d, $J_{CP} = 2.8.0$ Hz, 1C), 135.22 (d, $J_{CP} = 99.8$ Hz, 1C), 135.20 (d, $J_{CP} = 13.7$ Hz, 2C), 137.5 (d, $J_{CP} = 11.4$ Hz, 2C), 137.7 (s, 1C), 141.3 (d, $J_{CP} = 9.3$ Hz, 1C), 148.7 (s, 1C). HRMS (ESI) calcd for $C_{34}H_{32}O_{2}PS$ [M+H]⁺ 535.1861, found 535.1860.

Compound 4dm. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 15.7 min (minor), t_2 = 19.3 min (major). [α]_D²⁰ +165 (c 2.55, CH₂Cl₂) for 97% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 84.3. ¹H NMR (CDCl₃, 400 MHz) δ 2.07 (s, 12H), 2.24 (s, 3H), 5.11 (s, 1H), 6.76 (s, 1H), 7.11-7.25 (m, 7H), 7.29-7.47 (m, 6H), 7.51 (dd, J = 14.0 Hz, 7.6 Hz, 2H), 7.71 (d, J = 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 16.3 (d, J_{CP} = 1.7 Hz, 2C), 17.3 (s, 1C), 21.5 (d, J_{CP} = 6.8 Hz, 2C), 118.1 (s, 1C), 123.1 (d, J_{CP} = 5.6 Hz, 1C), 127.0 (s, 1C), 127.2 (s, 1C), 128.0 (s, 2C), 128.06 (d, J_{CP} = 11.5 Hz, 2C), 128.07 (s, 1C), 129.1 (s, 2C), 129.4 (s, 2C), 129.6 (s, 2C), 131.0 (d, J_{CP} = 122.6 Hz, 1C), 131.36 (d, J_{CP} = 11.8 Hz, 2C), 131.40 (d, J_{CP} = 3.1 Hz, 1C), 133.9 (d, J_{CP} = 13.2 Hz, 2C), 134.4 (d, J_{CP} = 5.3 Hz, 1C), 135.5 (d, J_{CP} = 99.0 Hz, 1C), 136.6 (s, 1C), 136.9 (d, J_{CP} = 10.8 Hz, 2C), 137.8 (s, 1C), 138.5 (d, J_{CP} = 3.4 Hz, 1C), 141.5 (d, J_{CP} = 9.0 Hz, 1C), 148.6 (s, 1C). HRMS (ESI) calcd for C₃₅H₃₄O₂PS [M+H]⁺ 549.2017, found 549.2014.

Compound 4em. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 28.2 min (minor), t_2 = 30.6 min (major). [α]_D²⁰ +213 (c 1.25, CH₂Cl₂) for 95% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 83.9. ¹H NMR (CDCl₃, 400 MHz) δ 2.39 (d, J = 1.5 Hz, 3H), 5.24 (s, 1H), 6.75 (s, 1H), 6.95 (t, J = 7.6 Hz, 2H), 7.02-7.42 (m, 16H), 7.73 (d, J = 1.3 Hz, 1H), 7.74 (dd, J = 17.4 Hz, 8.2 Hz, 2H), 8.53 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 24.4 (d, J_{CP} = 5.9 Hz, 1C), 118.1 (s, 1C), 124.0 (d, J_{CP} = 5.0 Hz, 1C), 125.3 (s, 1C), 126.2 (s, 1C), 127.1 (s, 2C), 127.2 (d, J_{CP} = 6.5 Hz, 1C), 127.8 (s, 2C), 127.99 (d, J_{CP} = 115.6 Hz, 1C), 128.04 (d, J_{CP} = 2.1 Hz, 2C),

128.2 (d, J_{CP} = 13.8 Hz, 1C), 128.5 (s, 1C), 129.0 (s, 2C), 129.3 (s, 2C), 129.5 (s, 2C), 130.3 (d, J_{CP} = 14.5 Hz, 1C), 131.2 (d, J_{CP} = 12.3 Hz, 2C), 131.7 (d, J_{CP} = 2.4 Hz, 1C), 132.4 (d, J_{CP} = 4.0 Hz, 1C), 132.5 (d, J_{CP} = 10.4 Hz, 1C), 132.9 (d, J_{CP} = 11.0 Hz, 1C), 134.8 (d, J_{CP} = 100.9 Hz, 1C), 135.0 (d, J_{CP} = 4.9 Hz, 1C), 136.4 (s, 1C), 137.2 (s, 1C), 141.0 (d, J_{CP} = 9.9 Hz, 1C), 149.1 (s, 1C). HRMS (ESI) calcd for $C_{35}H_{28}O_{2}PS$ [M+H]⁺ 543.1548, found 543.1549.

Compound 4fm. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 19.5 min (minor), t_2 = 23.9 min (major). [α]_D²⁰ +33 (c 1.09, CH₂Cl₂) for 43% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 80.7. ¹H NMR (CDCl₃, 500 MHz) δ 2.15 (s, 3H), 5.19 (s, 1H), 6.90 (d, J = 0.5 Hz, 1H), 7.10 (d, J = 1.5 Hz, 1H), 7.11 (t, J = 6.5 Hz, 1H), 7.22-7.27 (m, 6H), 7.35-7.44 (m, 9H), 7.53 (dd, J = 14.5 Hz, 7.5 Hz, 2H), 8.03 (dd, J = 14.5 Hz, 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.6 (d, J_{CP} = 4.6 Hz, 1C), 118.3 (s, 1C), 123.5 (d, J_{CP} = 4.7 Hz, 1C), 125.8 (d, J_{CP} = 12.9 Hz, 1C), 127.3 (s, 1C), 127.5 (s, 1C), 128.16 (s, 2C), 128.17 (s, 1C), 128.4 (d, J_{CP} = 13.7 Hz, 2C), 129.1 (s, 2C), 129.5 (s, 2C), 129.9 (s, 2C), 131.2 (d, J_{CP} = 12.2 Hz, 2C), 131.8 (d, J_{CP} = 2.6 Hz, 1C), 132.1 (d, J_{CP} = 12.8 Hz, 1C), 132.26 (d, J_{CP} = 109.9 Hz, 1C), 135.8 (d, J_{CP} = 3.2 Hz, 1C), 136.4 (s, 1C), 137.6 (s, 1C), 141.1 (d, J_{CP} = 12.4 Hz, 1C), 141.4 (d, J_{CP} = 8.7 Hz, 1C), 149.2 (s, 1C). HRMS (ESI) calcd for C₃₁H₂₆O₂PS [M+H]⁺ 493.1391, found 493.1387.

Compound 4gm. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 96/4, flow 0.8 mL/min, 280 nm, t_1 = 24.1 min (major), t_2 = 28.3 min (minor). [α]_D²⁰ –19 (c 1.24, CH₂Cl₂) for 24% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 81.1. ¹H NMR (CDCl₃, 400 MHz) δ 5.21 (s, 1H), 6.90 (d, J = 0.6 Hz, 1H), 7.12 (d, J = 1.6 Hz, 1H,), 7.16-7.29 (m, 6H), 7.30-7.42 (m, 9H), 7.45-7.49 (m, 1H), 7.56 (dd, J = 14.4 Hz, 8.4 Hz, 2H), 7.81 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 8.21 (d, J = 8.6 Hz, 1H), 8.32 (ddd, J = 17.2 Hz, 7.6 Hz, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 118.3 (s, 1C), 123.5 (d, J_{CP} = 4.8 Hz, 1C), 124.6 (d, J_{CP} = 14.7 Hz, 1C), 126.3 (s, 1C), 126.7 (d, J_{CP} = 5.8 Hz, 1C), 127.1 (s, 1C), 127.4 (d, J_{CP} = 1.2 Hz, 1C), 127.5 (s, 1C), 128.0 (s, 2C), 128.1 (s, 1C), 128.5 (d, J_{CP} =

13.8 Hz, 2C), 129.1 (s, 2C), 129.3 (d, $J_{CP} = 27.9$ Hz, 1C), 129.4 (s, 2C), 129.5 (d, $J_{CP} = 107.8$ Hz, 1C), 129.9 (s, 2C), 131.0 (d, $J_{CP} = 12.2$ Hz, 2C), 131.83 (d, $J_{CP} = 11.0$ Hz, 1C), 131.86 (d, $J_{CP} = 3.1$ Hz, 1C), 133.8 (d, $J_{CP} = 3.1$ Hz, 1C), 131.9 (d, $J_{CP} = 9.9$ Hz, 1C), 134.0 (d, $J_{CP} = 10.9$ Hz, 1C), 135.2 (d, $J_{CP} = 108.8$ Hz, 1C), 135.8 (d, $J_{CP} = 4.9$ Hz, 1C),136.4 (s, 1C), 137.5 (s, 1C), 141.5 (d, $J_{CP} = 8.8$ Hz, 1C), 149.3 (s, 1C). HRMS (ESI) calcd for $C_{34}H_{26}O_{2}PS$ [M+H]⁺ 529.1391, found 529.1388.

Compound 4hm. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 14.6 min (minor), t_2 = 16.9 min (major). [α]_D²⁰ +194 (c 2.01, CH₂Cl₂) for 91% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 85.4. ¹H NMR (CDCl₃, 400 MHz) δ 2.25 (s, 3H), 2.27 (s, 6H), 2.29 (s, 3H), 5.22 (s, 1H), 6.76 (d, J = 0.6 Hz, 1H), 6.81 (d, J = 4.6 Hz, 2H), 6.87 (dd, J = 7.9 Hz, 3.2 Hz, 2H), 7.13-7.22 (m, 5H), 7.29-7.38 (m, 3H), 7.43-7.49 (m, 4H), 7.61 (d, J = 1.5 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.1 (d, J_{CP} = 1.2 Hz, 1C), 21.7 (d, J_{CP} = 1.0 Hz, 1C), 23.9 (d, J_{CP} = 4.6 Hz, 2C), 118.3 (s, 1C), 125.0 (d, J_{CP} = 4.9 Hz, 1C), 127.0 (s, 1C), 127.1 (s, 1C), 127.9 (s, 2C), 128.1 (s, 1C), 128.8 (d, J_{CP} = 14.1 Hz, 2C), 128.9 (d, J_{CP} = 114.8 Hz, 1C), 129.2 (s, 2C), 129.4 (s, 2C), 129.5 (s, 2C), 131.1 (d, J_{CP} = 12.8 Hz, 2C), 131.3 (d, J_{CP} = 13.1 Hz, 2C), 132.1 (d, J_{CP} = 103.3 Hz, 1C), 135.3 (d, J_{CP} = 4.7 Hz, 1C), 136.6 (s, 1C), 137.9 (s, 1C), 140.4 (d, J_{CP} = 9.4 Hz, 1C), 141.2 (d, J_{CP} = 3.0 Hz, 1C), 141.6 (d, J_{CP} = 11.5 Hz, 2C), 141.9 (d, J_{CP} = 2.8 Hz, 1C), 149.0 (s, 1C). HRMS (ESI) calcd for C₃₄H₃₂O₂PS [M+H]⁺ 535.1861, found 535.1860.

Compound 4im. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 24.8 min (major), t_2 = 27.8 min (minor). [α]_D²⁰ +118 (c 2.03, CH₂Cl₂) for 81% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 70.9. ¹H NMR (CDCl₃, 400 MHz) δ 2.26 (s, 3H), 2.33 (s, 6H), 5.19 (s, 1H), 6.79-6.82 (m, 1H), 6.83 (d, J = 5.2 Hz, 2H), 6.86 (s, 1H), 6.92 (dd, J = 8.4 Hz, 3.6 Hz, 1H), 7.18-7.21 (m, 3H), 7.27 (dd, J = 6.0 Hz, 2.4 Hz, 2H), 7.35-7.39 (m, 1H), 7.45-7.50 (m, 5H), 7.62 (d, J = 1.6 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.1 (d, J_{CP} = 1.2 Hz, 1C), 23.7 (d, J_{CP} = 4.6 Hz, 2C), 118.3 (s, 1C), 124.7 (d, J_{CP} = 5.0 Hz, 1C), 127.1 (s, 1C), 127.2 (s, 1C), 128.1 (s, 2C), 128.2 (s, 1C), 128.4 (d, J_{CP} = 15.6 Hz, 1C), 129.3 (d, J_{CP} = 123.1 Hz, 1C), 129.2 (s, 2C), 129.48 (s, 2C),

129.51 (s, 2C), 131.4 (d, $J_{CP} = 13.7$ Hz, 2C), 134.2 (d, $J_{CP} = 6.3$ Hz, 1C), 135.4 (d, $J_{CP} = 4.9$ Hz, 1C), 135.9 (d, $J_{CP} = 12.1$ Hz, 1C), 136.5 (s, 1C), 137.8 (s, 1C), 139.3 (d, $J_{CP} = 112.7$ Hz, 1C), 140.4 (d, $J_{CP} = 9.9$ Hz, 1C), 141.5 (d, $J_{CP} = 3.0$ Hz, 1C), 141.8 (d, $J_{CP} = 12.1$ Hz, 2C), 149.2 (d, $J_{CP} = 1.4$ Hz, 1C). HRMS (ESI) calcd for $C_{31}H_{28}O_{2}PS_{2}$ [M+H]⁺ 527.1268, found 527.1265.

9. Addition of Ph₂PH to 2,5-diphenyl-1,4-benzoquinone (2m)

To a solution of Ph₂PH (55.9 mg, 0.300 mmol) in degassed CHCl₃ (8 mL) was added PdL1* (9.4 mg, 0.015 mmol, 5 mol%). The solution was stirred at room temperature for 2 minutes, before it was cooled to –45 °C. 2,5-Diphenyl-1,4-benzoquinone (2m) (82.0 mg, 0.315 mmol) was added followed by dropwise addition of Et₃N (30.3 mg, 0.300 mmol) in CHCl₃ (0.5 mL). The mixture was stirred at –45 °C for 20 h. The mixture was filtered immediately and the solids (20 mg of 11, poor solubility) was collected. The filtrate was treated with excess sulfur powder (14.4 mg, 0.450 mmol) and kept stirring at room temperature for 15 min. The mixture was passed through a short celite pad and the solution was concentrated on a rotary evaporator. The residue was subjected to silica-gel chromatography (EtOAc/hexane = 1/10 to 1/5) to give dithiophosphinate 9' (25.0 mg, 24% yield), diphosphine disulfide 10' (17.6 mg, 27% yield), 11 (41.0 mg, 51% yield, combined with the collected solids), and trace amount of 8' (<3%, based on ³¹P NMR).

Compound 9'. ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃, 162 MHz) δ 83.2. ${}^{1}H$ NMR (CDCl₃, 400 MHz) δ 7.24-7.33 (m, 18H), 7.38 (br s, 2H), 7.42 (t, J = 7.4 Hz, 4H), 7.63 (dd, J = 13.8

Hz, 7.8 Hz, 8H). ¹³C NMR (CDCl₃, 100 MHz) δ 124.2 (d, J_{CP} = 4.6 Hz, 2C), 127.6 (s, 2C), 128.2 (s, 4C), 128.4 (d, J_{CP} = 13.8 Hz, 8C), 129.9 (s, 4C), 131.5 (d, J_{CP} = 11.7 Hz, 8C), 132.0 (s, J_{CP} = 2.7 Hz, 4C), 134.2 (d, J_{CP} = 110.2 Hz, 4C), 134.3 (d, J_{CP} = 5.6 Hz, 2C), 137.0 (s, 2C), 144.6 (d, J_{CP} = 9.2 Hz, 2C). HRMS (ESI) calcd for C₄₂H₃₃O₂P₂S₂ [M+H]⁺ 695.1397, found 695.1403.

Si Si Ph₂P-PPh₂ **Compound 10'** [1054-60-0]. 31 P{ 1 H} NMR (CDCl₃, 162 MHz) δ 38.6. 1 H NMR (CDCl₃, 400 MHz) δ 7.38 (tdd, J = 7.6 Hz, 2.4 Hz, 1.2 Hz, 8H), 7.50 (td, J = 7.2 Hz, 1.2 Hz, 4H), 8.01-8.07 (m, 8H).

Colorless crystals of compound **10'** for X-ray crystallorgraphic analysis were obtained by recrystallization from EtOAc/pentane. The ORTEP drawing of compound **10'** is shown in Figure S2 (page S25). The X-ray analysis of **10'** further confirmed the structure.

10. Studies on kinetic resolution

To a solution of phenyl(2,4,6-trimethylphenyl)phosphine (1a) (68.5 mg, 0.300 mmol) in degassed CHCl₃ (7 mL) was added PdL1* (9.4 mg, 0.015 mmol, 5 mol%). The solution was stirred at room temperature for 2 min, before it was cooled to –45 °C. 2,5-Diphenyl-1,4-benzoquinone (2m) (82.0 mg, 0.315 mmol) was added followed by dropwise addition of Et₃N (30.3 mg, 0.300 mmol) in CHCl₃ (0.5 mL). The solution was stirred at –45 °C for 10 h (conversion = 63% based on ³¹P NMR). m-CPBA (0.300 mmol, 1 equiv, purified by recrystallization and titrated by the reaction with Ph₂PH) was added, and the mixture was

kept stirring at -45 °C for 8 h. The reaction mixture was concentrated on a rotary evaporator and the residue was subjected to silica-gel chromatography (acetone/CH₂Cl₂ = 1/10 to 1/5) to give phosphinate **5am** (90.8 mg, 60% yield, 98% ee) and phosphine oxide **12** (22.0 mg, 30% recovered, 26% ee).

When the reaction was stopped at 97% conversion, phosphinate **5am** (139.3 mg, 92% yield, 98% ee) and phosphine oxide **12** (2.2 mg, 3% recovered, 84% ee) were isolated.

Compound 12. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 98/2, flow 1.0 mL/min, 280 nm, t_1 = 145.9 min (major), t_2 = 158.9 min (minor). [α]_D²⁰ +21 (c 0.92, CH₂Cl₂) for 26% ee. ³¹P{¹H} NMR (CDCl₃, 202 MHz) δ 9.8. ¹H NMR (CDCl₃, 500 MHz) δ 2.30 (s, 3H), 2.46 (s, 6H), 6.91 (d, J = 3.8 Hz, 2H), 7.45 (td, J = 7.5 Hz, 2.5 Hz, 2H), 7.52 (td, J = 7.0 Hz, 1.5 Hz, 1H), 7.63 (dd, J = 13.5 Hz, 7.0 Hz, 2H), 8.55 (d, J = 482.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.4 (s, 1C), 21.6 (d, J_{CP} = 8.6 Hz, 2C), 124.5 (d, J_{CP} = 102.4 Hz, 1C), 128.9 (d, J_{CP} = 12.6 Hz, 2C), 130.4 (d, J_{CP} = 99.0 Hz, 1C), 142.2 (d, J_{CP} = 9.9 Hz, 2C), 142.9 (d, J_{CP} = 1.9 Hz, 1C). HRMS (ESI) calcd for C₁₅H₁₈OP [M+H]⁺ 245.1095, found 245.1092.

11. Transformations of the products, (S)-3am, (R)-4am, and (S)-5am

To a THF (5 mL) solution of (S)-3am, which was obtained by removal of CHCl₃ from the reaction mixture in entry 1 of Table 2, was added MeLi (0.94 mL, 1.6 M in diethyl ether, 1.5 mmol, 5 equiv) at -80 °C. The reaction mixture was kept stirring at -80 °C for 8 h and warmed gradually to room temperature over 8 h. After stirring at room temperature for

another 2 h, degassed H_2O (0.5 mL) was added followed by addition of excess S_8 . The reaction mixture was stirred for 15 min and passed through a short celite pad. The solution was extracted with EtOAc (20 mL \times 3) and the organic layer was dried over MgSO₄. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (EtOAc/Hexane = 1/10) to give sulfide (S)-14a (76.5 mg, 93% yield, 98% ee).

Similarly, (S)-14b was prepared by reaction of (S)-3am with n-BuLi (0.6 mL, 2.5 M in hexane, 1.5 mmol) under otherwise the same conditions (87.3 mg, 92% yield, 96% ee).

(S)-14a Compound (*S*)-14a. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 98/2, flow 1.0 mL/min, 280 nm, t_1 = 11.3 min (minor), t_2 = 19.8 min (major). [α]_D²⁰ –108 (c 1.94, CH₂Cl₂) for 98% ee. ³¹P{¹H} NMR (CDCl₃, 121 MHz) δ 36.4. ¹H NMR (CDCl₃, 300 MHz) δ 2.24 (d, J = 13.2 Hz, 3H), 2.27 (s, 3H), 2.30 (s, 6H), 6.84 (d, J = 3.9 Hz, 2H), 7.40-7.48 (m, 3H), 7.81 (dd, J = 13.5 Hz, 8.1 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 21.1 (s, 1C), 23.9 (d, J_{CP} = 5.9 Hz, 2C), 30.2 (d, J_{CP} = 57.0 Hz, 1C), 128.8 (d, J_{CP} = 12.2 Hz, 2C), 128.9 (d, J_{CP} = 83.4 Hz, 1C), 130.0 (d, J_{CP} = 10.8 Hz, 2C), 131.0 (d, J_{CP} = 2.9 Hz, 1C), 131.4 (d, J_{CP} = 11.0 Hz, 2C), 137.7 (d, J_{CP} = 80.4 Hz, 1C), 142.1 (d, J_{CP} = 2.9 Hz, 1C), 141.5 (d, J_{CP} = 10.3 Hz, 2C). HRMS (ESI) calcd for C₁₆H₂₀PS [M+H]⁺ 275.1023, found 275.1021.

Colorless crystals of phosphine sulfide **14a** suitable for X-ray crystallographic analysis were obtained by recrystallization from EtOAc/pentane. The ORTEP drawing of **14a** is shown in Figure S3 (page S27). The X-ray analysis of the crystal revealed that absolute configuration of **14a** is S.

(S)-14b Compound (S)-14b. The ee was measured by HPLC (Daicel Chiralpak AD-H), hexane/2-propanol = 95/5, flow 0.8 mL/min, 280 nm, t_1 = 8.7 min (major), t_2 = 10.2 min (minor). [α]_D²⁰ –77 (c 4.04, CH₂Cl₂) for 96% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 43.7. ¹H NMR (CDCl₃, 400 MHz) δ 0.69-0.82 (m, 1H), 0.79 (t, J = 7.3 Hz, 3H), 1.22-1.38 (m, 2H),

1.60-1.73 (m, 1H), 2.26 (s, 3H), 2.30 (s, 6H), 2.39-2.60 (m, 2H), 6.83 (d, J = 3.8 Hz, 2H), 7.40-7.50 (m, 3H), 7.76 (dd, J = 12.8 Hz, 6.8 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 13.8 (s, 1C), 21.0 (s, 1C), 24.1 (d, $J_{CP} = 17.6$ Hz, 1C), 24.2 (d, $J_{CP} = 4.8$ Hz, 2C), 25.1 (d, $J_{CP} = 3.2$ Hz, 1C), 38.7 (d, $J_{CP} = 52.8$ Hz, 1C), 128.5 (d, $J_{CP} = 12.1$ Hz, 2C), 129.2 (d, $J_{CP} = 81.4$ Hz, 1C), 130.87 (d, $J_{CP} = 9.7$ Hz, 2C), 131.89 (d, $J_{CP} = 3.9$ Hz, 1C), 131.5 (d, $J_{CP} = 11.0$ Hz, 2C), 135.0 (d, $J_{CP} = 76.9$ Hz, 1C), 140.9 (d, $J_{CP} = 3.0$ Hz, 1C), 141.7 (d, $J_{CP} = 10.0$ Hz, 2C). HRMS (ESI) calcd for $C_{19}H_{26}PS$ [M+H]⁺ 317.1493, found 317.1492.

To a solution of (R)-4am (100.0 mg, 0.192 mmol) in dry THF (5 mL) was added MeLi (0.60 mL, 1.6 M in diethyl ether, 0.96 mmol, 5 equiv) at -80 °C. The reaction mixture was kept stirring at -80 °C for 8 h and warmed gradually to room temperature over 8 h. After stirring at room temperature for another 2 h, the reaction mixture was quenched by H₂O (0.5 mL) and extracted with EtOAc (20 mL × 3). The organic layer was dried over MgSO₄ and the solvent was removed on a rotary evaporator. The residue was subjected to silica-gel chromatography (EtOAc/hexane = 1/10) to give the phosphine sulfide (S)-14a (38.5 mg, 73% yield, 94% ee).

To a solution of (S)-5am (200 mg, 0.396 mmol, 98% ee) in dry DMF (5 mL) was added MeI (169 mg, 1.19 mmol) and K_2CO_3 (164 mg, 1.19 mol). The reaction mixture was stirred at room temperature for 12 h. Saturated aqueous NH₄Cl was added, and the mixture was extracted with EtOAc (20 mL × 3). The organic layer was dried over MgSO₄ and the solvent was removed by a rotary evaporator and vacuum pump. The residue was subjected to silicagel chromatography (with acetone/CH₂Cl₂ = 1/10) to give the product (S)-15 (203.3 mg, 99% yield, 98% ee).

To a solution of (S)-15 (98.5 mg, 0.190 mmol) in MeOH (5 mL) was added NaOMe (30.8

mg, 0.570 mmol) at 20 °C. The reaction mixture was kept stirring for 70 h (conversion = 92% based on ^{31}P NMR). The solvent was removed on a rotary evaporator and the residue was dissolved in CH₂Cl₂ (20 mL). It was washed with H₂O and dried over MgSO₄. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (EtOAc/hexane = 1/5) to give the product (R)-16 (46.9 mg, 90% yield, 94% ee).

Compound (*S*)-15. The ee was measured by HPLC (Daicel Chiralpak IC, hexane/2-propanol = 90/10, flow 1.0 mL/min, 280 nm, t_1 = 27.9 min (minor), t_2 = 30.3 min (major). [α]_D²⁰ –28 (*c* 2.12, CH₂Cl₂) for 98% ee (*S*). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 34.8. ¹H NMR (CDCl₃, 400 MHz) δ 2.27 (s, 3H), 2.36 (s, 6H), 3.74 (s, 3H), 6.86 (d, *J* = 4.1 Hz, 2H), 6.90 (s, 1H), 7.21 (d, *J* = 1.2 Hz, 1H), 7.21-7.28 (m, 3H), 7.30-7.42 (m, 10H), 7.51 (dd, *J* = 7.8 Hz, 1.9 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.2 (s, 1C), 23.4 (d, J_{CP} = 3.4 Hz, 2C), 56.2 (s, 1C), 114.3 (s, 1C), 122.8 (d, J_{CP} = 3.4 Hz, 1C), 124.0 (d, J_{CP} = 128.6 Hz, 1C), 127.3 (s, 1C), 127.5 (s, 1C), 128.1 (s, 2C), 128.2 (s, 2C), 128.4 (d, J_{CP} = 13.8 Hz, 2C), 129.6 (s, 2C), 129.8 (s, 2C), 130.4 (d, J_{CP} = 11.5 Hz, 2C), 130.5 (s, 1C), 131.0 (d, J_{CP} = 13.4 Hz, 2C), 131.7 (d, J_{CP} = 2.9 Hz, 1C), 134.0 (d, J_{CP} = 5.5 Hz, 1C), 134.4 (d, J_{CP} = 137.2 Hz, 1C), 137.5 (s, 1C), 138.2 (s, 1C), 141.5 (d, J_{CP} = 8.1 Hz, 1C), 142.6 (d, J_{CP} = 2.8 Hz, 1C), 144.1 (d, J_{CP} = 11.6 Hz, 2C), 153.0 (s, 1C). HRMS (ESI) calcd for C₃₄H₃₂O₃P [M+H]⁺ 519.2089, found 519.2087.

(R)-16 Compound (R)-16. The ee was measured by HPLC (Daicel Chiralpak IC), hexane/2-propanol = 90/10, flow 1.0 mL/min, 280 nm, t_1 = 54.8 min (minor), t_2 = 68.8 min (major). [α]_D²⁰ –28 (c 2.12, CH₂Cl₂) for 94% ee. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 37.2. ¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H), 2.49 (s, 6H), 3.73 (d, J = 11.2 Hz, 3H), 6.91 (d, J = 4.0 Hz, 2H), 7.38-7.42 (m, 2H), 7.45-7.50 (m, 1H), 7.66 (ddd, J = 12.8 Hz, 8.0 Hz, 1.2 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 21.3 (s, 1C), 23.5 (d, J_{CP} = 3.2 Hz, 2C), 50.8 (d, J_{CP} = 5.8 Hz, 1C), 123.6 (d, J_{CP} = 130.1 Hz, 1C), 128.6 (d, J_{CP} = 13.2 Hz, 2C), 130.7 (d, J_{CP} = 10.9 Hz, 2C), 131.0 (d, J_{CP} = 13.0 Hz, 2C), 131.8 (d, J_{CP} = 2.8 Hz, 1C), 134.2 (d, J_{CP} = 134.4 Hz, 1C), 142.3 (d, J_{CP} = 2.8 Hz, 1C), 144.1 (d, J_{CP} = 11.1 Hz, 2C). HRMS (ESI) calcd for

12. References

- (1) (a) Ng, J. K.; Tan, G. K.; Gagadese, J. V.; Leung, P. H. *Inorg. Chem.* **2003**, *42*, 7674. (b) Huang, Y.; Chew, R. J.; Li, Y.; Pullarkat, S. A.; Leung, P. H. *Org. Lett.* **2011**, *13*, 5862.
- (2) Chooi, S. Y. M.; Leung, P.-H.; Chin, L. C.; Mok, K. F.; Quek, G. H.; Sim, K. Y.; Tan, M. K. *Tetrahedron: Asymmetry* **1992**, *3*, 529.
- (3) Kovacik, I.; Wicht, D. K.; Grewal, N. S.; Glueck, D. S.; Incarvito, C. D.; Guzei, I. A.; Rheingold, A. L. *Organometallics* **2000**, *19*, 950.
- (4) Clarke, E. F.; Rafter, E.; Müller-Bunz, H.; Higham, L. J.; Gilheany, D. G. *J. Organomet. Chem.* **2011**, *696*, 3608.
- (5) (a) Peer, M.; Jong, J. C.; Kiefer, M.; Langer, T.; Rieck, H.; Schell, H.; Sennhenn, P.; Sprinz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G. *Tetrahdron* **1996**, *52*, 7547.
- (6) Allen, D. G.; Mclaughlin, G. M.; Robertson, G. B.; Steffen, W. L.; Salem, G.; Wild, S. B. *Inorg. Chem.* **1982**, *21*, 1007.

13. Single Crystal X-Ray Diffraction Data

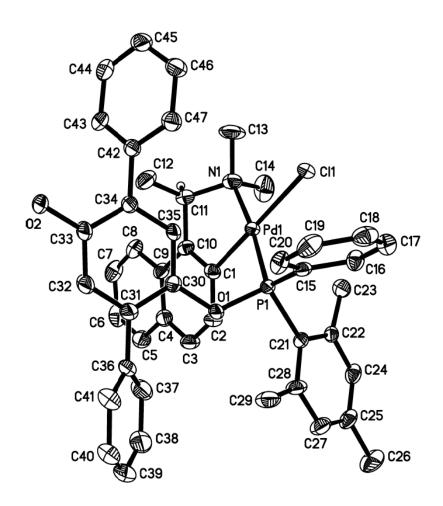


Figure S1. ORTEP illustration of compelx **7** with thermal ellipsoids drawn at 50% probability level.

Table S1. Crystal data and structure refinement for compelx 7

C48.50 H48 Cl4 N O2 P Pd Empirical formula Formula weight 956.05 Temperature 103(2) K 0.71073 Å Wavelength Crystal system Orthorhombic Space group P2(1)2(1)2 $\alpha = 90^{\circ}$ Unit cell dimensions a = 12.3208(10) Å $\beta = 90^{\circ}$ b = 35.000(3) Åc = 10.4586(8) Å $\gamma = 90^{\circ}$ 4510.0(6) Å³ Volume 1.408 Mg/m^3 Density (calculated) 0.723 mm⁻¹ Absorption coefficient F(000)1964 $0.40 \times 0.24 \times 0.14 \text{ mm}^3$ Crystal size Theta range for data collection 1.16 to 30.56°. Index ranges -17 <= h <= 17, -47 <= k <= 50, -13 <= 1 <= 14Reflections collected 41191 Independent reflections 13755 [R(int) = 0.0477]Completeness to theta = 30.56° 99.5 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9055 and 0.7607 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 13755 / 130 / 567 Goodness-of-fit on F² 1.120 Final R indices [I>2sigma(I)] R1 = 0.0597, wR2 = 0.1646R indices (all data) R1 = 0.0724, wR2 = 0.1782Absolute structure parameter 0.01(3) 1.827 and -1.005 e.Å-3Largest diff. peak and hole

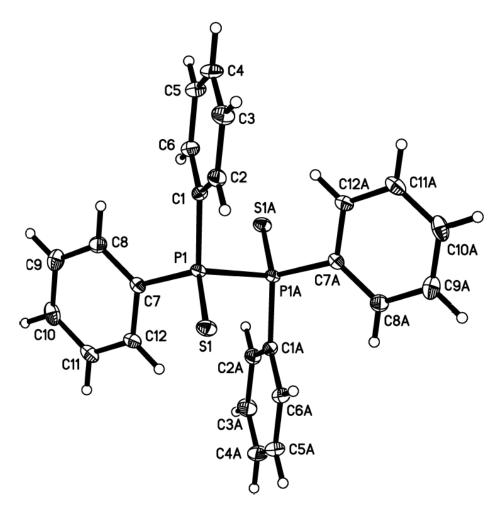


Figure S2. ORTEP illustration of $\bf 10'$ with thermal ellipsoids drawn at 50% probability level.

Table S2. Crystal data and structure refinement for compound 10'

 $\begin{array}{lll} \text{Chemical formula} & & C_{24}H_{20}P_2S_2 \\ \text{Formula weight} & & 434.46 \\ \text{Temperature} & & 103(2) \text{ K} \\ \text{Wavelength} & & 0.71073 \text{ Å} \end{array}$

Crystal size 0.300 x 0.320 x 0.420 mm

Crystal habit colorless block
Crystal system monoclinic
Space group P 1 21/c 1

Unit cell dimensions a = 9.5656(5) Å $\alpha = 90^{\circ}$

b = 15.6505(9) Å $\beta = 96.8115(15)^{\circ}$

 $c = 14.0777(8) \text{ Å} \quad \gamma = 90^{\circ}$

Volume 2092.6(2) Å³

Z 4

Density (calculated) 1.379 g/cm³
Absorption coefficient 0.415 mm⁻¹
F(000) 904

Theta range for data collection 2.51 to 31.49°

Index ranges -13<=h<=14, -22<=k<=22, -20<=l<=20

Reflections collected 49831

Independent reflections 6912 [R(int) = 0.0769]

Coverage of independent reflections 99.5% Absorption correction multi-scan

Max. and min. transmission 0.8860 and 0.8450

Refinement method Full-matrix least-squares on F2
Refinement program SHELXL-2013 (Sheldrick, 2013)

Function minimized Σ w(Fo2 - Fc2)2 Data / restraints / parameters 6912 / 0 / 253

Goodness-of-fit on F2 1.123 Δ/σ max 0.001

Final R indices 5061 data; $I > 2\sigma(I)$

R1 = 0.0487, wR2 = 0.1078

all data

R1 = 0.0784, wR2 = 0.1237

 $w=1/[\sigma^2(F_o^2)+(0.0458P)^2+1.7634P]$

Weighting scheme $w=1/[G(F_0^2)^2(0.04561)]$ where $P=(F_0^2+2F_c^2)/3$

where $P = (F_0 + 2F_c^2)/3$

Largest diff. peak and hole 0.596 and -0.416 eÅ⁻³

R.M.S. deviation from mean 0.099 eÅ⁻³

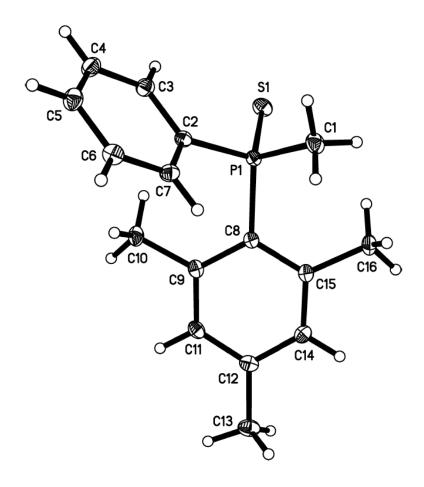


Figure S3. ORTEP illustration of (S)-14a with thermal ellipsoids drawn at 50% probability level.

Table S3. Crystal data and structure refinement for compound (S)-14

 $\begin{array}{lll} \text{Chemical formula} & & C_{16}H_{19}PS \\ \text{Formula weight} & & 274.34 \\ \text{Temperature} & & 103(2) \text{ K} \\ \text{Wavelength} & & 0.71073 \text{ Å} \\ \end{array}$

Crystal size 0.080 x 0.300 x 0.420 mm

Crystal habit colorless plate
Crystal system orthorhombic
Space group P 21 21 21

Unit cell dimensions a = 8.6479(2) Å $\alpha = 90^{\circ}$

b = 9.9545(4) Å $\beta = 90^{\circ}$ c = 16.8563(7) Å $\gamma = 90^{\circ}$

Volume 1451.08(9) Å³

Z 4

Density (calculated) 1.256 g/cm³
Absorption coefficient 0.314 mm⁻¹

F(000) 584

Theta range for data collection 3.17 to 35.08°

Index ranges $-12 \le h \le 13, -15 \le k \le 16, -27 \le 10$

Reflections collected 18262

Independent reflections 6388 [R(int) = 0.0431]

Coverage of independent reflections 99.7%
Absorption correction multi-scan

Max. and min. transmission 0.9750 and 0.8800

Refinement method Full-matrix least-squares on F²
Refinement program SHELXL-2013 (Sheldrick, 2013)

Function minimized $\Sigma \text{ w}(F_o^2 - F_c^2)^2$ Data / restraints / parameters 6388 / 0 / 167

 $\begin{array}{ll} Goodness\text{-of-fit on }F^2 & 1.029 \\ \Delta/\sigma_{max} & 0.001 \end{array}$

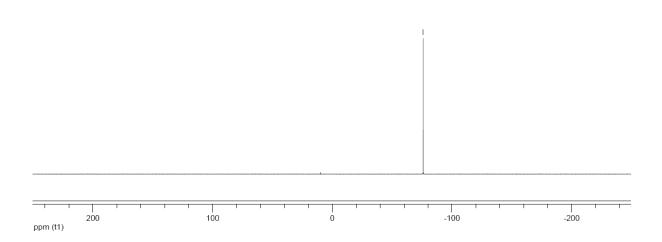
Final R indices 5583 data; $I > 2\sigma(I)$ R1 = 0.0400, WR2 = 0.0874

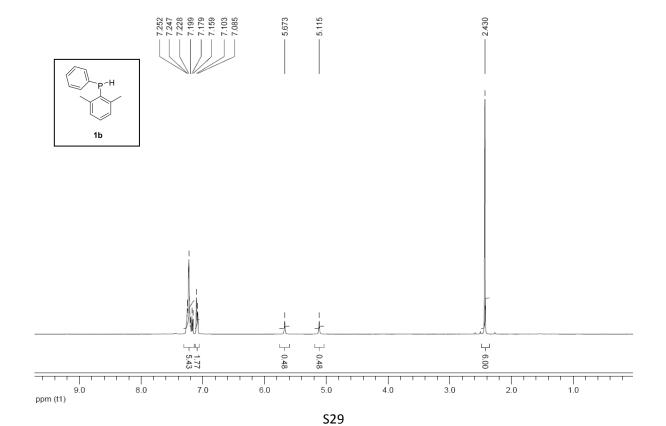
R1 = 0.0497,

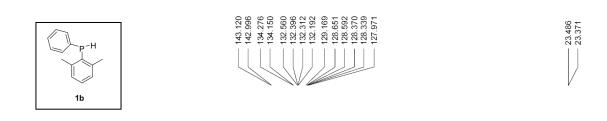
all data WR2 = 0.0924

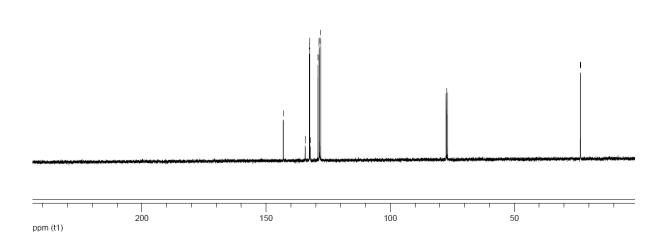
 $w=1/[\sigma^2(F_0^2)+(0.0443P)^2+0.0499P]$

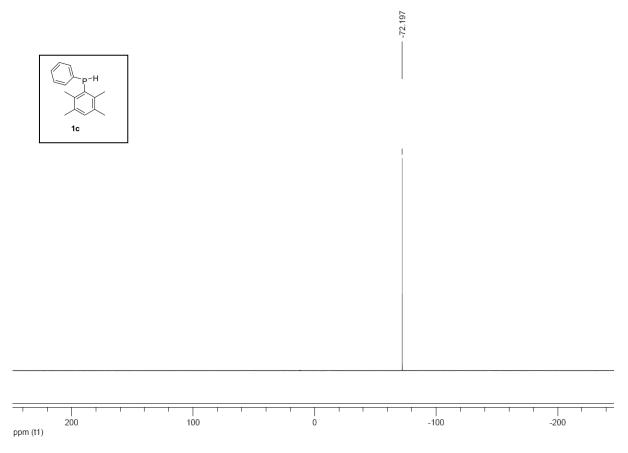
Weighting scheme where $P = (F_0^2 + 2F_c^2)/3$

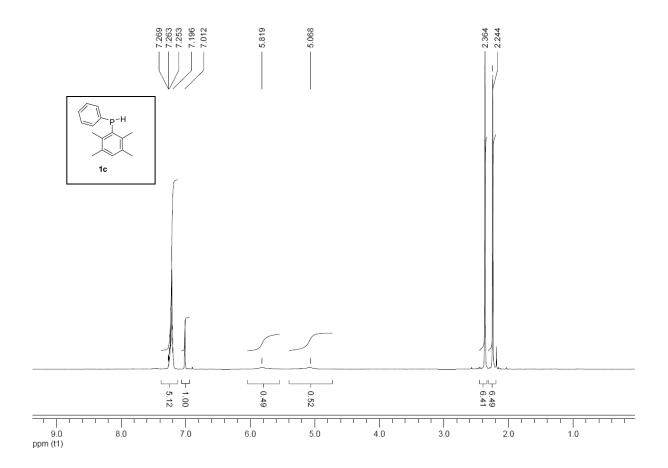

Absolute structure parameter 0.0(0)

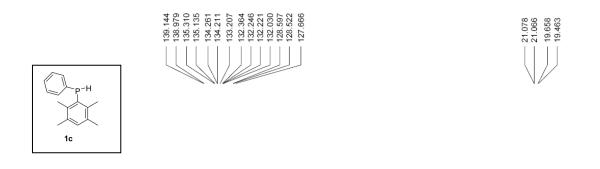

Largest diff. peak and hole 0.398 and -0.297 eÅ⁻³

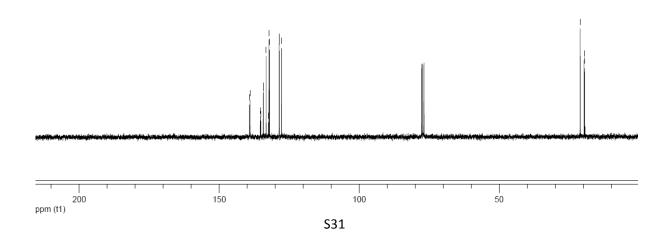

R.M.S. deviation from mean 0.064 eÅ⁻³

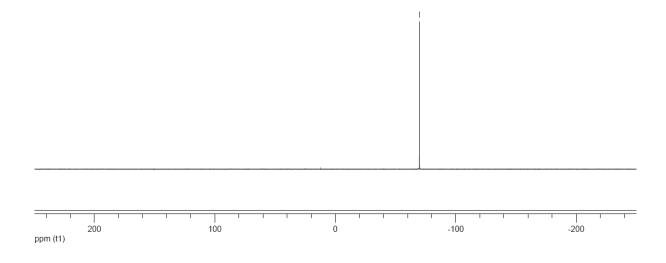

14. ³¹P{¹H}, ¹H, ¹³C NMR spectra and chiral HPLC charts

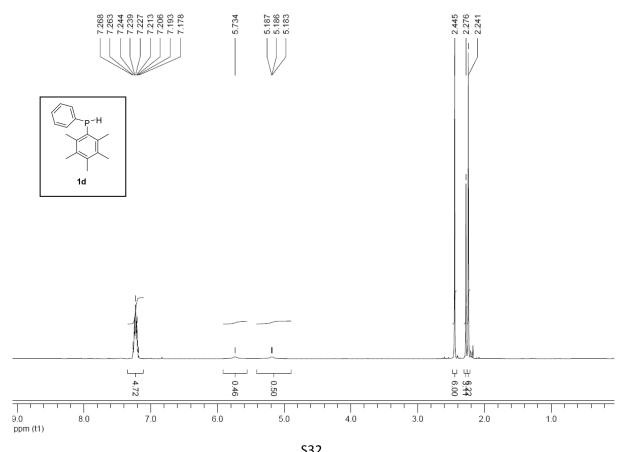


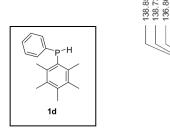


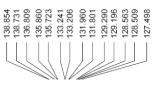


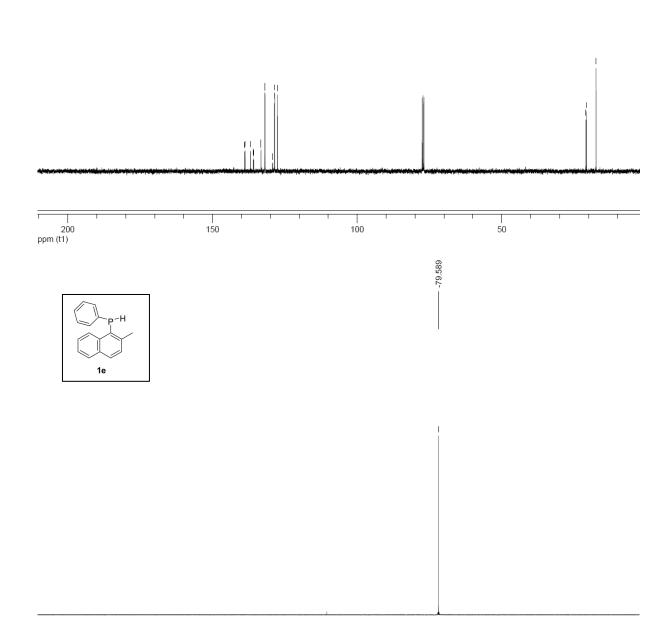




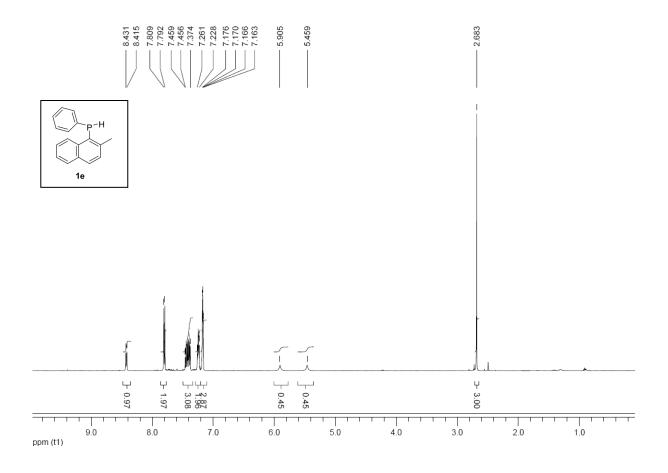


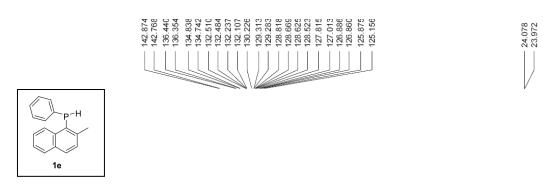


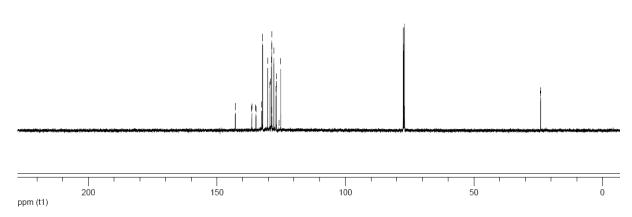




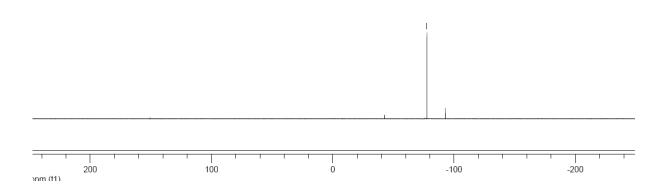
-200

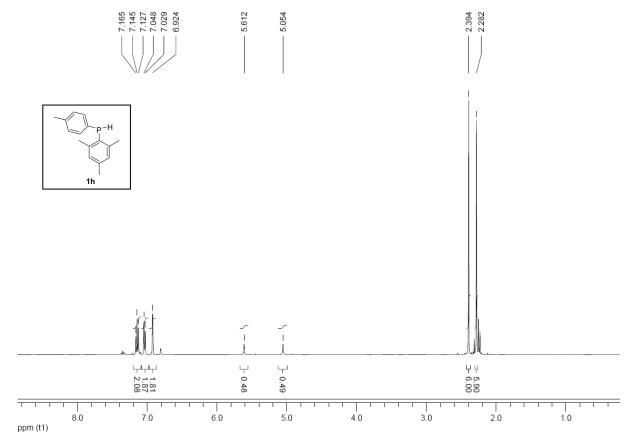

-100

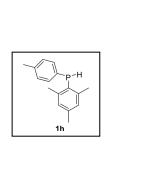


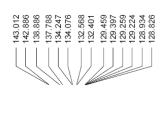

100

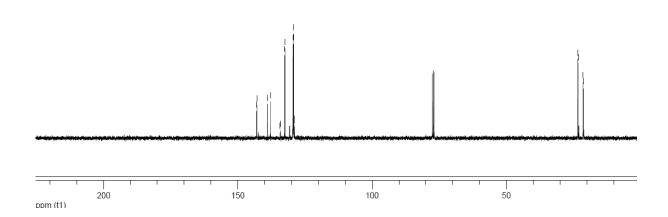
200

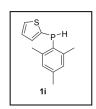

opm (t1)

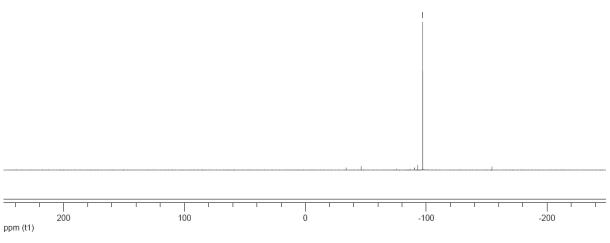


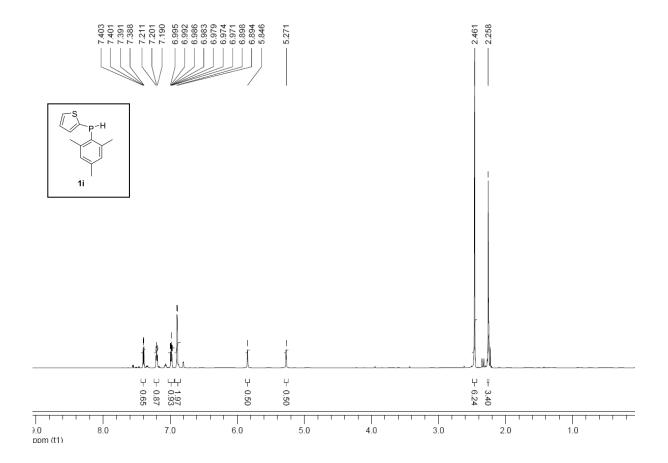




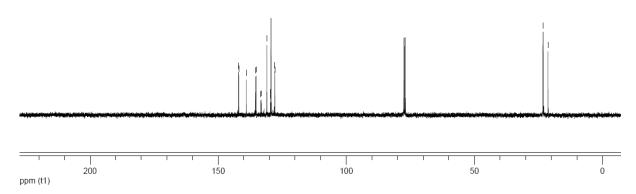


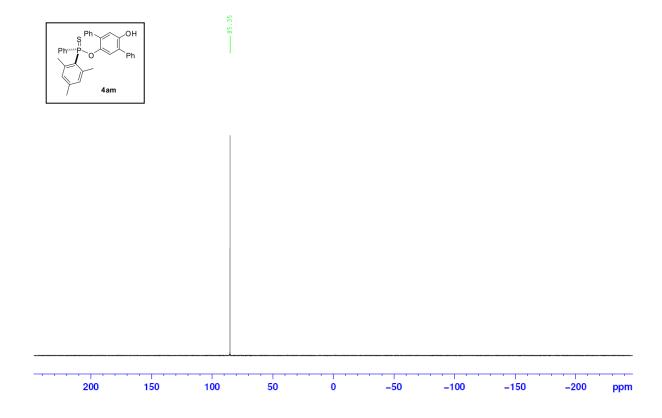


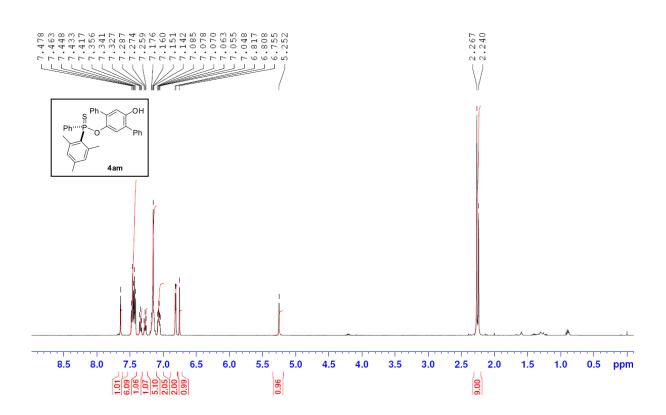


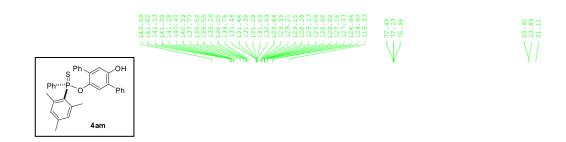


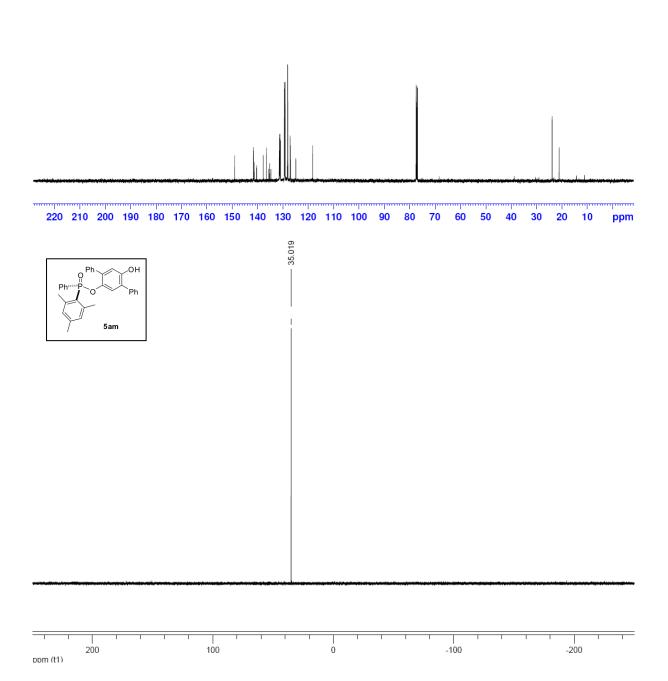


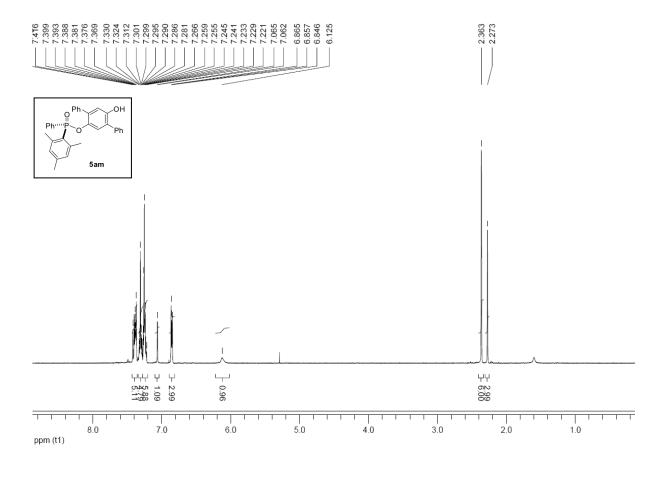


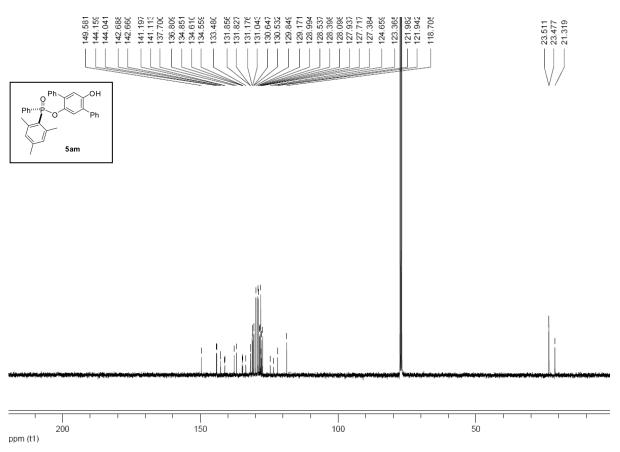

-97.057

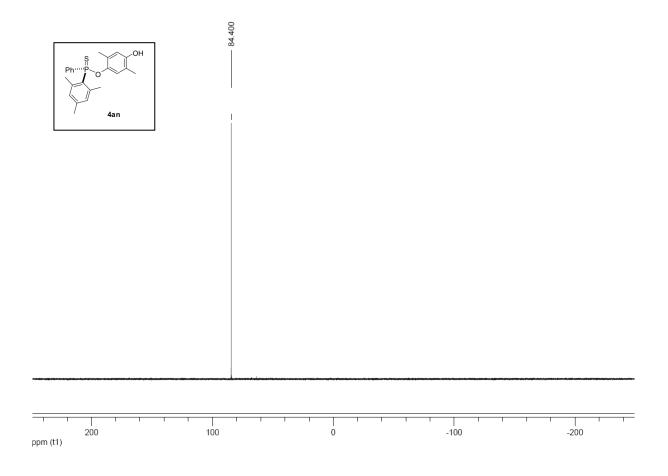


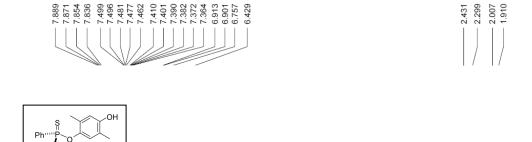


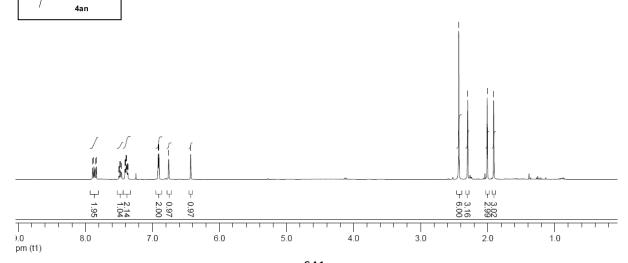


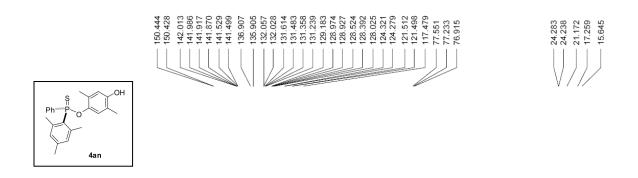


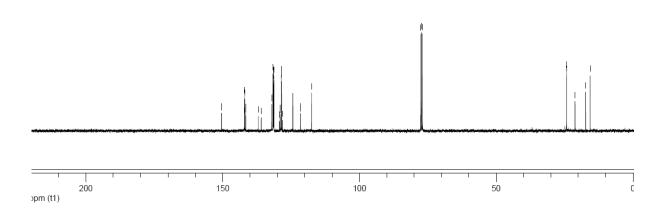


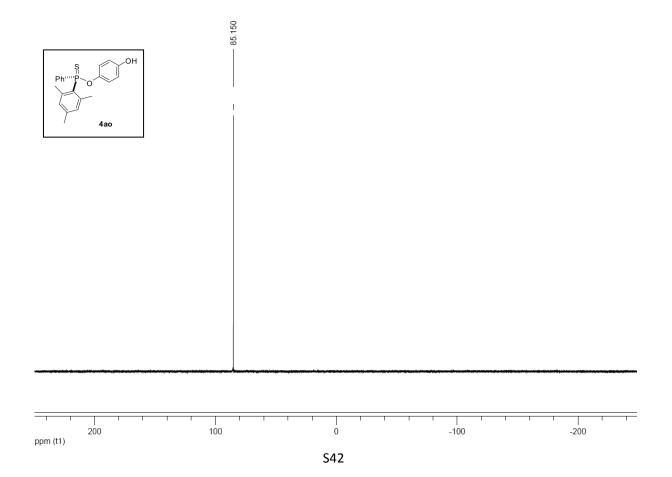


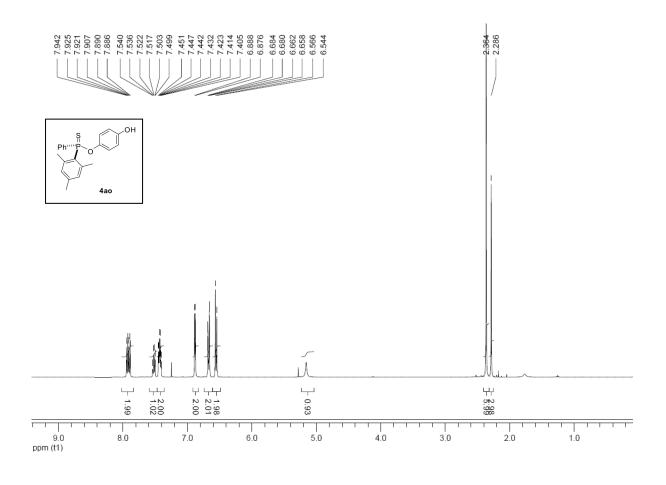


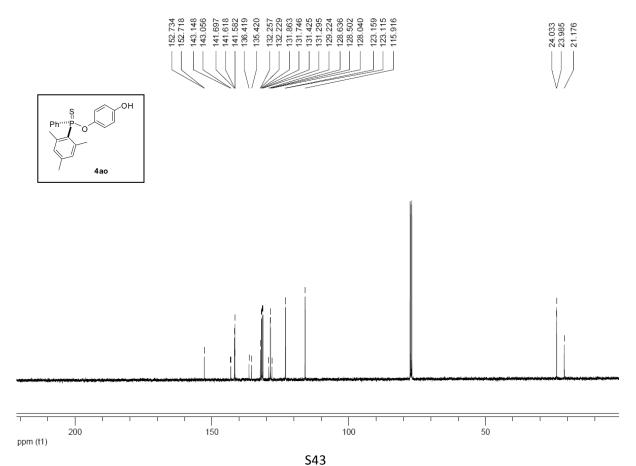


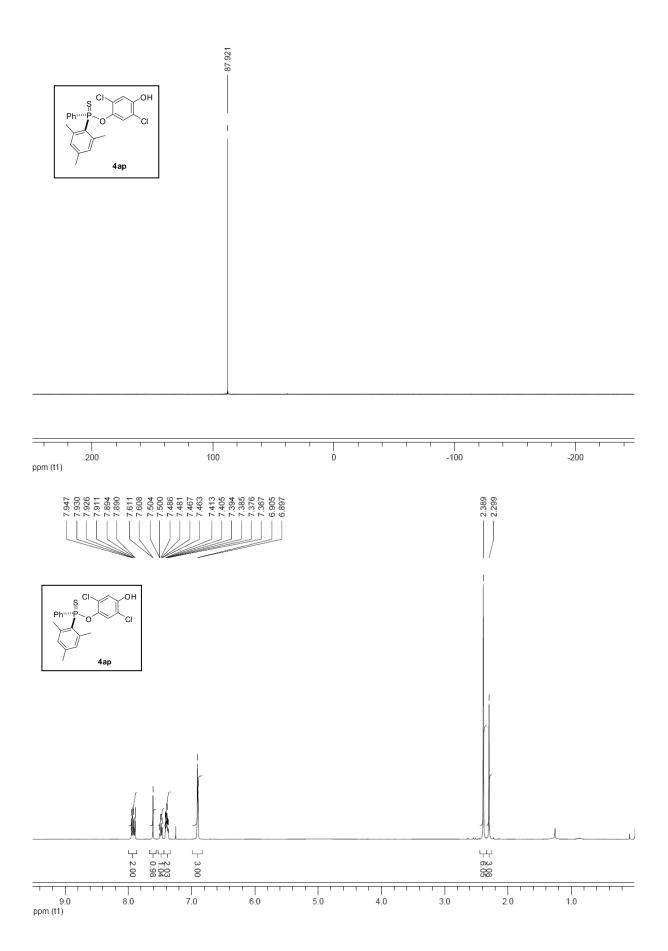


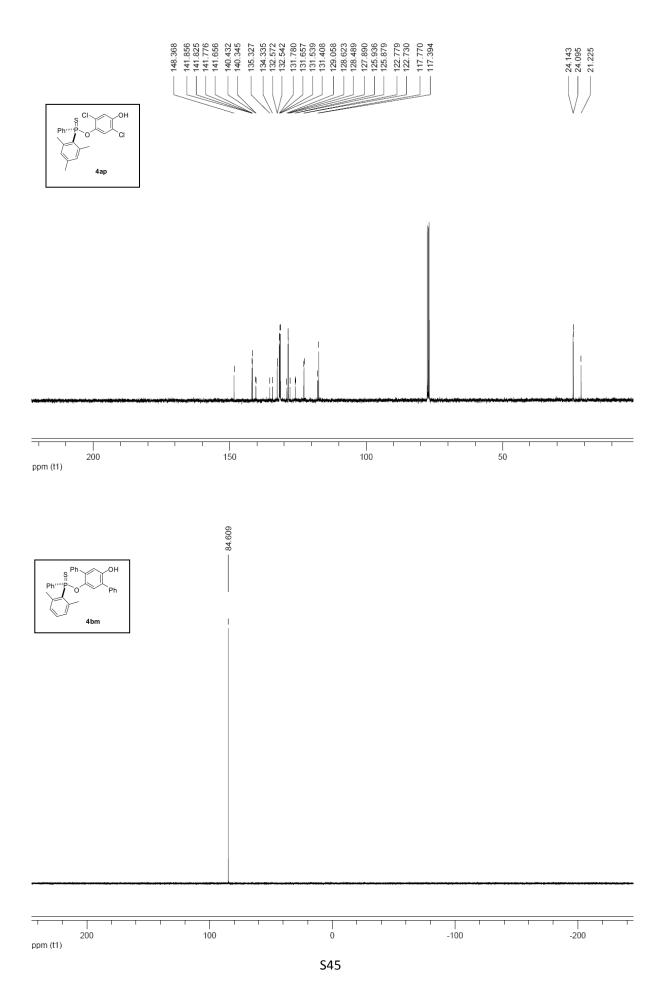


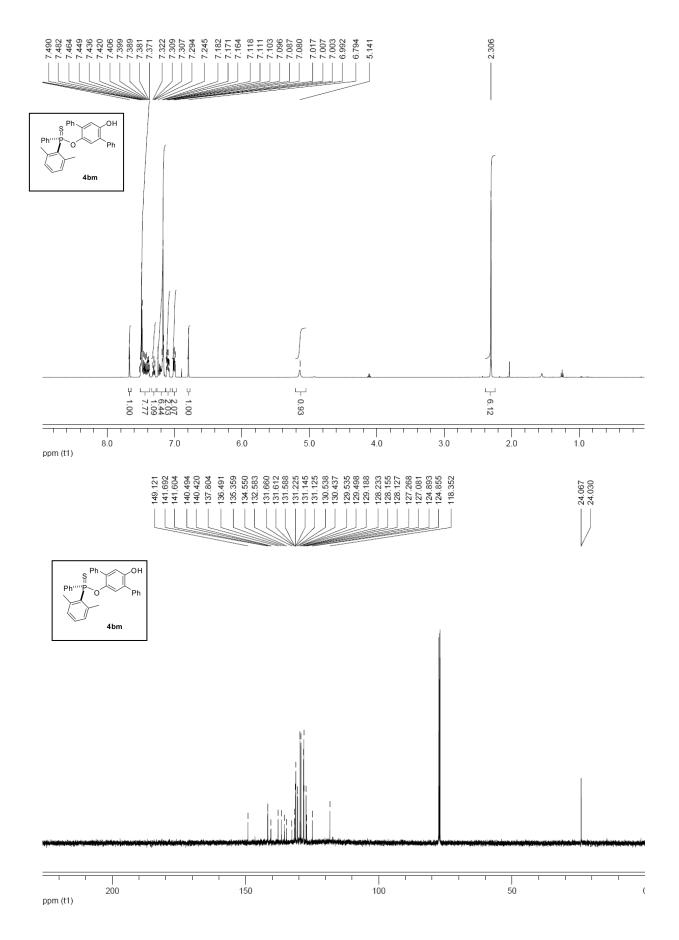


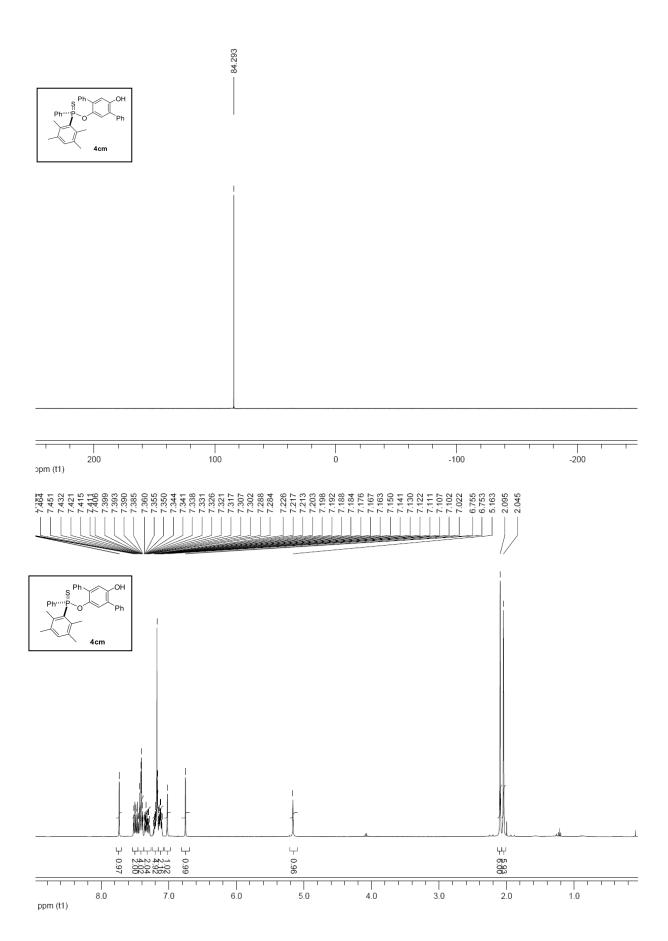


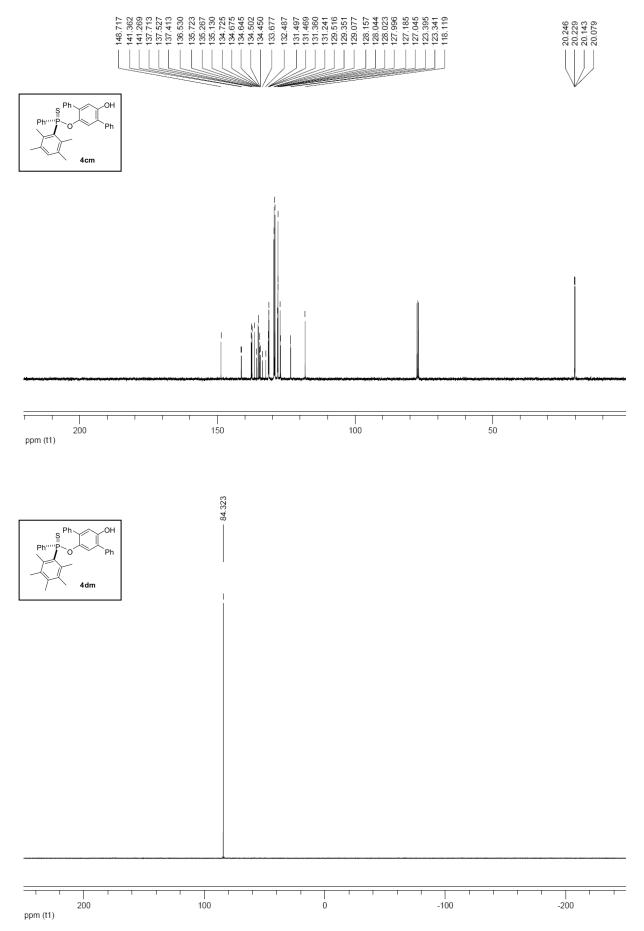


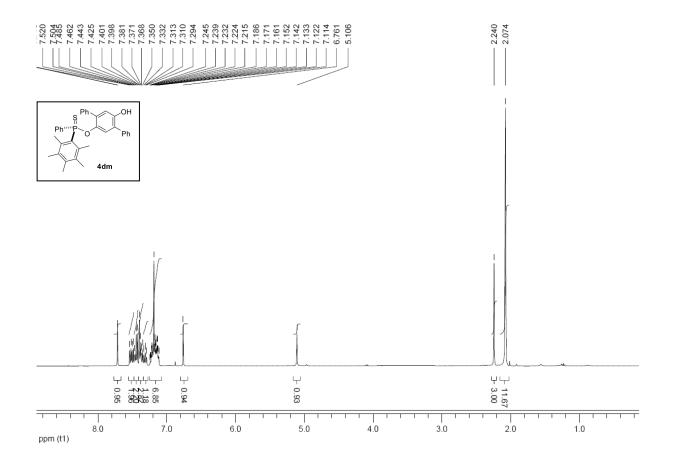


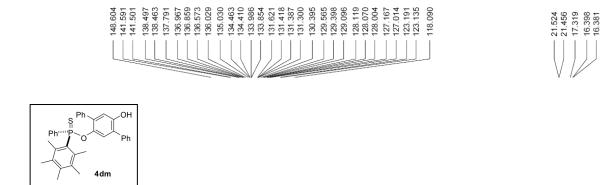


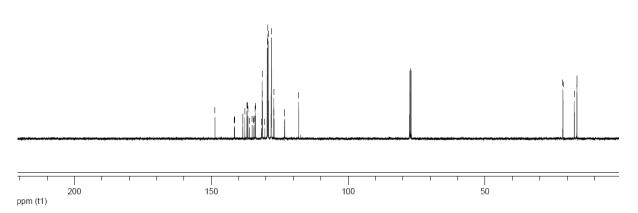


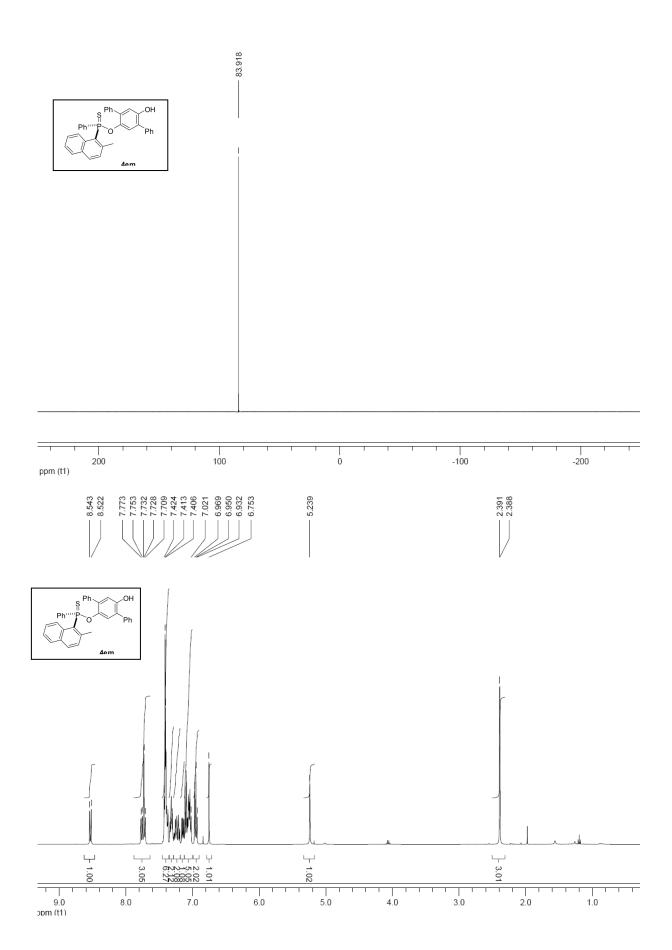


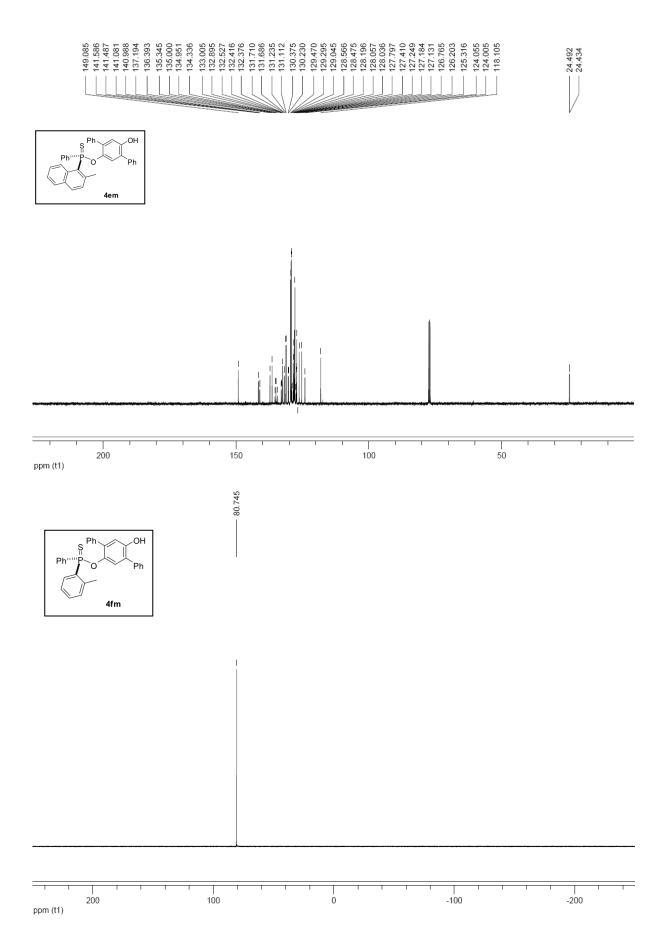


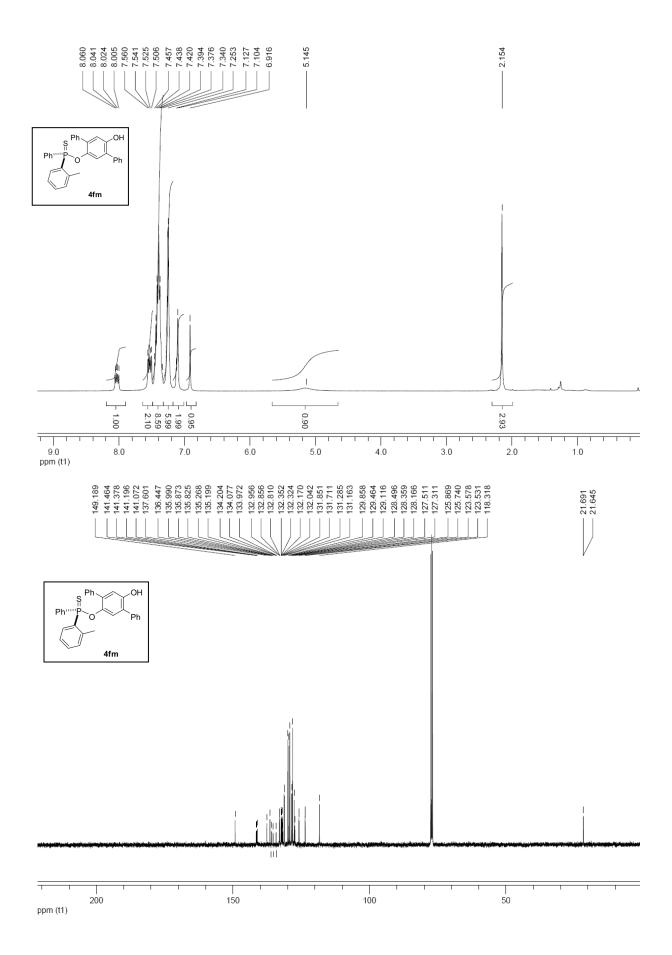


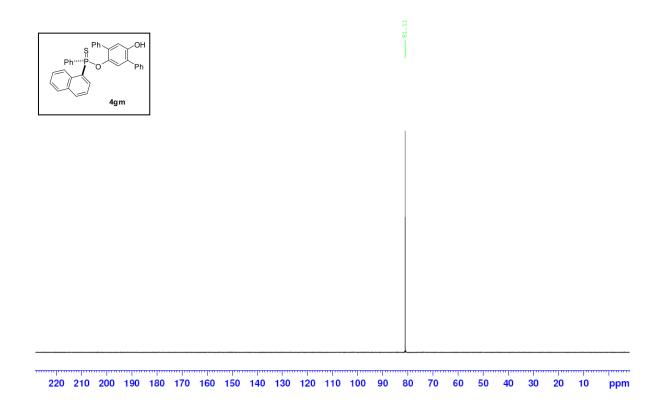


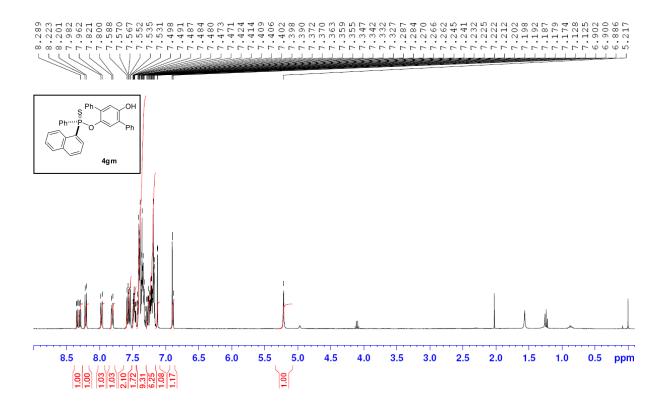


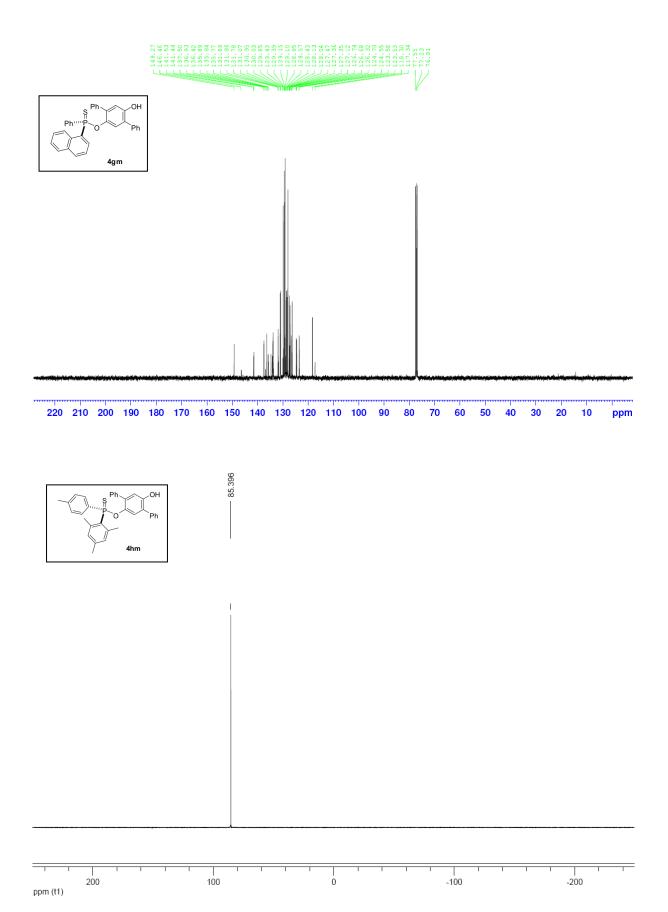


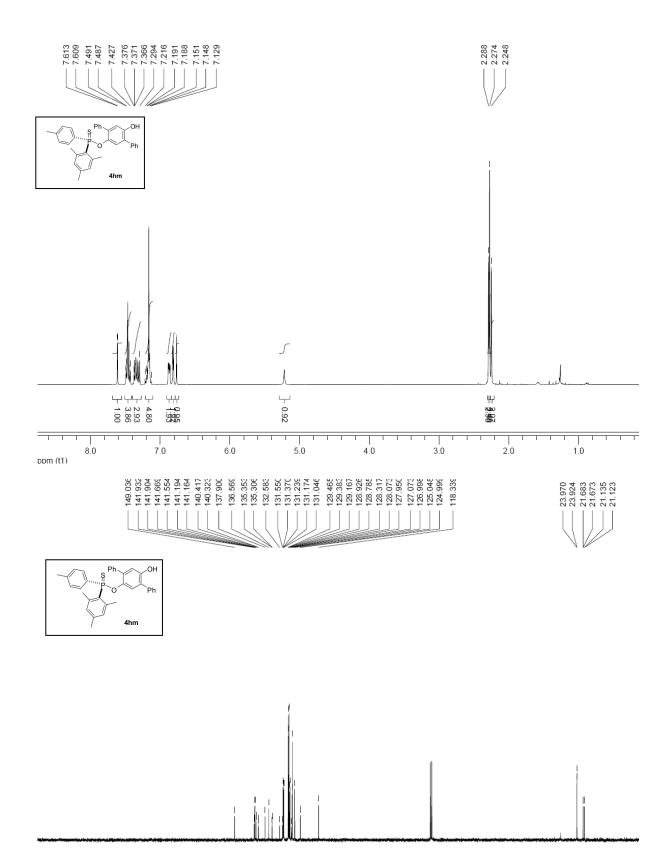


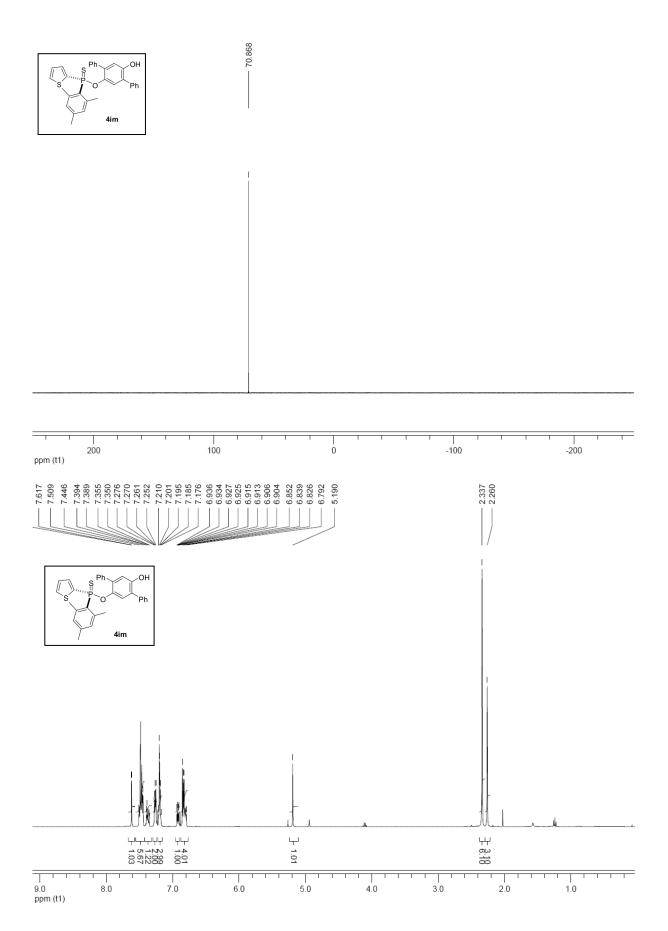


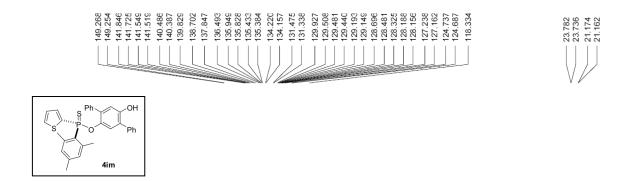


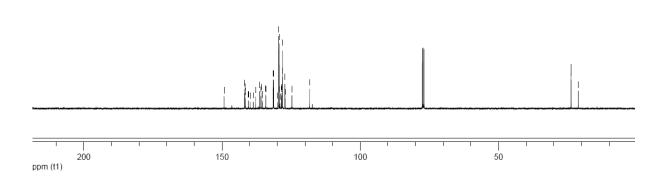


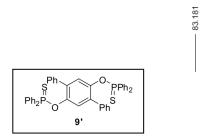


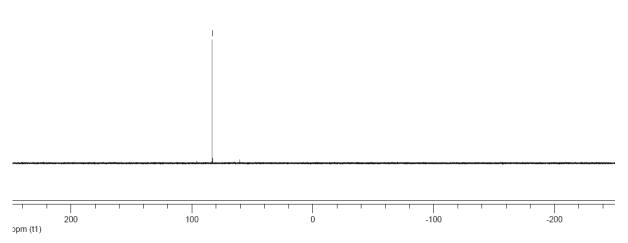


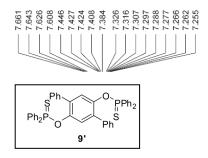


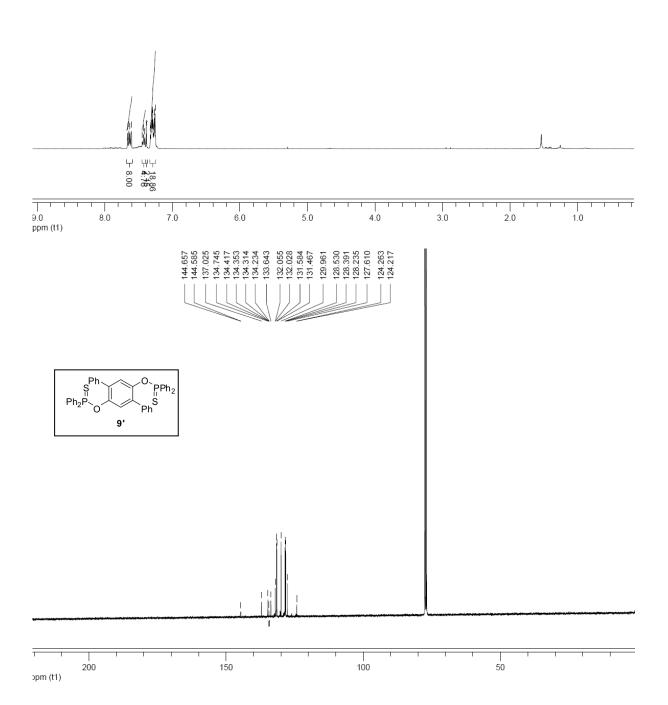


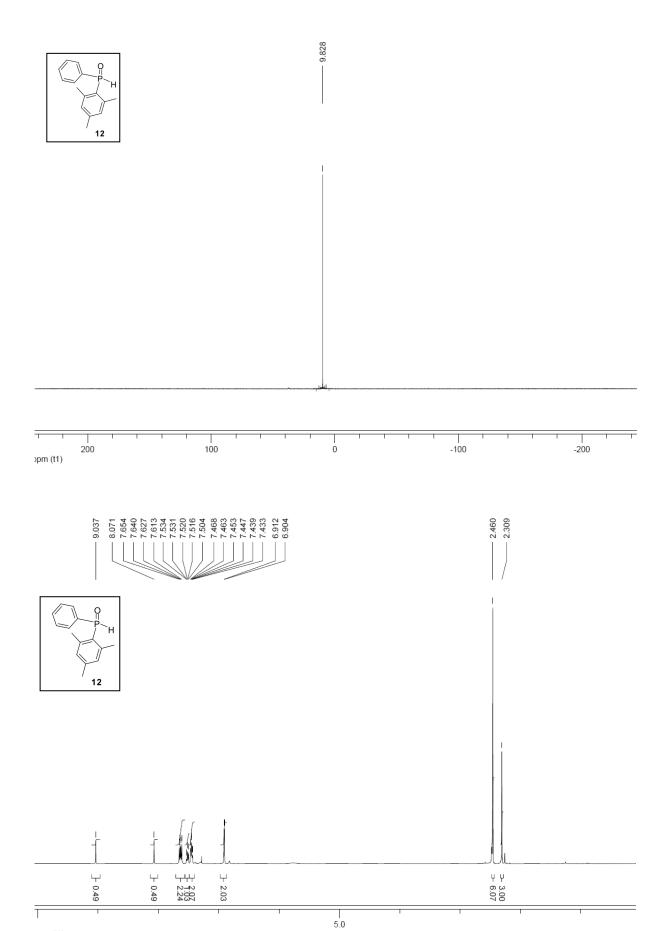


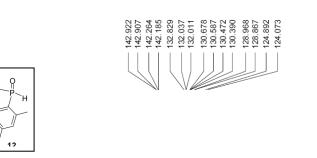


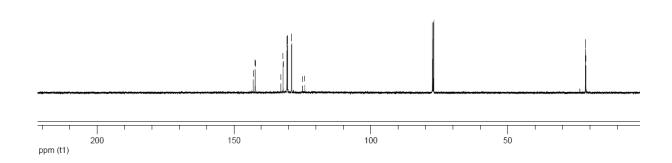

ppm (t1)

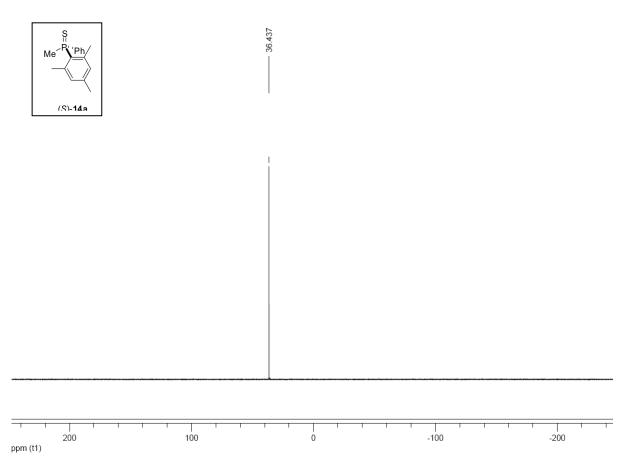


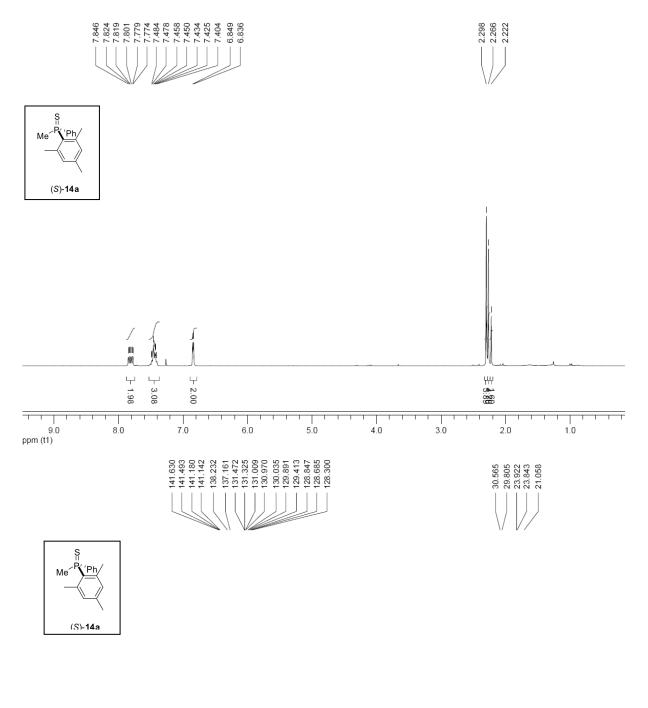


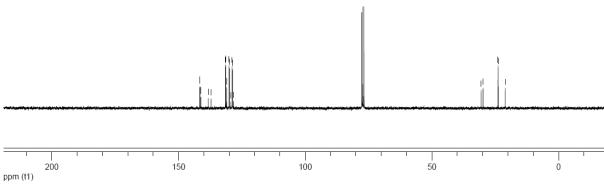


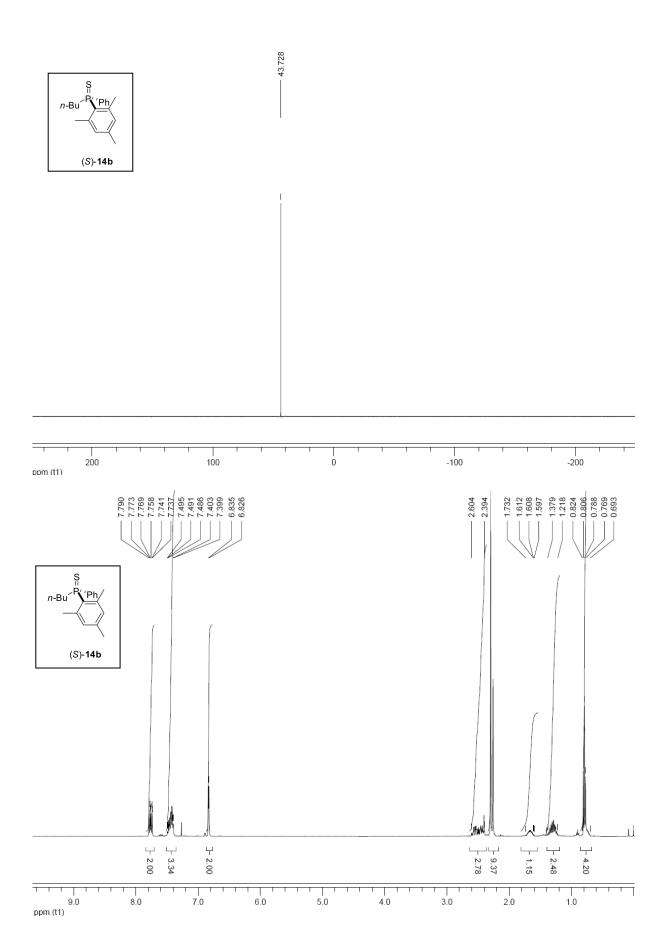


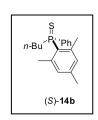


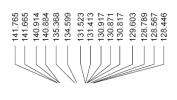


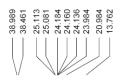

ppm (t1)

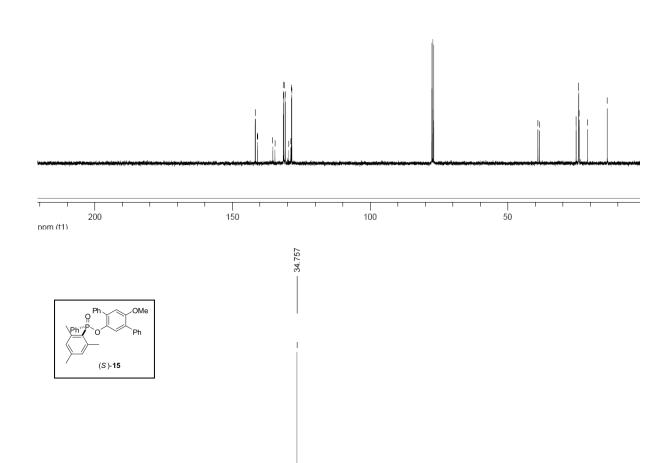




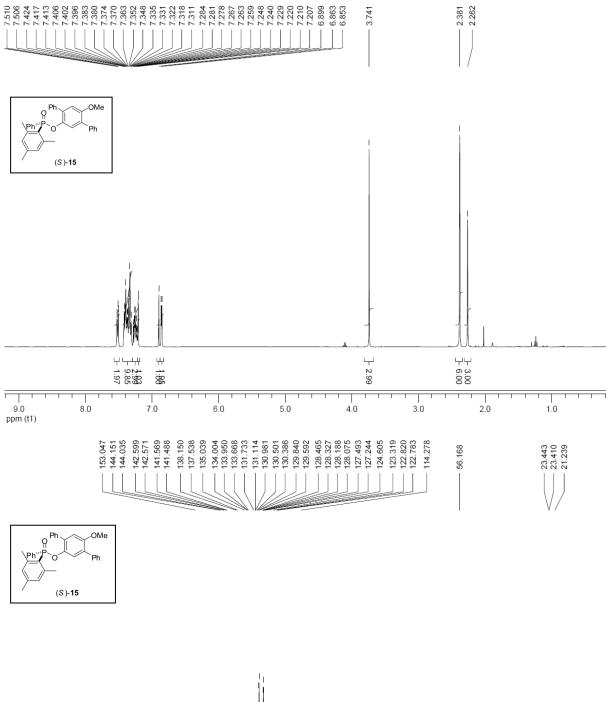


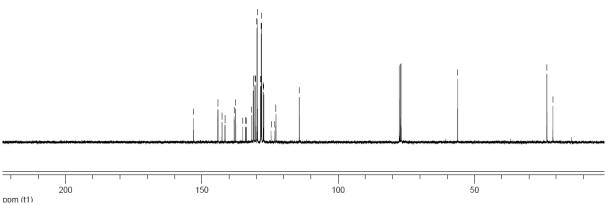


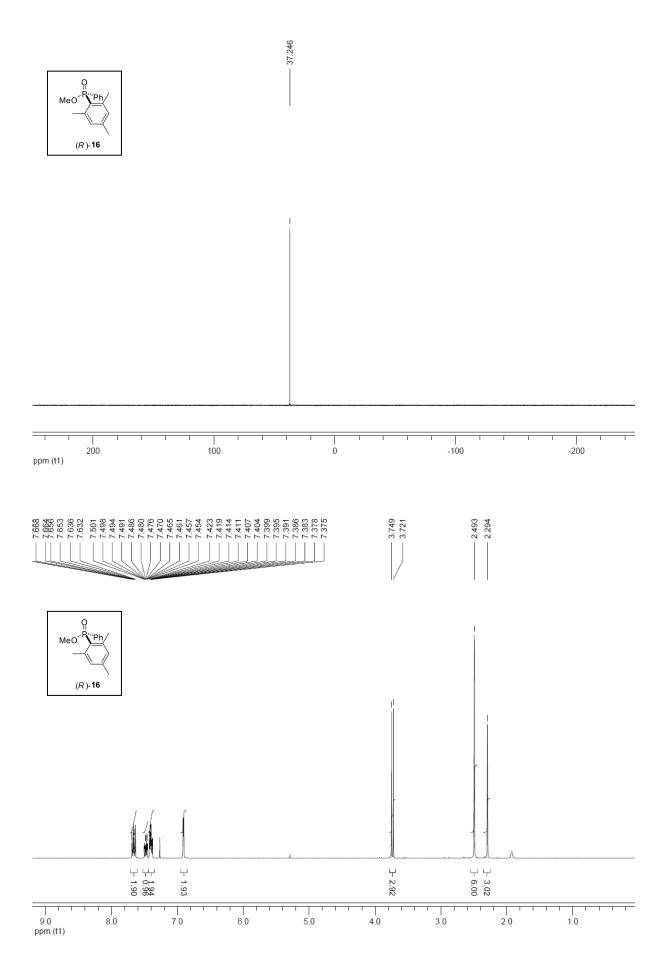


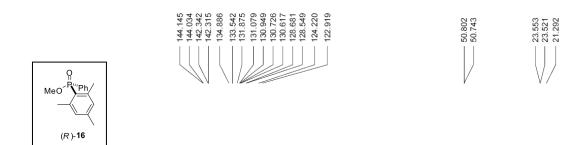


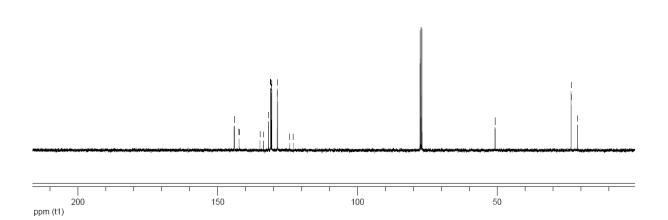
-200

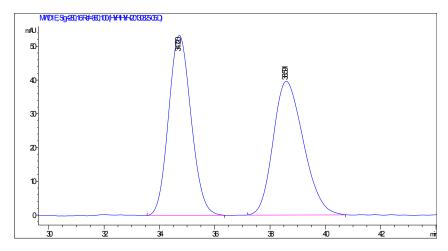

-100

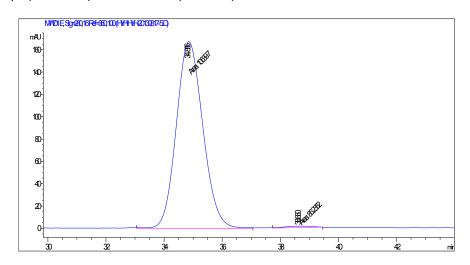



100

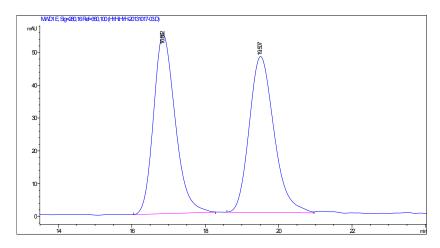

200


ppm (t1)

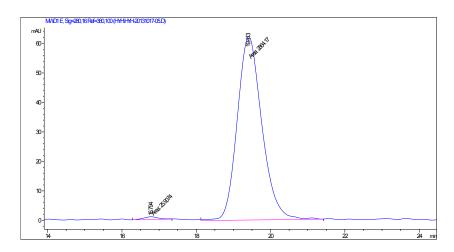




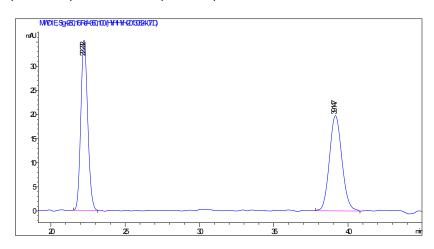
flow = 1.0 ml/m; IPA = 3%, Hexane = 97%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	34.720	3022.2	53.4	50.015
2	38.591	3020.4	39.7	49.985

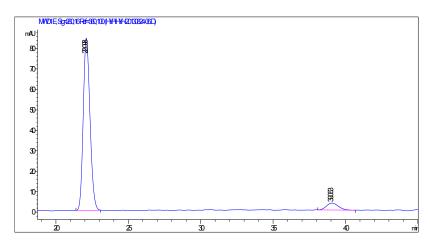
flow = 1.0 ml/m; IPA = 3%, Hexane = 97%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	34.856	10639.7	167.4	99.205
2	38.660	85.2	1.3	0.795

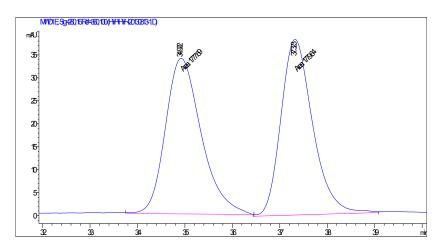
flow = 1.0 ml/m; IPA = 10%, Hexane = 90%; 280 nm; IC


#	Time	Area	Height	Area%
1	16.852	2237.4	54.7	50.089
2	19.507	2229.4	47.5	49.911

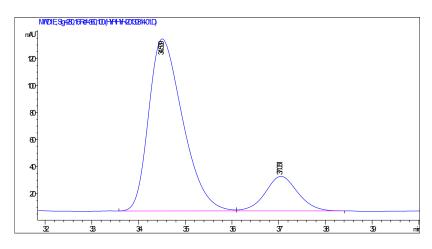
flow = 1.0 ml/m; IPA = 10%, Hexane = 90%; 280 nm; IC


#	Time	Area	Height	Area%
1	16.794	25.9	9.2E-1	0.896
2	19.413	2864.2	62.2	99.104

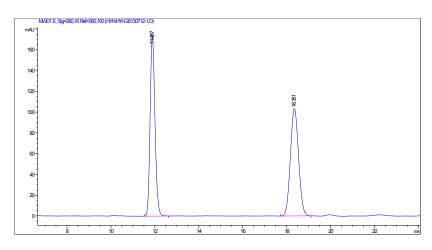
flow = 1.0 ml/m; IPA = 3%, Hexane = 97%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	22.232	1139.5	35.3	49.666
2	39.147	1154.8	19.7	50.334

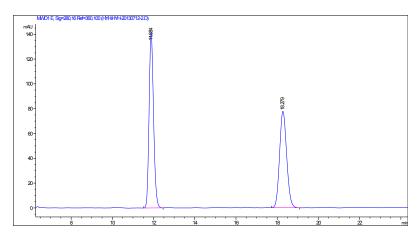
flow = 1.0 ml/m; IPA = 3%, Hexane = 97%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	22.098	2727.2	84.2	93.521
2	39.063	188.9	3.4	6.479

flow = 0.8 ml/m; IPA = 4%, Hexane = 96%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	34.922	1777.7	33.9	49.973
2	37.323	1779.6	38.2	50.027

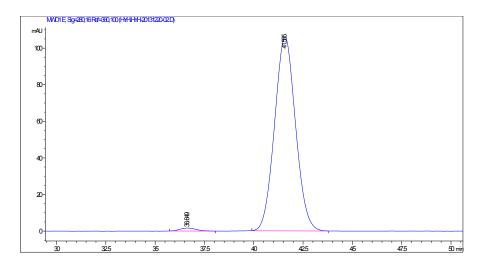
flow = 0.8 ml/m; IPA = 4%, Hexane = 96%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	34.509	6431.1	127.2	83.873
2	37.051	1236.6	25.6	16.127

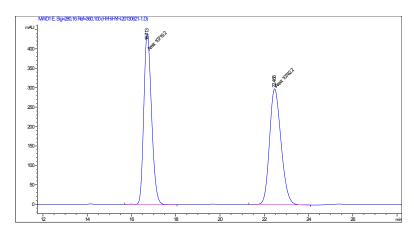
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	11.887	2665.5	173.5	49.903
2	18.351	2675.9	103.4	50.097

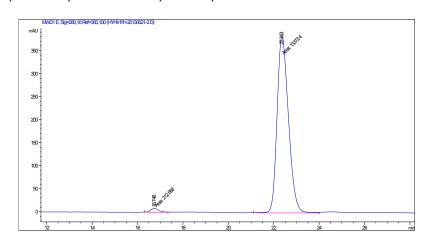
HYH-20130712-2 flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	11.884	2131.5	141.2	53.434
2	18.279	1857.5	77.7	46.566

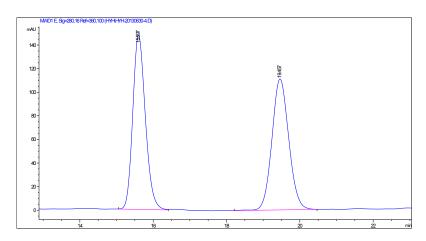
flow = 1.0 ml/m; IPA = 3%, Hexane = 97%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	36.726	5103.2	82.2	50.076
2	42.036	5087.8	70.3	49.924

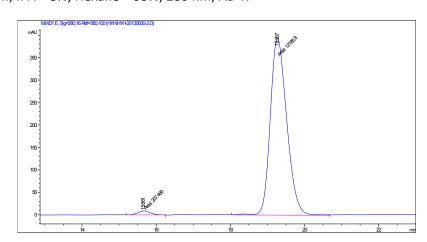
flow = 1.0 ml/m; IPA = 3%, Hexane = 97%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	36.649	95.8	1.7	1.206
2	41.585	7847.8	106	98.794

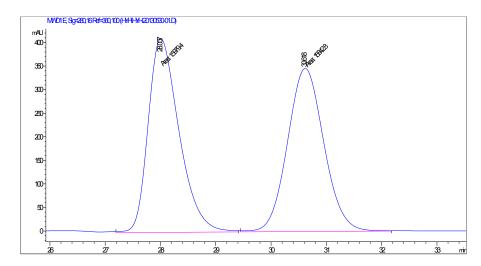
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	16.713	10719.2	441	49.947
2	22.468	10742.2	297.8	50.053

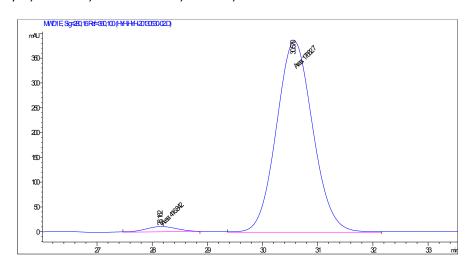
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	16.746	211.5	8.3	1.557
2	22.363	13372.4	382	98.443

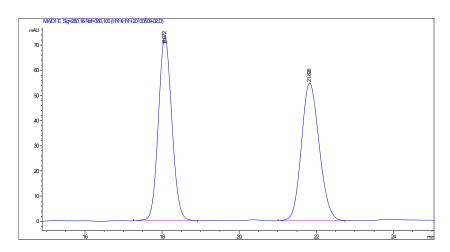
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	15.597	3529.7	147.6	49.920
2	19.457	3541.1	111.1	50.080

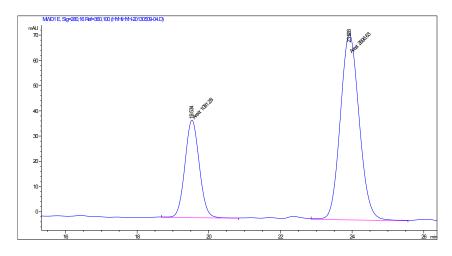
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	15.661	207.5	8.7	1.674
2	19.267	12185.8	394.4	98.326

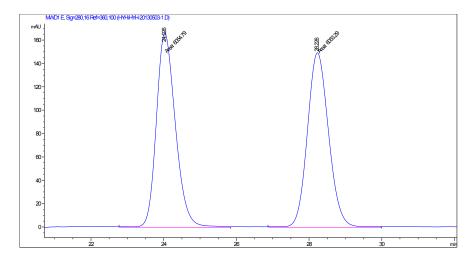
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	28.007	15979.4	411.8	50.215
2	30.618	15842.8	346.3	49.785

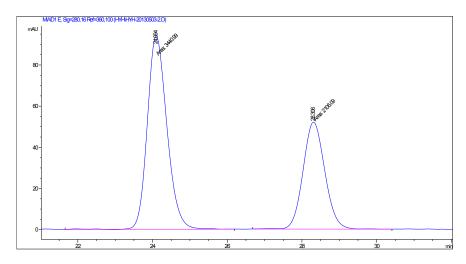
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	28.162	416.8	10.7	2.303
2	30.57	17682.7	385.3	97.697

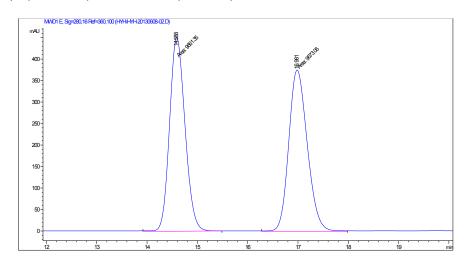
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	18.072	1774.5	73.2	50.181
2	21.826	1761.8	54.8	49.819

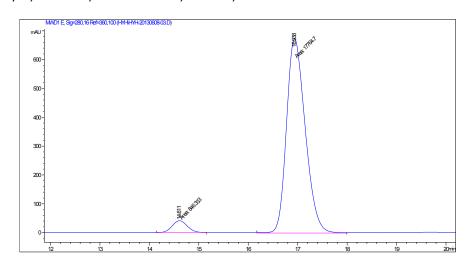
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	19.534	1081.3	38.7	28.621
2	23.928	2696.6	73.5	71.379

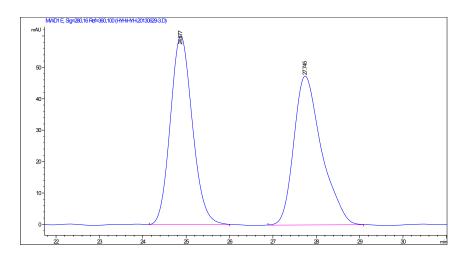
flow = 0.8 ml/m; IPA = 6%, Hexane = 94%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	24.026	6054.8	165.9	50.006
2	28.226	6053.3	149.3	49.994

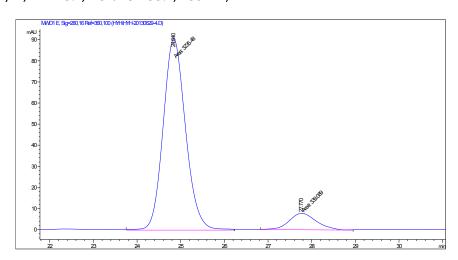
flow = 0.8 ml/m; IPA = 6%, Hexane = 94%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	24.094	3441	94.1	62.032
2	28.306	2106.1	52	37.968

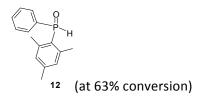
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	14.588	9661.4	450.6	49.970
2	16.981	9673.1	376	50.030

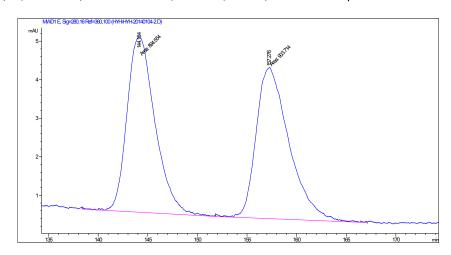
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	14.611	846.3	40.6	4.547
2	16.938	17764.7	674.3	95.453

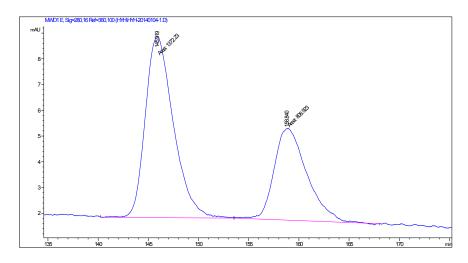
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H



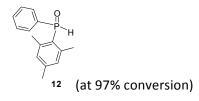
#	Time	Area	Height	Area%
1	24.877	2114.9	60	50.092
2	27.745	2107.1	47.4	49.908


flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H

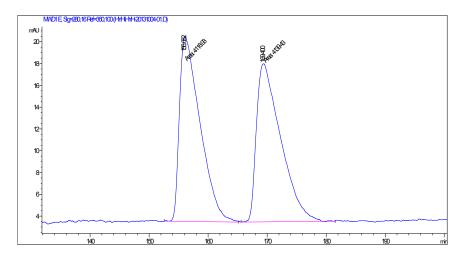
#	Time	Area	Height	Area%
1	24.84	3235.5	90.7	90.514
2	27.77	339.1	7.8	9.486



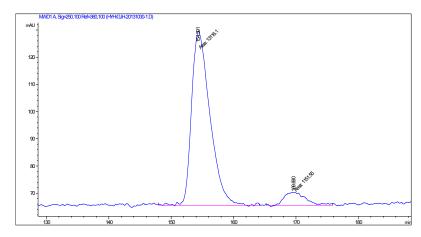
flow = 1.0 ml/m; IPA = 2%, Hexane = 98%; 280 nm; AD-H , racemic sample



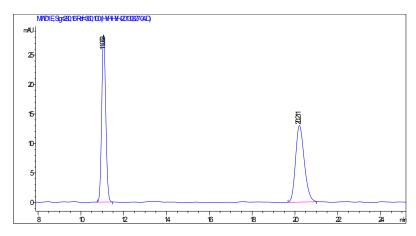
#	Time	Area	Height	Area%
1	144.184	894.6	4.5	49.745
2	157.276	903.7	3.9	50.255


flow = 1.0 ml/m; IPA = 2%, Hexane = 98%; 280 nm; AD-H

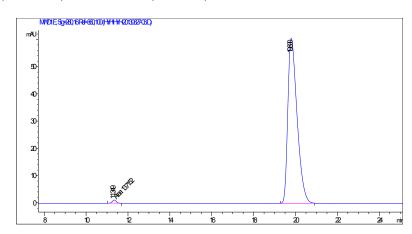
#	Time	Area	Height	Area%
1	145.919	1372.2	7.1	62.913
2	158.84	808.9	3.6	37.087



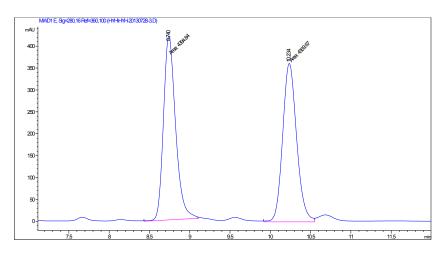
flow = 1.0 ml/m; IPA = 2%, Hexane = 98%; 280 nm; AD-H, racemic sample


#	Time	Area	Height	Area%
1	156.062	4118.9	17	49.876
2	169.4	4139.4	14.5	50.124

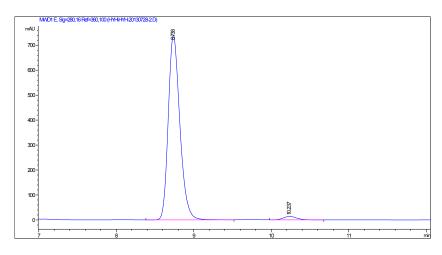
flow = 1.0 ml/m; IPA = 2%, Hexane = 98%; 250 nm; AD-H


#	Time	Area	Height	Area%
1	154.391	13116.1	63.9	91.929
2	169.69	1151.5	4.7	8.071

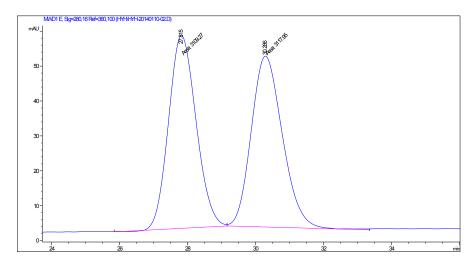
flow = 1.0 ml/m; IPA = 2%, Hexane = 98%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	11.063	371.1	28.4	50.202
2	20.211	368.1	13	49.798

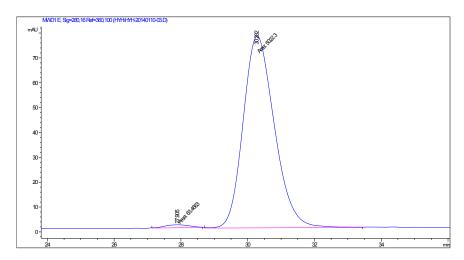
flow = 1.0 ml/m; IPA = 2%, Hexane = 98%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	11.349	13.7	1.1	0.732
2	19.8	1858.9	60.6	99.268

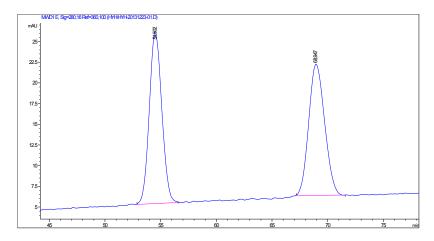
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	8.74	4394.8	420.4	50.144
2	10.234	4369.7	362.1	49.856

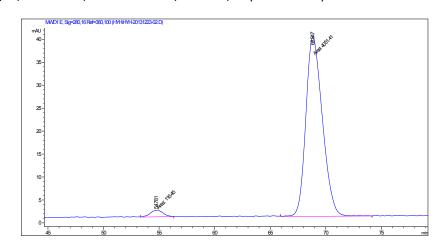
flow = 0.8 ml/m; IPA = 5%, Hexane = 95%; 280 nm; AD-H


#	Time	Area	Height	Area%
1	8.738	7708.7	740.5	97.807
2	10.237	172.8	14.1	2.193

flow = 1.0 ml/m; IPA = 10%, Hexane = 90%; 280 nm; IC


#	Time	Area	Height	Area%
1	27.815	3109.3	55.2	49.930
2	30.286	3117.9	48.9	50.070

flow = 1.0 ml/m; IPA = 10%, Hexane = 90%; 280 nm; IC


#	Time	Area	Height	Area%
1	27.905	63.5	1.2	1.248
2	30.282	5022.3	77.2	98.752

flow = 1.0 ml/m; IPA = 10%, Hexane = 90%; 280 nm; IC

#	Time	Area	Height	Area%
1	54.502	1618	20.8	50.664
2	68.947	1575.6	15.9	49.336

flow = 1.0 ml/m; IPA = 10%, Hexane = 90%; 280 nm; IC (conv = 92%)

#	Time	Area	Height	Area%
1	54.781	116.4	1.5	2.794
2	68.847	4051.4	39.1	97.206