SUPPORTING INFORMATION (PART A)

Facile Bottom-up Synthesis of Coronene-based 3-Fold Symmetrical and Highly Substituted Nanographenes from Simple

 AromaticsQiang Zhang, Hanqing Peng, Guishan Zhang, Qiongqiong Lu, Jian Chang, Yeye Dong, Xianying Shi, and Junfa Wei*

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.

Fax: + 86-029-85307774
E-mail: weijf@snnu.edu.cn

Table of contents

\qquad
2. Preparation of starting materials..S-2
3. Synthesis and characterization of the intermediates and the products...................................S-11
4. X-ray crystallographic analysis of the products..S-27
5. Photophysical properties and thermal stability..S-43

1 General

Unless otherwise mentioned, all commercials were used as received without further purification. THF were distilled from sodium with benzophenone as an indicator. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF were distilled from CaH_{2}. The reactions were monitored using analytical thin layer chromatography (TLC, GF-254). Flash chromatography was performed using silica gel (200-300 mesh) with freshly distilled solvents.
${ }^{1} \mathrm{H}$ NMR (300 MHz), ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra were recorded on a Bruker Avance spectrometers using DSMO- d_{6} or CDCl_{3} as a solvent. ${ }^{13} \mathrm{C}$ NMR (75 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra were recorded on Bruker Avance spectrometers using DSMO- d_{6} or CDCl_{3} as a solvent. Chemical shifts (δ) are reported in ppm, using TMS as an internal standard. Data are presented as follows: chemical shift (ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, brs $=$ broad $)$, coupling constant $J(\mathrm{~Hz})$ and integration. The mass spectra of the starting materials and the intermediates were recorded on a Bruker Avance Mass Spectrometer (maXis, ESI), the mass spectra of the termimal products were recorded on a Bruker Avance spectrometer (microflex, MALDI-TOF). Melting points were uncorrected.

The crystal structure was recorded on an X-ray single crystal diffraction spectrometer (SuperNova) for $\mathbf{4 b}$ and $\mathbf{5 c}$, or an X-ray single crystal diffraction spectrometer (GEMINIE) for 3a and 3t. Ultraviolet and visible spectra were obtained with an ultraviolet and visible spectrometer (TU-1900) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fluorescence spectra were performed on a fluorescence spectrophotometer (CARY ECLIPSE). TG analyses were performed on athermal gravimetric analyzer (Q600-SDT) with a heating rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ under N_{2}.

2 Preparation of arylboronic acids and arylaldehydes

The starting material 1,3,5-tri(bromomethyl)benzene, some benzenebornic acids and most benzaldehydes are commercial availible or preparable according to the literature method. The arylboronic acids and arylaldehydes that are not commercial available or too expensive were synthesized here.

2.1 Preparation of arylboronic acids

Synthetic routes of arylboronic acids:

Scheme S1: Routes used for the preparation of arylboronic acids

2.1.1 The preparation of 1,2-dialkoxybenzenes

Scheme S2: The synthesis of 1,2-dialkoxybenzenes

1,2-Dialkoxybenzenes were prepared by alkylation of catechol with appropriate alkylbromides according to the literature method ${ }^{[1]} \mathrm{A}$ mixture of catechol ($11 \mathrm{~g}, 100 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.0 equiv), $\mathrm{KI}(5 \mathrm{~mol} \%)$, and 1-bromoalkane (2.2 equiv) in 100 mL dry N, N-dimethylformide (DMF) was stirred at $95^{\circ} \mathrm{C}$ (oil temperature) under Ar atmosphere for 72 h . After cooling to room temperature, the resulting mixture was poured into 500 mL $\mathrm{H}_{2} \mathrm{O}$ and was extracted with petroleum ether (PE). The combined organic layer was washed by water and dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue was purified by column chromatography.

1,2-Dibutoxybenzene was prepared from catechol and 1-bromobutane and purified by flash column chromatography (silica gel, PE:DCM $=6: 1, \mathrm{v} / \mathrm{v}$) to give a colorless liquid (yield 82%). The observed characterization data was consistent with that previously reported in the literature. ${ }^{[2]}{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 6.89(\mathrm{~s}, 4 \mathrm{H}), 4.02-3.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.77-1.85(\mathrm{~m}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.45-1.55(\mathrm{~m}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $0.94-1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3,121.0,114.2,69.0,31.4,19.3,13.9$.

1,2-Bis(hexyloxy)benzene was prepared from catechol and 1-bromohexane and purified by flash column chromatography (silica gel, $\mathrm{PE}: \mathrm{DCM}=6: 1, \mathrm{v} / \mathrm{v}$); Colorless oil (yield 89%). The observed characterization data was consistent with that previously reported in the literature. ${ }^{[2] ~ 1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 6.89(\mathrm{~s}, 4 \mathrm{H}), 4.04-3.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.33$ (brs, 12H), $0.94-0.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3,121.0,114.2,69.3,31.6,29.3,25.7,22.6$, 14.0 .

1,2-Bis(octyloxy)benzene was prepared from catechol and 1-bromooctane and purified by flash column chromatography (silica gel, PE:DCM = 6:1, v/v); Colorless oil (yield 90%). The observed characterization data was consistent with that previously reported in the literature. ${ }^{[2] ~ 1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.90(\mathrm{~s}, 4 \mathrm{H}), 4.03-3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.31$ (brs, 20H),

```
0.91-0.88 (brs, 6H); ' }\mp@subsup{}{}{13}\textrm{C}\mathrm{ NMR (75 MHz, CDCl }\mp@subsup{)}{3}{}\mathrm{ ): }\delta149.3, 121.0, 114.2, 69.3, 31.9, 29.5, 29.4, 29.3, 26.1, 22.7
``` 14.1.


1,2-Bis(dodecyloxy)benzene was prepared from catechol and 1-bromododecane and purified by column chromatography (silica gel, PE then PE:DCM \(=6: 1\), v/v). Waxy solid (yield 87 \%); Mp 44-46 \({ }^{\circ} \mathrm{C}\left(\mathrm{Mp} \mathrm{47-49}{ }^{\circ} \mathrm{C}\right.\), lit. \({ }^{[5]}\)); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 6.89\) (brs, \(4 \mathrm{H}), 4.01-3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.26(\mathrm{brs}, 36 \mathrm{H}), 0.91-0.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 149.3,121.0,114.2,69.3,31.9,29.7,29.6,29.5,29.4,26.1,22.7,14.1\).

\subsection*{2.1.2 The preparation of the aryl bromides with two identical alkoxy groups}

The aryl bromides with two identical alkoxy groups were prepared by bromination of the 1,2-dialkoxybenzenes with NBS according to the literature method. \({ }^{[3]}\)

4-Bromo-1,2-bis(hexyloxy)benzene. A 500 mL three necked round-bottom flask equipped with a magnetic stirrer, \(\mathrm{SiO}_{2}(9.00 \mathrm{~g})\) and \(\mathrm{NBS}(3.36 \mathrm{~g}, 18.86 \mathrm{mmol})\) were added to a solution of 1,2-bis(hexyloxy)benzene \((4.99 \mathrm{~g}, 17.92 \mathrm{mmol})\) in dry DCM \((180 \mathrm{~mL})\). After vigorous stirring at room temperature for 8 h , this mixture was filtered to remove \(\mathrm{SiO}_{2}\), concentrated under reduced pressure to \(c a .50 \mathrm{~mL}\), and washed with saturated aqueous \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(50 \mathrm{~mL})\). The aqueous layer was extracted with DCM and the combined organic layers were dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=6: 1\), \(\mathrm{v} / \mathrm{v}\)) to give a colorless oil (yield \(97 \%\)). The observed characterization data was consistent with that previously reported in the literature. \({ }^{[3]}{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}\), \(4 \mathrm{H}), 1.80^{-1.27}(\mathrm{~m}, 16 \mathrm{H}), 0.86-0.89(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 150.1,148.4,123.5,117.0,115.2,112.8\), 69.6, 69.4, 31.6, 31.5, 29.2, 29.1, 25.7, 22.6, 14.0. HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BrO}_{2}+\mathrm{Na}\right), 379.1249\), found: 379.1251.

4-Bromo-1,2-dibutoxybenzene was prepared from 1,2-bis(octyloxy)benzene according to the similar procedure to 4 -Bromo-1,2-bis(hexyloxy)benzene. The resulting residue was purified by column chromatography (silica gel, PE) to give a colorless oil (yield \(96 \%\)). \({ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) : \(\delta 6.99-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.73(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.00-0.95(\mathrm{~m}\), 6 H) \({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\) 150.1, 148.5, 123.5, 117.0, 115.3, 112.8, 69.2, 69.1, 31.3, 31.2, 19.2, 13.86.

HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrO}_{2}+\mathrm{Na}\right), 323.0623\), found: 323.0625.

4-Bromo-1,2-bis(octyloxy)benzene was prepared from 1,2-bis(octyloxy)benzene according to the similar procedure to 4-bromo-1,2-bis(hexyloxy)benzene. The resulting residue was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=6: 1, \mathrm{v} / \mathrm{v}\)) to give a colorless oil (yield \(92 \%\)). The observed characterization data was consistent with that previously reported in the literature. \({ }^{[4] ~}{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.06-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.73(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.29(\mathrm{~m}\), \(24 \mathrm{H}), 0.87-0.89(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 150.1,148.4,123.5,117.0,115.2,112.8,69.6,69.4,31.6\), 31.5, 29.2, 29.1, 25.7, 22.6, 14.0. HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BrO}_{2}+\mathrm{Na}\right), 435.1875\), found: 435.1878 .

4-Bromo-1,2-bis(dodecyloxy)benzene was prepared according to the similar procedure from 1,2-bis(dodecyloxy)benzene to 4-bromo-1,2-bis(hexyloxy)benzene. The crude product was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=15: 1, \mathrm{v} / \mathrm{v}\)) to give a needlelike solid (yield \(91 \%\)); Mp \(27-28^{\circ} \mathrm{C}\); The observed characterization data as consistent with that previously reported in the literature. \({ }^{[1] ~}{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.75(\mathrm{~m}, 1 \mathrm{H})\), 3.98-3.92 (m, 4H), 1.85-1.74 (m, 4H) 1.48-1.33 (brs, 36 H\(), 0.90-0.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (75 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 150.1,148.4,123.5,117.0,115.2,112.8,69.6,69.4,31.9,29.7,29.6,29.4,29.3,29.2,26.0,22.7,14.1 ;\) HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{30} \mathrm{H}_{53} \mathrm{BrO}_{2}+\mathrm{Na}\right)\), 547.3127, found: 547.3124.

\subsection*{2.1.2 The preparation of aryl bromide with two different alkoxy groups: 4-bromo-1-butoxy-2-methoxybenzene}

Scheme S3: The synthesis of 4-bromo-1-butoxy-2-methoxybenzene

A 500 mL three necked round-bottom flask equipped with a magnetic stirrer, a T -shaped \(\mathrm{N}_{2}\) inlet and a condenser was charged with 4-bromo-2-methoxyphenol (\(20.3 \mathrm{~g}, 0.10 \mathrm{~mol}\)), \(\mathrm{K}_{2} \mathrm{CO}_{3}(20.7 \mathrm{~g}, 150 \mathrm{mmol}), \mathrm{KI}(0.85 \mathrm{~g}, 5\) mmol), 1-bromobutane (\(16.3 \mathrm{~g}, 0.12 \mathrm{~mol}\)) and 300 mL dry acetone. The mixture was refluxed for 48 h with stirring under Ar atmosphere. The resulting mixture was filtered, concentrated to \(1 / 3\) volume and poured into water and extracted with PE \((3 \times 150 \mathrm{~mL})\). The combined organic layer was washed by water and dried with \(\mathrm{MgSO}_{4}\). The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=20: 1\),
\(\mathrm{v} / \mathrm{v}\)) to give a light yellow oil (22.3 g , yield \(86 \%\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.72(\mathrm{~m}\), \(1 \mathrm{H}), 4.00-3.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}\), \(2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 150.3,147.9,123.3,115.2,114.3,112.6,69.0,56.2,31.2,19.2,13.8 ; \mathrm{HR}-\mathrm{MS}\) (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{2}+\mathrm{Na}\right)\), 281.0153, found: 281.0148.

\subsection*{2.1.3 The preparation of arylboronic acids}

Substituted phenylboronic acids were synthesized from the corresponding arylbromides and triisopropyl borate according to the literature procedure \({ }^{[5]}\) with a slight modification.

3,4-Dibutoxyphenylboronic acid. To a 500 mL three necked, round bottomed flask were fitted with a thermometer, a magnetic stirrer, and a pressure equalizing dropping funnel. The flask was charged with 4-bromo-1,2- bis(butoxy)benzene (\(30.1 \mathrm{~g}, 100 \mathrm{mmol}\)), triisopropyl borate \((30.0 \mathrm{~mL}, 130 \mathrm{mmol})\) and dry THF \((350 \mathrm{~mL})\) under Ar atomosphere. The reaction mixture was cooled to \(\mathrm{ca} .-80^{\circ} \mathrm{C}\) and \(n\)-BuLi/hexane (\(2.5 \mathrm{M}, 52 \mathrm{~mL}, 130 \mathrm{mmol}\)) was added dropwise over 1.5 h . Upon completion of the addition, the reaction mixture was stirred at \(-80^{\circ} \mathrm{C}\) for 2 h and then allowed to warm to room temperature over 8 h . The resulting mixture was acidified with \(6 \mathrm{~N} \mathrm{HCl}(26 \mathrm{~mL})\) and stirred for overnight. After being concentrated to \(1 / 3\) volume, the mixture was poured into water, extracted with diethyl ether and washed with water, dried over \(\mathrm{MgSO}_{4}\), followed by filtration under rotary evaporation. Then, cold hexane was added and the precipitate filtered to give a white solid (22.9 g , yield \(86 \%\)). The product was used without further purification in the next step; The analytical sample was obtained by recrystallization from water with a few drops of ethyl ether to give a white solid; Mp \(160-162{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO- \(d_{6}\)): \(\delta 7.83\) (brs, 2 H), 7.37-7.33 (m, 2 H), 6.92-6.88(m, 1H), 3.96-3.94(m, 4 H), 1.70-1.60(m, 4H), 1.46-1.43(m, 4H), \(0.93(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (75 MHz, DMSO- \(d_{6}\)): \(\delta 155.7,152.9,133.1,124.8,117.9,73.3,72.9,36.2,36.1,24.0,18.9\).

4-Butoxy-3-methoxyphenylboronic acid was obtained as a white solid according to the general procedure from 4-bromo-1-butoxy-2-methoxybenzene, triisopropyl borate, \(\mathrm{n}-\mathrm{BuLi} /\) hexane \((2.5 \mathrm{M})\) in dry THF. The product was used without further purification; The analytical sample was obtained by recrystallization from water/ethyl ether (yield \(83 \%\)); Mp \(161-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\)
 \(2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.91(\mathrm{t}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (75 MHz , DMSO- \(\left.d_{6}\right): \delta 150.1,148.1,127.7,117.6,112.1,67.6,55.4,30.8,18.7,13.7\).

3,4-Bis(hexyloxy)phenylboronic acid was prepared according to the same procedure to 3,4-dibutoxyphenylboronic acid from 4-bromo-1,2-bis(hexyloxy) benzene, triisopropyl borate, \(n\) - \(\mathrm{BuLi} /\) hexane \((2.5 \mathrm{M})\) in dry THF. The product was used without further purification; The analytical sample was recrystallized from water/ethyl ether to give a white solid (yield \(83 \%\)); Mp \(126-128{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{DMSO}^{-} d_{6}\)): \(\delta 7.85\) (s, 2 H), 7.41-7.37 (m, 2 H), 6.93-6.96(m, 1 H), 4.02-3.98(m, 4 H), 1.77-1.72(m, 4H), 1.51-1.30(m, 12H), \(0.93(\) brs, 6 H\() ;{ }^{13} \mathrm{C}\) NMR (75 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 153.3,148.4,130.0,120.7,112.6,69.6,68.8,31.6,31.5,29.4,29.1,25.8,25.7,22.6,14.0\).

3,4-Bis(octyloxy)phenylboronic acid \(^{[6]}\) The above procedure was failed to obtain the arylboronic acids in pure form from arylbromides with long-aliphatic chains. We therefore revised the synthetic procedure by changing the loading sequence of the reactants and succeeded in access this compound. The detailed preparation is as follows: To a 500 mL three necked, round bottomed flask were fitted with a thermometer, a magnetic stirrer, and a pressure equalizing dropping funnel. The flask was charged with dry THF (300 mL) and cooled to \(-80^{\circ} \mathrm{C}\) under Ar atmosphere with stirring. Then, \(n\)-BuLi/hexane (\(2.5 \mathrm{M}, 26 \mathrm{~mL}, 65 \mathrm{mmol}\)) was added dropwise and the resulting mixture was allowed to stir at \(-80^{\circ} \mathrm{C}\) for 30 min . To the resulting solution maintained at \(-80^{\circ} \mathrm{C}\) were added dropwise a solution of 4-bromo-1,2-bis(octyloxy)benzene (\(10.3 \mathrm{~g}, 25 \mathrm{mmol}\)) and triisopropyl borate (\(7.5 \mathrm{~mL}, 6.1 \mathrm{~g}, 32.5 \mathrm{mmol}\)) in dry THF \((50 \mathrm{~mL})\) over 2 h from the dropping funnel. After the addition was complete, the reaction mixture was stirred at -80 \({ }^{\circ} \mathrm{C}\) for 2 h and then allowed to warm to room temperature over 8-10 h . The resulting mixture was acidified with 6 N \(\mathrm{HCl}(26 \mathrm{~mL})\) and stirred for overnight. Similar workup gave a white solid (6.5 g , yield \(69 \%\)). The product was used without further purification; analytical sample was recrystallized from water/ethyl ether; Mp \(120-122{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO- \(d_{6}\)): \(\delta 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.92(\mathrm{~m}, 4 \mathrm{H}) 1.70-1.60(\mathrm{~m}\), \(4 \mathrm{H}), 1.46-1.23(\mathrm{~m}, 20 \mathrm{H}), 0.96-0.91(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 153.3,148.4,130.0,120.9,112.7,69.6\), \(68.9,31.8,29.5,29.4,29.3,29.2,29.1,26.0,22.7,14.1\).

3,4-Bis(dodecyloxy)phenylboronic acid \({ }^{[7]}\) was prepared according to the revised procedure for 3,4-bis(octyloxy)phenylboronic acid. The crude product was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{EA}=3: 1\)). White solid (yield \(57 \%\)); Mp \(124-126{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO- \(d_{6}\)): \(\delta 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.92(\mathrm{~m}\), \(4 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.27(\mathrm{~m}, 36 \mathrm{H}), 0.96-0.91(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.3,148.5,130.0\), \(120.6,112.6,69.6,68.9,31.9,29.8,29.7,29.6,29.5,29.4,29.3,29.2,26.1,22.7,14.1\).

\subsection*{2.2 The synthesis of 3,4-dialkoxybenzaldehydes}

3,4-Dialkoxybenzaldehydes used here were conveniently prepared via a alkylation of 3,4-dihydroxybenzaldehyde or 4-hydroxy-3-methoxybenzaldehyde according to the literature procedure. \({ }^{[8]}\)

\subsection*{2.2.1 General procedure for the synthesis of 3,4-dialkoxybenzaldehyde}

Scheme S4: The synthesis of 3,4-dialkoxybenzaldehyde

A mixture of 3,4-dihydroxybenzaldehyde (\(1.38 \mathrm{~g}, 10 \mathrm{mmol}\)), anhyd. \(\mathrm{K}_{2} \mathrm{CO}_{3}(5.52 \mathrm{~g}, 40 \mathrm{mmol})\), and the appropriate \(n\)-bromoalkane (22 mmol) were taken in dry DMF \((20 \mathrm{~mL})\) and heated at \(85^{\circ} \mathrm{C}\) for 24 h under nitrogen atmosphere. The reaction mixture was poured into ice-water and extracted with dichloromethane. The combined extracts were washed with water and brine, dried over anhyd \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated. The crude product was purified by column chromatography (silica gel, \(\mathrm{PE} / \mathrm{DCM}\)) to give the desired product.

3,4-Dibutoxybenzaldehyde was prepared according to the general procedure described above using 3,4-dihydroxybenzaldehyde and 1-bromobutane and purified by flash column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=6: 1, \mathrm{v} / \mathrm{v}\)). Colorless solid (\(89 \%\) yield); \(\mathrm{Mp} 34-36{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}\), \(1 \mathrm{H}) ; 4.11-4.03(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta\) 191.0, 154.7, 149.5, 129.9, 126.6, 111.8, 110.9, 68.8, 31.1, 31.0, 19.2, 13.8; HR-MS (ESI): m/z calcd for \(\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\right.\) +Na), 273.1467, found: 273.1470.
 described above using 3,4-dihydroxybenzaldehyde and 1-bromohexane and purified by flash column chromatography (silica gel, \(\mathrm{PE} / \mathrm{DCM}=6: 1, \mathrm{v} / \mathrm{v}\)). Colorless solid (yield 91 \%); Mp \(43-44{ }^{\circ} \mathrm{C}\) (lit. \({ }^{[9]} 40-42{ }^{\circ} \mathrm{C}\)); The observed characterization data was consistent with that previously reported in the literature. \({ }^{[10]}{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H})\),
 (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 191.0,154.7,149.5,129.9,126.6,1118,111.0,69.1,31.5,29.0,28.9,25.7,25.6,22.6,14.0\). HR-MS (ESI) \(m / z\) : calcd for \(\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right), 329.2093\), found: 329.2096.

3,4-Bis(octyloxy)benzaldehyde was prepared according to the general procedure described above using 3,4-dihydroxybenzaldehyde with 1-bromooctane and purified by flash column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=6: 1\), \(\mathrm{v} / \mathrm{v}\)). Colorless solid (yield \(87 \%\)); The observed characterization data was consistent with that previously reported in the literature. \({ }^{[11]} \mathrm{Mp} 48-50{ }^{\circ} \mathrm{C}\left(\right.\) lit. \(\left.{ }^{[9]} 48-51{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H})\), 7.00-6.93 (m, 1H), 4.10-4.00 (m, 4H), 1.87-1.83(m, 4H), 1.50-1.53 (m, 16H), 0.91-0.88 (m, 6H); \({ }^{13} \mathrm{C}\) NMR (75 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 190.4,154.2,149.0,129.4,126.0,111.3,110.6,68.7,68.6,31.3,28.8,28.7,28.6,28.5,25.5,25.4\), 22.2. 13.6. HR-MS (ESI) \(m / z\) : calcd for \(\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right)\), 385.2719, found: 385.2719.

3,4-Bis(dodecyloxy)benzaldehyde was prepared according to the general procedure described above using 3,4-dihydroxybenzaldehyde with 1-bromooctane and purified by flash column chromatography (silica gel, \(\mathrm{PE}: \mathrm{EA}=4: 1, \mathrm{v} / \mathrm{v}\)). Colorless solid (yield \(87 \%\)); The observed characterization data was consistent with that previously reported in the literature. \({ }^{[11]} \mathrm{Mp}\) \(69-70{ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{[9]} 62-65{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 32 \mathrm{H}), 0.90-0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.0,154.7,149.5,129.9,126.5,111.8,111.1,69.2,32.1,29.9,29.8,29.7,29.6,29.4\), 29.1, 29.0, 26.2, 26.0, 25.9, 22.7, 14.1; HR-MS (ESI) m/z: calcd for \(\left(\mathrm{C}_{99} \mathrm{H}_{168} \mathrm{O}_{6}+\mathrm{Na}\right), 1476.2739\) found: 1476.2697.

\subsection*{2.2.2 The preparation of 3,4-dialkoxybenzaldehyde with different alkoxy groups}

4-Butoxy-3-methoxybenzaldehyde was prepared according to the general procedure described above using 4-hydroxy-3-methoxybenzaldehyde (vanillin) (\(7.6 \mathrm{~g}, 50 \mathrm{mmol}\)), 1-bromobutane (10.2 g, 75 mmol), \(\mathrm{K}_{2} \mathrm{CO}_{3}(10.4 \mathrm{~g}, 75 \mathrm{mmol})\) and in dry \(\mathrm{Me}_{2} \mathrm{CO}(200 \mathrm{~mL})\), and purified by flash column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=10: 1, \mathrm{v} / \mathrm{v}\)) to give a colorless solid (9.68 g , yield \(93 \%\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}) ; 4.14-4.00(\mathrm{~m}, 2 \mathrm{H})\),
 \(190.9,154.2,149.9,129.9,126.8,111.4,109.3,68.9,56.0,31.0,19.1,13.8 ;\) HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}\right.\) +Na), 231.0992, found: 231.0997.

\subsection*{2.2.3 The synthesis of 3,6-di-tert-butylphenanthrene-9-carbaldehyde}

(E)-1,2-Bis(4-tert-butylphenyl)ethane was prepared via McMurry
coupling reaction of 4-tert-butylbenzaldehyde following the procedure of Thallaplly, P. K. et al \({ }^{[12]}\).To a stirred suspension of zinc powder \((147.2 \mathrm{~g}, 2.25 \mathrm{~mol})\) in dry THF \((700 \mathrm{~mL}), \mathrm{TiCl}_{4}(98.3 \mathrm{~mL}, 0.9 \mathrm{~mol})\) was added slowly at \(-10^{\circ} \mathrm{C}\). Then, a solution of 4-tert-butylbenzaldehyde (\(48.6 \mathrm{~g}, 0.3 \mathrm{~mol}\)) in of dry THF (100 mL) was added dropwise at \(0^{\circ} \mathrm{C}\), and then the mixture was refluxed for 20 h . The solution was quenched with 2 L water, \(\mathrm{HCl}(12 \mathrm{~N}, 50 \mathrm{~mL})\) was added, filtered, the residue was extracted with \(\mathrm{CHCl}_{3}(300 \mathrm{~mL})\) using Soxhlet extractor. And concentrated and washed with EtOH to afford a white solid (yield \(39.9 \mathrm{~g}, 91 \%\)); \(\mathrm{Mp} 181{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.\)): \(\delta 7.47-7.45\) \((\mathrm{d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.40-7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.6\), 134.8, 127.7, 126.1, 125.6, 34.6, 31.3; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{22} \mathrm{H}_{28}: 292.0\left(\mathrm{M}^{+}\right)\), found: 292.2.

3,6-Di-tert-butylphenanthrene. \({ }^{[13]}\) To a large immersion photolysis vessel equipped with a magnetic stir bar were added cyclohexane (900 mL), trans-4,4'-di-\(t\)-butylstilbene (\(876 \mathrm{mg}, 3.0 \mathrm{mmol}\)), and iodine (\(914 \mathrm{mg}, 3.6 \mathrm{mmol}\)). This solution was purged with Ar for 20 min . Propylene oxide (80 mL) was added to the purged mixture, and the immersion lamp was inserted into the photolysis vessel. The reaction mixture was subjected to UV light for 4 h . The reaction mixture was washed with \(10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 80 \mathrm{~mL})\), deionized water \((3 \times 50 \mathrm{~mL})\) and brine \((40 \mathrm{~mL})\). The organic layer was dried over \(\mathrm{MgSO}_{4}\), filtered, and concentrated under reduced pressure. The crude solied was absorbed onto silica gel purified using column chromatography with hexanes as the eluent. The desired product was obtained as a white solid (509 mg , yield \(88 \%\)); Mp 94-95 \({ }^{\circ} \mathrm{C}\) (lit. \(93-94{ }^{\circ} \mathrm{C}^{[14]}\)); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 8.72\) \((\mathrm{s}, 2 \mathrm{H}), 7.86-7.68(\mathrm{~m}, 6 \mathrm{H}), 1.54(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,130.2,130.0,128.3,125.8,124.7\), 117.9, 35.2, 31.5; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{22} \mathrm{H}_{26}\) : 290.2 (\(\mathrm{M}^{+}\)), found: 290.2.

3,6-Di-tert-butylphenanthrene-9-carbaldehyde. A 250 mL flask equipped with a magnetic stirrer was charged with 3,6-di-tert-butylphenanthrene (\(3.63 \mathrm{~g}, 12.5 \mathrm{mmol}\)) and 150 mL of dry DCM . The solution was cooled to \(-5^{\circ} \mathrm{C}\) with stirring. After 15 min , \(\mathrm{TiCl}_{4}(2.75 \mathrm{~mL}, 25 \mathrm{mmol})\) was added. Then dichloromethyl methyl ether \((1.13 \mathrm{~mL}, 15\) mmol) in 50 mL dry DCM was added dropwise and stirred at \(-5^{\circ} \mathrm{C}\) for 2 h and at room temperature for 20 h . Upon addition of 50 mL cold water, the resulting mixture was stirred for 2 h and extracted with DCM . The organic layer was washed with water and saturated \(\mathrm{NaHCO}_{3}\), dried over anhyd. \(\mathrm{MgSO}_{4}\), filtered, and rotoevaporated to dryness. The residue was purified by column chromatography (\(\mathrm{PE}: \mathrm{DCM}=3: 1\)) to give a brown oil (3.56 g , yield \(89 \%\)) and further recrystallized from EtOH to give a light yellow solid (3.1 g , yield \(78 \%\)); Mp 112-114 \({ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (400 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 9.17-9.15(\mathrm{~d}, 1 \mathrm{H}), 8.57(\mathrm{t}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.56(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\)

\section*{3 Synthesis and characterization of the intermediates and the products}

Scheme S5: The synthesis of TBBs

\subsection*{3.1 The synthesis of \(\mathbf{1 , 3 , 5}\)-tri(3,4-dialkoxybenzyl)benzenes (TBBs) \({ }^{[15]}\)}

A mixture of arylboronic acid, \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) in 40 mL acetone-water (1:1) was stirred at room temperature until it became homogeneous. Then, it was cooled in an ice bath and degassed by bubbling Ar for 15 min . To this mixture 1,3,5-tris(bromomethyl)benzene and \(\mathrm{PdCl}_{2}\) was added at \(0^{\circ} \mathrm{C}\) and stirred at room temperature for 12 h and \(37-38^{\circ} \mathrm{C}\) for 3 days under argon atmosphere. After completion of the reaction (monitored by TLC), acetone was removed under reduced pressure and the product was extracted with diethyl ether, dried with anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). Removal of the ether on a rotory evaporator furnished the crude product, which was further purified by column chromatography (silica gel).

\(2 a\)

NMR (300 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 6.85(\mathrm{~s}, 3 \mathrm{H}), 6.79-6.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H})\), 6.70-6.67 (d, \(J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 18 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}) ;\)
\({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 148.8,147.3,141.5,133.7,127.1,120.7\),
112.2, 111.2, 55.8, 55.7, 41.3; HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{6}+\mathrm{Na}\right) 551.2410\), found 551.2398.

2b

1,3,5-Tris(3,4-dibutoxybenzyl)benzene (2b) was prepared from 3,4-dibutoxyphenylboronic acid and 1,3,5-tris(bromomethyl)benzene and purified by column chromatography (silica gel, PE:DCM \(=2: 1\), v/v). White solid (yield \(81 \%\)); Mp \(57-58{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\) \(6.84(\mathrm{~s}, 3 \mathrm{H}), 6.79-6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 3 \mathrm{H}), 6.65-6.63(\mathrm{~d}, J=\) \(8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 12 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 12 \mathrm{H})\), \(1.55-1.46(\mathrm{~m}, 12 \mathrm{H}), 0.99-0.95(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\) \(149.1,147.5,141.5,134.0,127.2,121.0,115.0,114.1,69.2,68.9,41.3\), 31.5, 19.3, 13.9; HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{O}_{6}+\mathrm{Na}\right) 803.5214\), found 803.5210.

2c

1,3,5-Tris(3,4-bis(hexyloxy)benzyl)benzene (2c) was prepared from 3,4-bis(hexyloxy)phenylboronic acid and 1,3,5-tris(bromomethyl)benzene and purified by column chromatography (silica gel, PE:EA \(=20: 1, \mathrm{v} / \mathrm{v}\)). White solid (yield 78 \%); Mp \(58-59{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 6.84\) (s, 3H), 6.79-6.76 (d, \(J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 3 \mathrm{H}), 6.65-6.62(\mathrm{~d}\), \(J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 12 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 1.82-1.75(\mathrm{~m}\), \(12 \mathrm{H}), 1.35-1.33(\mathrm{~m}, 24 \mathrm{H}), 0.93-0.88(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (300
\(\mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 149.1,147.5,141.5,134.0,127.2,121.0,115.0,114.1,69.5,69.2,41.3,31.7,29.4,25.8,22.6,14.0\); HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{O}_{6}+\mathrm{Na}\right) 971.7105\), found 971.7085 .

2d
1,3,5-Tris(3,4-bis(octyloxy)benzyl)benzene (2d) was prepared from 3,4-bis(octyloxy)phenylboronic acid and 1,3,5-tri(bromomethyl)benzene and purified by column chromatography (silica gel, PE:EA \(=30: 1, \mathrm{v} / \mathrm{v}\)) to give a white solid (yield \(72 \%\)); Mp \(53-54{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (400 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 6.83(\mathrm{~s}, 3 \mathrm{H}), 6.78-6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.67(\mathrm{~s}\), \(3 \mathrm{H}) 6.64-6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 12 \mathrm{H}), 3.81\) (s, 6H), 1.83-1.74 (m, 12H), 1.33-1.28 (m, 48H), 0.90-0.87
(m, 18H); \({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 149.2,147.6,141.5,134.0,127.2,121.1,115.1,114.3,69.5,69.3,41.3\),
31.8, 29.5, 29.3, 26.1, 22.7, 14.1; HR-MS (ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{75} \mathrm{H}_{120} \mathrm{O}_{6}+\mathrm{Na}\right) 1139.8983\), found 1139.8961 .

1,3,5-tris(3,4-bis(dodecoxy)benzyl)benzene (2e) was prepared from 3,4-bis(dodecyloxy)phenylboronic acid and 1,3,5-tris(bromomethyl)benzene and purified by column chromatography (silica gel, PE:EA \(=10: 1, \mathrm{v} / \mathrm{v}\)) and recrystallization from EtOH. Brownish solid (64 \%); Mp 54-55 \({ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 6.83\) (s, 3H), 6.78-6.76 (d, \(J\) \(=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 3 \mathrm{H}), \quad 6.63-6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})\), \(3.97-3.87(\mathrm{~m}, ~ 12 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 1.81-1.74(\mathrm{~m}, ~ 12 \mathrm{H})\), \(1.40^{-1.26}(\mathrm{~m}, 108 \mathrm{H}), 0.90^{-0.86}(\mathrm{t}, J=6.6 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 149.1,147.5,141.5,134.0\), 127.2, 121.0, 115.0, 114.1, 69.5, 69.3, 41.3, 40.0, 29.7, 29.5, 26.1, 22.7, 14.1; HR-MS(ESI): \(\mathrm{m} / \mathrm{z}\) calcd for \(\left(\mathrm{C}_{99} \mathrm{H}_{168} \mathrm{O}_{6}+\mathrm{Na}\right)\) 1476.2739, found 1476.2697.

2f

1,3,5-Tris(4-butoxy-3-methoxybenzyl)benzene (2f) was prepared from 4-butoxy-3-methoxyphenylboronic acid and 1,3,5tris(bromomethyl)benzene and purified by chromatography (silica gel, PE:EA \(=10: 1, \mathrm{v} / \mathrm{v}\)); White solid (yield \(81 \%\)); Mp \(73-75{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 6.86(\mathrm{~s}, 3 \mathrm{H}), 6.78-6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})\), 6.67-6.69 (d, \(J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.96(\mathrm{~m}, 12 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}\), 9H), 1.83-1.79 (t, \(J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.46(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})\), 0.99-0.95 (t, \(J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 148.3\), 146.9, 141.6, 133.8, 127.2, 120.8, 113.0, 112.7, 55.9, 41.4, 31.3, 19.3, 13.9; HR-MS(ESI): \(m / z\) calcd for \(\left(\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{O}_{6}+\right.\) Na) 677.3818, found 677.3819.

\subsection*{3.2 The synthesis of the substituted \(\boldsymbol{c}\)-HBCs}

\subsection*{3.2.1 The synthesis of the \(\boldsymbol{c}\)-HBCs}

Scheme S6: The synthesis of \(c\)-HBCs

3a

\section*{General procedure for the synthesis of \(c\)-HBCs and} \(c\)-TBTTCs was exemplified by the synthesis of \(\boldsymbol{c}\)-HBC 3a. To a solution of 3,4-dimethoxybenzaldehyde (\(274 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and \(\mathrm{Ac}_{2} \mathrm{O}(0.47 \mathrm{~mL}, 5 \mathrm{mmol})\) in 350 mL DCM was added a solution of \(\mathrm{FeCl}_{3}(16.2 \mathrm{mg}, 0.1 \mathrm{mmol})\) in \(\mathrm{CH}_{3} \mathrm{NO}_{2}(1 \mathrm{~mL})\) while stirring at rt ., followed by dropwise addition over 1 h of TBB \(\mathbf{2 a}(0.5 \mathrm{mmol}, 264\) \(\mathrm{mg})\) in DCM (50 mL). The resulting mixture was stirred at rt . overnight and then degassed with Ar for 15 min . A second portion of \(\mathrm{FeCl}_{3}\left(1.26 \mathrm{~g}, 7.2 \mathrm{mmol}, 15.6\right.\) equiv) solution in \(\mathrm{CH}_{3} \mathrm{NO}_{2}\) (20 mL) was added dropwise over 1 h under Ar atmosphere and stirred for 12 h . Then, cold \(\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})\) was added with stirring to quench the reaction and the mixture was poured into cold water (500 mL). The organic layer was separated, washed with water, dried by \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and rotoevaporated in vacuo. The residue was purified by chromatography (silica gel, \(\mathrm{DCM}: E \mathrm{E}=10: 1, \mathrm{v} / \mathrm{v}\)) to give \(\boldsymbol{c}\) - \(\mathbf{H B C} 3 \mathbf{3 a}\) as a yellow solid. (432 mg, yield \(90 \%\)), \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.78(\mathrm{~s}, 12 \mathrm{H}), 4.20(\mathrm{~s}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (75 MHz , \(\mathrm{CDCl}_{3}\)): \(\delta 148.4,125.0,123.7,120.4,109.0,56.1 ;\) MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{O}_{12}\) : 960.3 (\(\mathrm{M}^{+}\)), found: 960.3.
\(\boldsymbol{c}\)-HBC 3b was prepared from TBB 2a (\(264 \mathrm{mg}, 0.5 \mathrm{mmol}\)) and 3,4-dimethylbenzaldehyde (\(222 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, DCM). Yellow solid (402

3b
\(\mathrm{mg}, 93 \%\)); Mp \(>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.06(\mathrm{~s}, 6 \mathrm{H}), 8.53(\mathrm{~s}, 6 \mathrm{H}), 4.15(\mathrm{~s}, 12 \mathrm{H}), 2.72(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 158.3,158.0,151.5,134.3,128.5,126.3,124.5,109.0,55.9,20.5,18.7\); MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{O}_{12}: 864.3\left(\mathrm{M}^{+}\right)\), found: 864.2.

\(\boldsymbol{c}\)-HBC 3c was prepared from TBB 2a (\(264 \mathrm{mg}, 0.5 \mathrm{mmol}\)) and 3,4-difluorobenzaldehyde (\(234.5 \mathrm{mg}, 1.65 \mathrm{mmol}\)), and purified by washing with cold methanol. Yellow solid (422 mg, \(95 \%\)); Mp > 300 \({ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.11-9.05(\mathrm{t}, J=10.4 \mathrm{~Hz}, 6 \mathrm{H})\), \(8.56(\mathrm{~s}, 6 \mathrm{H}), 4.22(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (150 MHz, \(\left.\mathrm{CDCl}_{3}\right): \delta 149.25\), 148.34, 127.11, 124.70, 124.98, 120.62, 115.74, 108.45, 50.21 ; MS(MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{54} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{6}: 888.2\left(\mathrm{M}^{+}\right)\), found: 882.2.

\(\boldsymbol{c}\)-HBC 3d was prepared from TBB \(\mathbf{2 a}(264 \mathrm{mg}, 0.5 \mathrm{mmol})\) and 3-bromo-4-methoxybenzaldehyde (\(355 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, DCM). Yellow solid (\(538 \mathrm{mg}, 97 \%\)); Mp \(>300{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 9.57(\mathrm{~s}, 3 \mathrm{H}), 8.77(\mathrm{~s}, 3 \mathrm{H}), 8.72(\mathrm{~s}, 3 \mathrm{H}), 8.60(\mathrm{~s}, 3 \mathrm{H})\), 4.24 (s, 9H), 4.22 (\(\mathrm{s}, 9 \mathrm{H}\)), 4.20 (\(\mathrm{s}, 9 \mathrm{H}\)) ; \({ }^{13} \mathrm{C}\) NMR (75 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 158.0,153.8,149.0,148.8,135.1,133.1,132.8,130.2\), \(125.0,124.6,116.2,111.9,109.4,109.0,108.5,56.6,56.1\); MS
(MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{57} \mathrm{H}_{39} \mathrm{Br}_{3} \mathrm{O}_{6}: 1104.0\left(\mathrm{M}^{+}\right)\), found: 1104.2.

\(3 e\)
\(\boldsymbol{c}\)-HBC 3e was prepared according to from TBB 2a (\(264 \mathrm{mg}, 0.5\) \(\mathrm{mmol})\) and 4-methylbenzaldehyde (\(198 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, DCM). Yellow solid (379 mg, \(92 \%\)); \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.21\) (s, \(3 \mathrm{H}), 9.18-9.16(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 8.75(\mathrm{~s}, 3 \mathrm{H}), 8.70(\mathrm{~s}, 3 \mathrm{H})\), \(7.64-7.61(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.19(\mathrm{~s}, 18 \mathrm{H}), 2.73(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 148.5,135.8,130.2,128.2,128.0,127.6,125.1\), \(125.0, \quad 124.8, \quad 121.0,120.5,109.4, \quad 56.2,56.1, \quad 22.1 ; ~ M S\)
(MALDI-TOF)(CHCA): \(m / z\) calcd for \(\mathrm{C}_{57} \mathrm{H}_{42} \mathrm{O}_{6}: 822.3\left(\mathrm{M}^{+}\right)\), found: 822.2.

\(3 f\)
\(\boldsymbol{c}\)-HBC \(3 \mathbf{f}\) was prepared according to from TBB \(\mathbf{2 a}(0.5 \mathrm{mmol}\), 264 mg) and 4-tert-butylbenzaldehyde (268 mg 1.65 mmol) and purified by flash column chromatography (silica gel, \(\mathrm{DCM}, \mathrm{v} / \mathrm{v}\)). Yellow solid (\(451 \mathrm{mg}, 95 \%\)); Mp > \(300{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (400 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 9.33(\mathrm{~s}, 3 \mathrm{H}), 9.29-9.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 8.77(\mathrm{~s}\), \(3 \mathrm{H}), 8.75(\mathrm{~s}, 3 \mathrm{H}), 7.89-7.86(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.23(\mathrm{~s}, 9 \mathrm{H})\), 4.22 (s, 9H), \(1.60(\mathrm{~s}, 27 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\) \(148.8,148.5,132.9,128.0,125.3,125.0,124.7,124.6,124.1\), 109.5, 109.2, 95.0, 56.0, 35.4, 31.7; MS (MALDI-TOF) (CHCA):
\(m / z\) calcd for \(\mathrm{C}_{66} \mathrm{H}_{60} \mathrm{O}_{6}: 948.4\left(\mathrm{M}^{+}\right)\), found: 948.3.

\(3 g\)
\(\boldsymbol{c}\) - HBC \(\mathbf{3 g}\) was prepared from TBB \(\mathbf{2 a}(264 \mathrm{mg}, 0.5 \mathrm{mmol})\) and 4-fluorobenzaldehyde (\(205 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by washing with cold methanol. Yellow solid (392 mg , yield \(94 \%\)); \(\mathrm{Mp}>300^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.27\) (\(\mathrm{s}, 3 \mathrm{H}\)), 8.97 (brs, 3H), 8.64 (s, 3 H), \(8.58(\mathrm{~s}, 3 \mathrm{H}), 7.53\) (brs, 3 H), \(4.23(\mathrm{~s}, 9 \mathrm{H}), 4.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 161.82-160.19(\mathrm{~d}, J=244.8 \mathrm{~Hz}), 148.98,148.84\), 131.53, 131.48, 130.91, 130.86, 126.63, 125.20, 124.96, 124.75, 123.71, 121.21, 120.07, 114.96, 114.80, 112.82, 112.67, 109.18, 108.44, 56.16, 56.14; MS (MALDI-TOF)(CHCA): \(m / z\) calcd for \(\mathrm{C}_{54} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{O}_{6}: 834.2\) (\(\mathrm{M}^{+}\)), found: 834.2.

3h
c-HBC 3h was prepared from TBB 2a (\(0.5 \mathrm{mmol}, 264 \mathrm{mg}\)) and 4-chlorobenzaldehyde (231 mg 1.65 mmol) and purified by washing with cold methanol. Deep yellow solid (362 mg , yield \(82 \%\)); Mp > 300 \({ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (400 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 9.31(\mathrm{~s}, 3 \mathrm{H}), 9.21-9.19(\mathrm{~d}, J=8.0\), \(3 \mathrm{H}), 8.60(\mathrm{~s}, 3 \mathrm{H}), 8.55(\mathrm{~s}, 3 \mathrm{H}), 7.76-7.73(\mathrm{~d}, J=8.0,3 \mathrm{H}), 4.22(\mathrm{~s}, 9 \mathrm{H})\), 4.19 (s, 9H); \({ }^{13} \mathrm{C}\) NMR (\(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\) 149.04, 148.89, 132.17, \(130.89,129.95,128.04,127.39,126.40,124.71,123.59,120.96,120.39\), 108.99, 108.69, 56.16; MS (MALDI-TOF) (CHCA): m/z calcd for \(\mathrm{C}_{54} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{O}_{6}\) : 882.1(\(\left.\mathrm{M}^{+}\right)\), found: 882.2.

\(3 i\)
for \(\mathrm{C}_{54} \mathrm{H}_{33} \mathrm{Br}_{3} \mathrm{O}_{6}: 1013.9\left(\mathrm{M}^{+}\right)\), found: 1013.6.
\(\boldsymbol{c}\)-HBC \(3 \mathbf{i}\) was prepared using TBB 2a (\(264 \mathrm{mg}, 0.5 \mathrm{mmol}\)) and 4-bromobenzaldehyde (\(305 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, chloroform). Yellow solid (437 \(\mathrm{mg}, 86 \%\) yield); \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.43\) (s, 3H), 9.09-9.06 (d, \(J=12 \mathrm{~Hz}, 3 \mathrm{H}), 8.45(\mathrm{~s}, 3 \mathrm{H}), 8.41(\mathrm{~s}, 3 \mathrm{H})\), \(7.85-7.82(\mathrm{~d}, J=12 \mathrm{~Hz}, 3 \mathrm{H}), 4.20(\mathrm{~s}, 9 \mathrm{H}), 4.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 149.0,130.6,130.1,128.0,124.4,120.2\), 112.6, 108.9, 108.6, 56.1; MS (MALDI-TOF) (CHCA): m/z calcd

\(\boldsymbol{c}\)-HBC \(\mathbf{3 j}\) was prepared from TBB \(\mathbf{2 a}(0.5 \mathrm{mmol}, 264 \mathrm{mg})\) and 4-(trifluoromethyl)benzaldehyde (\(287 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, chloroform). Yellow solid (192 mg, \(39 \%\) yield); Mp > \(300{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right): \delta 9.69(\mathrm{~s}, 3 \mathrm{H}), 9.46-9.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 8.67(\mathrm{~s}, 3 \mathrm{H})\), \(8.64(\mathrm{~s}, 3 \mathrm{H}), 8.07-8.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.23(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 149.0,149.1,131.8,129.3,129.2,129.0\), \(126.1,126.0,125.0,124.85,12.80,124.5,112.8,109.1,109.0,56.3\), 56.1; MS(MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{57} \mathrm{H}_{33} \mathrm{~F}_{9} \mathrm{O}_{6}: 984.2\) (\({ }^{+}\)), found: 984.1.

3k
\(\boldsymbol{c}\)-HBC 3k was prepared from TBB 2a \((0.5 \mathrm{mmol}, 264 \mathrm{mg})\) and benzaldehyde (\(175 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and washed by cold methanol.

31
126.0, 124.9, 124.6, 120.6, 109.2, 56.0; MS (MALDI-TOF)
(CHCA): \(m / z\) calcd for \(\mathrm{C}_{54} \mathrm{H}_{36} \mathrm{O}_{6}\) : \(780.2\left(\mathrm{M}^{+}\right)\), found: 780.1.
\(\boldsymbol{c}\)-HBC 31 was prepared from TBB2a (\(0.5 \mathrm{mmol}, 264 \mathrm{mg}\)) and 3,4-dibutoxybenzaldehyde (\(412 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica, chloroform). Yellow solid (\(576 \mathrm{mg}, 95 \%\) yield); \(\mathrm{Mp}>300^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (300 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 8.78(\mathrm{~s}, 12 \mathrm{H}), 4.40-4.25(\mathrm{~m}, 12 \mathrm{H}), 4.20(\mathrm{~s}, 18 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 12 \mathrm{H}), 1.68-1.60(\mathrm{~m}\), \(12 \mathrm{H}), 1.10^{-1.05}(\mathrm{t}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 148.4,148.2,125.0,123.6,120.3,110.7,109.0\), 69.1, 56.0, 31.5, 19.4, 13.9; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{78} \mathrm{H}_{84} \mathrm{O}_{12}: 1212.6\) (\(\mathrm{M}^{+}\)), found: 1212.5 .

\(3 m\)
\(\boldsymbol{c}\)-HBC 3m was prepared from TBB 2a (\(106 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and 3,4-bis(octyloxy)-benzaldehyde (\(260 \mathrm{mg}, 0.36 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, PE:DCM \(=1: 1, \mathrm{v} / \mathrm{v}\)). Yellow solid (\(239 \mathrm{mg}, 77 \%\) yield); \(\mathrm{Mp} 75-77^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 8.77(\mathrm{~s}, 6 \mathrm{H}), 8.76(\mathrm{~s}, 6 \mathrm{H})\), 4.37-4.23 (m, 12H), \(4.19(\mathrm{~s}, 12 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 12 \mathrm{H})\), \(1.42-1.32(\mathrm{~m}, 60 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (75 MHz , \(\mathrm{CDCl}_{3}\)): \(\delta 148.4,148.2,125.0,123.6,120.3,110.8,109.1,69.3\), 56.0, 31.9, 29.7, 29.6, 29.4, 29.3 26.2, 22.6, 14.0; MS
(MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{102} \mathrm{H}_{132} \mathrm{O}_{12}: 1548.9\left(\mathrm{M}^{+}\right)\), found: 1548.9.

3n
c-HBC 3n was prepared from TBB 2a \((0.2 \mathrm{mmol}, 106\) mg) and 3,4-bis(dodecyloxy) benzaldehyde (\(342 \mathrm{mg}, 0.72\) mmol) and purified by flash column chromatography (silica gel, PE:DCM \(=1: 1, \mathrm{v} / \mathrm{v})\). Deep yellow oil (\(257 \mathrm{mg}, 68 \%\) yield); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 8.82\) (\(\mathrm{s}, 12 \mathrm{H}\)), 4.41-4.24 (m, 12H), 4.24

18H),
2.07-2.05 (m, 12H), 1.64-1.30 (m, 108H), 0.93-0.89 (m, 18H); \({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 148.4,148.2,125.0,123.6,120.3\), \(110.8,109.1,69.3,56.0,31.9,29.7,29.6,29.4,26.2,22.6,14.0\); MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{126} \mathrm{H}_{180} \mathrm{O}_{12}: 1885.3\) (M

30 \({ }^{+}\)), found: 1885.4.
c-HBC 3 o was prepared from TBB 2c (\(0.25 \mathrm{mmol}, 195 \mathrm{mg}\)) and 3,4-dibutoxybenzaldehyde (\(225 \mathrm{mg}, 0.9 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, DCM). Yellow solid (\(345 \mathrm{mg}, 94 \%\) yield); Mp \(>300^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 8.78(\mathrm{~s}, 12 \mathrm{H}), 4.42-4.26(\mathrm{~m}, 24 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 24 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 24 \mathrm{H})\), \(1.13-1.07(\mathrm{t}, J=9.0 \mathrm{~Hz}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 148.2,125.0,123.6,120.3,110.7,68.9,31.5,19.4\), 13.9; MS (MALDI-TOF)(CHCA): \(m / z\) calcd for \(\mathrm{C}_{96} \mathrm{H}_{120} \mathrm{O}_{12}: 1464.9\left(\mathrm{M}^{+}\right)\), found: 1464.7.

3p
c-HBC 3p was prepared from TBB 2c (\(0.5 \mathrm{mmol}, 391 \mathrm{mg}\)) and 3,4-dimethylbenzaldehyde (\(222 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=1: 3, \mathrm{v} / \mathrm{v}\)). Yellow solid (\(486 \mathrm{mg}, 87 \%\) yield), \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.06(\mathrm{~s}, 6 \mathrm{H}) ; 8.60(\mathrm{~s}, 6 \mathrm{H}), 4.40-4.24(\mathrm{~m}, 12 \mathrm{H})\), \(2.71(\mathrm{~s}, 18 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 12 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 12 \mathrm{H}), 1.13-1.07\) \((\mathrm{t}, J=9.0 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 148.0,134.4\), 128.6, 128.2, 124.6, 120.3, 111.0, 68.8, 31.4, 20.6, 19.4, 13.9; MS
(MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)\): 1116.6 , found: 1116.5 .

\(3 q\)
\(\boldsymbol{c}\)-HBC 3q was prepared from TBB 2c \((0.5 \mathrm{mmol}, 391 \mathrm{mg})\) and 3,4-difluorobenzaldehyde (\(261 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, PE:DCM = 3:1, v/v); Yellow solid (524 mg, 92 \% yield); \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\)

\(3 r\) \(\mathrm{C}_{72} \mathrm{H}_{66} \mathrm{~F}_{6} \mathrm{O}_{6}: 1140.5\left(\mathrm{M}^{+}\right)\), found: 1140.7.
\(\boldsymbol{c}\)-HBC \(3 \mathbf{r}\) was prepared from TBB \(2 \mathbf{c}(0.25 \mathrm{mmol}, 196 \mathrm{mg})\) and 4-bromobenzaldehyde (\(166 \mathrm{mg}, 0.9 \mathrm{mmol}\)) and purified by column chromatography (silica gel, chloroform). Yellow solid (\(286 \mathrm{mg}, 90 \%\) yield); \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (300 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 9.42(\mathrm{~s}, 3 \mathrm{H}), 9.09-9.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 8.51(\mathrm{~s}, 3 \mathrm{H}), 8.46(\mathrm{~s}, 3 \mathrm{H}), 7.85-7.82(\mathrm{~d}, J=\)
\(9.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.47-4.22(\mathrm{~m}, 12 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 12 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 12 \mathrm{H}), 1.13-1.06(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (75 MHz, \(\left.\mathrm{CDCl}_{3}\right): \delta 149.0,148.8,130.9,130.6,130.2,128.5,128.0,124.4,123.1,120.6,120.0,110.8,110.3,69.0,31.3,19.4\), 14.0; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{72} \mathrm{H}_{69} \mathrm{Br}_{3} \mathrm{O}_{6}: 1267.3(\mathrm{M}+1)\), found: 1267.2.

3s
\(\boldsymbol{c}\)-HBC 3s was prepared from TBB 2b \((0.5 \mathrm{mmol}, 391 \mathrm{mg})\) and benzaldehyde (\(175 \mathrm{mg}, 1.65 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, PE:DCM = 3:1, v/v). Yellow solid (418 mg , \(81 \%\) yield); \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.25-9.22\) (d, \(6 \mathrm{H}), 8.67(\mathrm{~s}, 6 \mathrm{H}), 7.74-7.72(\mathrm{~d}, 6 \mathrm{H}), 4.41-4.19(\mathrm{~m}, 12 \mathrm{H}), 2.02-1.96(\mathrm{~m}\), 12H), \(1.07(\mathrm{t}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 148.7,130.0,128.3\), \(125.9,125.1,124.7,120.7,111.3,69.0,31.4,19.4,14.0 ; \mathrm{MS}\) (MALDI-TOF) (CHCA): m/z calcd for \(\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right): 1032.5\), found: 1032.5.

\(\boldsymbol{c}\)-HBC 3t was prepared from TBB \(\mathbf{2 c}(0.25 \mathrm{mmol}, 237\) mg) and 3,4-bis(hexyloxy)benzaldehyde (\(275 \mathrm{mg}, 0.825\) mmol) and purified by flash column chromatography (silica gel, PE: \(\mathrm{DCM}=1: 1, \mathrm{v} / \mathrm{v}\)). Yellow solid (\(409 \mathrm{mg}, 91 \%\) yield); \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 8.76(\mathrm{~s}, 12 \mathrm{H})\), 4.40 \(-4.2\) 2 (m, 24H
), 2.04-1.99 (m, 24H), 1.61-1.42 (m, 72H), 0.98-0.95 (t, 18 H) \({ }^{13}{ }^{13} \mathrm{CNR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\)): \(\delta 148.2,125.0,123.6\), \(120.3,110.7,69.3,31.7,29.5,25.9,22.7,14.0\); MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{120} \mathrm{H}_{168} \mathrm{O}_{12}: 1801.3\) \(\left(\mathrm{M}^{+}\right)\), found: 1801.4.

\(3 u\)
\(\boldsymbol{c}\)-HBC 3u was prepared from TBB 2d \((0.1 \mathrm{mmol}, 279 \mathrm{mg})\), 3,4-bis(octyloxy)benzaldehyde (\(130 \mathrm{mg}, 0.36 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, DCM). Brown solid (\(146 \mathrm{mg}, 68 \%\) yield); Mp \(67-70{ }^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 8.74(\mathrm{~s}, 12 \mathrm{H}), 4.37-4.22(\mathrm{~m}, 24 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 24 \mathrm{H}), 1.59-1.33(\mathrm{~m}, 120 \mathrm{H})\),
\(0.92-0.89(\mathrm{~m}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (75 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 147.9,124.7,123.4,120.3,110.2,69.0,31.8,29.5,29.3,26.2\), 22.7, 14.1; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{144} \mathrm{H}_{216} \mathrm{O}_{12}: 2137.6\left(\mathrm{M}^{+}\right)\), found: 2137.6 .

\(c\)-HBC 3v was prepared from TBB 2e \((0.1 \mathrm{mmol}, 145\) mg) and 3,4-bis- (dodecyloxy)benzaldehyde (\(170 \mathrm{mg}, 0.36\) mmol) and purified by flash column chromatography (silica gel, DCM) to give a brown oil (181 mg), then recrystallized in DCM/MeOH. Brown solid (143 mg, \(51 \%\) yield); \(\mathrm{Mp} 62-65{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 8.74\) \((\mathrm{s}, 12 \mathrm{H}), 4.38-4.20(\mathrm{~m}, 24 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 24 \mathrm{H})\), 1.59-1.28 (m, 216H), 0.90-0.87 (t, 36H); \({ }^{13} \mathrm{C}\) NMR (75 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.1,125.0,123.6,120.3,110.6,69.3\), 31.7, 29.4, 25.9, 22.7, 14.0; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{192} \mathrm{H}_{312} \mathrm{O}_{12}: 2810.3\) (\(\mathrm{M}^{+}\)), found: 2810.1.

\(c\) - \(\mathrm{HBC} \mathbf{3 w}\) was prepared from TBB \(\mathbf{2 b}(261 \mathrm{mg}, 0.25 \mathrm{mmol})\), 4-butoxy-3-methoxybenzaldehyde (\(187 \mathrm{mg}, 0.9 \mathrm{mmol}\)) and purified by flash column chromatography (silica gel, DCM). Yellow solid (\(261 \mathrm{mg}, 86 \%\) yield); Mp \(>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (400 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 8.77(\mathrm{~s}, 6 \mathrm{H}), 8.75(\mathrm{~s}, 6 \mathrm{H}), 4.42-4.24(\mathrm{~m}, 12 \mathrm{H})\), 4.17 (s, 18H), 2.05-2.01 (m, \(12 \mathrm{H}), \quad 1.65-1.60\)
\((\mathrm{m}, 12 \mathrm{H}), 1.08^{\left.-1.04(\mathrm{t}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \text { NMR (100 MHz, } \mathrm{CDCl}_{3}\right): \delta, ~(1) ~}\) \(148.5,147.9,125.0,124.9,123.6,120.3,110.1,109.2,68.9,56.1\), 31.4, 19.4, 13.9; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{78} \mathrm{H}_{84} \mathrm{O}_{2}: 1212.6\left(\mathrm{M}^{+}\right)\), found: 1212.6 .

\(c\)-HBC 3x was prepared from TBB \(2 \mathbf{b}(0.25 \mathrm{mmol}, 261 \mathrm{mg})\)

\section*{3x}
and 3-bromo-4-methoxybenzaldehyde (\(194 \mathrm{mg}, 0.9 \mathrm{mmol}\)) and purified by washing with cold methanol. Yellow solid (\(251 \mathrm{mg}, 81 \%\) yield); \(\mathrm{Mp}>300^{\circ} \mathrm{C}\); \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.57-9.52(\mathrm{~m}, 3 \mathrm{H}), 8.77-8.72(\mathrm{~m}, 6 \mathrm{H})\), 8.61-8.59 (m, 3H), 4.51-4.17 (m, 24H), 2.10-2.01 (m, 6H), 1.69-1.60 (m, 6H), 1.13-1.04 (m, 9H); MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{66} \mathrm{H}_{57} \mathrm{Br}_{3} \mathrm{O}_{9}: 1230.2\left(\mathrm{M}^{+}\right)\), found: 1230.1.

\subsection*{3.3 The synthesis of the TBTTCs}

\subsection*{3.3.1 The synthesis of the TBTTCs using 3-thienaldehyde}

TBTTC 4a was synthesized from 3-thienaldehyde (0.9 mmol) and TBB 2a (0.20 mmol) according the similar method of \(\mathbf{4 b}\), A second portion of \(\mathrm{FeCl}_{3}\left(1.26 \mathrm{~g}, 7.2 \mathrm{mmol}\right.\), in \(\left.20 \mathrm{~mL} \mathrm{CH} \mathrm{NO}_{2}\right)\) solution was added dropwise over 1 h under Ar atmosphere and stirred for 4 h at rt . The crude product was purified by column chromatography (silica gel, chloroform: \(\mathrm{EA}=5: 1, \mathrm{v} / \mathrm{v})\). Yellowish brown powder (\(51 \mathrm{mg}, 32 \%\) yield \()\); \(\mathrm{Mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.25(\mathrm{~s}, 3 \mathrm{H}), 8.77-8.76(\mathrm{~d}\), \(J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 8.74(\mathrm{~s}, 3 \mathrm{H}), 7.88-7.86(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.34(\mathrm{~s}, 9 \mathrm{H})\), 4.27 (s, 9H); MS (MALDI-TOF) (CHCA): m/z calcd for \(\mathrm{C}_{48} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~S}_{3}\) : \(798.1\left(\mathrm{M}^{+}\right)\), found: 798.3.

4b

TBTTC 4b was synthesized from 3-thienaldehyde (0.9 mmol) and TBB 2c \((0.20 \mathrm{mmol})\) and purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=1: 1, \mathrm{v} / \mathrm{v})\). Yellowish brown powder \((99 \mathrm{mg}, 49\) \% yield); mp \(>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.12(\mathrm{~s}, 3 \mathrm{H})\), \(8.67-8.66(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.62(\mathrm{~s}, 3 \mathrm{H}), 7.77-7.76(\mathrm{~d}, J=5.6 \mathrm{~Hz}\), 3H), 4.49-4.46 (t,
\(J=6.6 \mathrm{~Hz}, 6 \mathrm{H})\),

4c 2.12-2.04 (m, 12H), 1.76-1.67 (m, 12H), 1.16-1.10 (m, 18H); \({ }^{13} \mathrm{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta 149.4,148.7,135.3,134.0\), \(126.8,125.0,124.1,123.7,122.2,121.0,111.5,108.3,69.2,69.1\), 315, 31.4, 19.5, 19.4, 14.0; MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{66} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{~S}_{3}: 1050.4\left(\mathrm{M}^{+}\right)\), found: 1050.6.

TBTTC \(\mathbf{4 c}\) was synthesized according to TBTTC \(\mathbf{4 b}\) from 3-thienaldehyde \((0.9 \mathrm{mmol})\) and TBB \(\mathbf{2 c}(0.20 \mathrm{mmol})\) and purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=5: 1, \mathrm{v} / \mathrm{v}\)). Yellowish brown powder (\(115 \mathrm{mg}, 47 \%\)
yield); mp \(>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 9.18(\mathrm{~s}, 3 \mathrm{H}), 8.72-8.70(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.68(\mathrm{~s}, 3 \mathrm{H})\), \(7.83-7.81(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.49-4.46(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 4.40-4.36(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.13-1.45(\mathrm{~m}, 48 \mathrm{H})\), 1.01-0.97 (m, 18H); \({ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 149.3,148.6,135.1,133.8,126.7,124.8,124.0,123.6,122.4\), \(121.9,120.8,111.5,108.3,69.5,69.4,31.8,29.5,29.4,26.0,25.9,22.7,14.1\); MS (MALDI-TOF) (CHCA): m/z calcd for \(\mathrm{C}_{78} \mathrm{H}_{90} \mathrm{O}_{6} \mathrm{~S}_{3}: 1218.6\left(\mathrm{M}^{+}\right)\), found: 1218.8.

\subsection*{3.3.2 Attempted access to TBTTC 4b and trimethyl-TBTTC 4d using 2-thienaldehyde and}

\section*{5-methyl-2-thienaldehyde}

Scheme S7: The attempt synthesis of TBTTC 4b and trimethyl-TBTTC 4d using 2-thienaldehyde and 5-methyl-2-thienaldehyde

TBTTC 4b. The reaction of 2-thienaldehyde and TBB 2b under the identical conditions afforded a mixture of TBTTC 4b and a byproduct \(\mathbf{4 b}^{\prime}\) with two thieno-units. After conventional workup, the mixture was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=1: 5, \mathrm{v} / \mathrm{v}\)) and recrystallized from \(\mathrm{DCM} / \mathrm{EtOH}\) to give a yellowish brown solid. MS (MALDI-TOF) (CHCA): m/z calcd for \(\mathrm{C}_{66} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{~S}_{3}(\mathbf{4 b}) 1050.4\left(\mathrm{M}^{+}\right)\)and for \(\mathrm{C}_{62} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathbf{4} \mathbf{b}^{\prime}\right)\) : \(970.4\left(\mathrm{M}^{+}{ }_{4 \mathrm{~b}}-\right.\) thiopheno unit \(\left.+2 \mathrm{H}\right)\), found: 1050.6, 970.6 .

Trimethyl-TBTTC 4d. The reaction of 5-methyl-2-thienaldehyde and TBB 2b under the identical conditions afforded a mixture of TBTTC \(\mathbf{4 d}\) and a byproduct \(\mathbf{4 d}\) ' with two thieno-units. After conventional workup, the mixture was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=1: 5, \mathrm{v} / \mathrm{v}\)) and recrystallized from \(\mathrm{DCM} / \mathrm{EtOH}\) to give a brown solid. MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{69} \mathrm{H}_{72} \mathrm{O}_{6} \mathrm{~S}_{3}(\mathbf{4 d}) 1092.4\left(\mathrm{M}^{+}\right)\)and for \(\mathrm{C}_{64} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathbf{4} \mathbf{d}^{\prime}\right)\) : \(998.5\left(\mathrm{M}_{4 \mathrm{~d}}^{+}-\right.\)methylthiopheno unit \(\left.+2 \mathrm{H}\right)\), found: 1092.5, 998.4.

Figure S1 The MS spectra of the unisolatable mixture from TBB 2c and 2-thienaldehyde (A) or 5-methyl-2-thienaldehyde (B).

Figure \(\mathbf{S} 2\) A possible mechanistic pathway for the formation of the byproduct.

\subsection*{3.4 The synthesis of the HBCCs}

To a solution of 3,6-di-tert-butyl-9-phenanthraldehyde (114.5 mg , \(0.36 \mathrm{mmol})\) and \(\mathrm{Ac}_{2} \mathrm{O}(0.24 \mathrm{~mL}, 2.5 \mathrm{mmol})\) in 350 mL DCM was added a solution of \(\mathrm{FeCl}_{3}(8.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%)\) in \(\mathrm{CH}_{3} \mathrm{NO}_{2}\) \((1 \mathrm{~mL})\) while stirring at rt , followed by dropwise addition of a solution of TBB \(2 \mathbf{c}(0.1 \mathrm{mmol}, 94.8 \mathrm{mg})\) in 50 mL DCM. The resulting mixture was allowed to stir for 48 h at rt . Then it was degassed with Ar for 10 min and then added dropwise a second portion of \(\mathrm{FeCl}_{3}(1.92 \mathrm{~g}, 12\) mmol) solution in \(20 \mathrm{~mL} \mathrm{CH} 3 \mathrm{NO}_{2}\) over 1 h under Ar atmosphere. After
being stirred at \(0{ }^{\circ} \mathrm{C}\) for an additional 4 h , the mixture was added \(100 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{OH}\) with stirring and then poured into cold water. The biphasic mixture was separated and the aqueous layer was extracted three times with DCM. The combined organic layers were washed with water, dried by \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), filtered, and rotoevaporated in vacuo. The residue was purified by chromatography (silica gel, PE:DCM \(=10: 1\)) to give \(\mathbf{5 c}\) as a brick red solid. \(\left(97 \mathrm{mg}, 53 \%\right.\) yield), \(\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 10.77(\mathrm{~s}, 6 \mathrm{H}), 9.70(\mathrm{~s}, 6 \mathrm{H}), 4.48-4.45(\mathrm{t}, J=4.5 \mathrm{~Hz}, 12 \mathrm{H}), 2.40-1.98(\mathrm{~m}, 12 \mathrm{H}), 1.94(\mathrm{~s}, 54 \mathrm{H})\), \(1.60-1.37(\mathrm{~m}, 36 \mathrm{H}), 0.95-0.91(\mathrm{t}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 151.0,149.1,130.1,129.3,124.6,124.2,123.4\), \(123.0,120.8,120.3,119.4,74.7,36.2,32.4,31.9,25.8,22.7,14.0\); MS (MALDI-TOF) (CHCA): \(m / z\) calcd for \(\mathrm{C}_{132} \mathrm{H}_{144} \mathrm{O}_{6}\) : \(1825.1\left(\mathrm{M}^{+}\right)\), found: 1825.3.

5b

5a

HBCC 5b was synthezied following the same procedure from 3,6-di-tert-butylphenanthrene-9-carbaldehyde (\(114 \mathrm{mg}, 0.36 \mathrm{mmol}\)) and TBB 2b (\(0.1 \mathrm{mmol}, 78 \mathrm{mg}\)) and purified by column chromatography (silica gel, PE:DCM \(=10: 1, \mathrm{v} / \mathrm{v}\)). Brick red solid (\(78 \mathrm{mg}, 47 \%\) yield); \(\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta\) \(10.79(\mathrm{~s}, 6 \mathrm{H}), 9.72(\mathrm{~s}, 6 \mathrm{H}), 4.51-4.48(\mathrm{t}, J=4.5 \mathrm{~Hz}, 12 \mathrm{H}), 2.38-2.31\) \((\mathrm{m}, 12 \mathrm{H}), 1.98(\mathrm{~s}, 54 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 12 \mathrm{H}), 1.08-1.05(\mathrm{t}, J=7.4\) \(\mathrm{Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\)): \(\delta\) 151.0, 149.1, 130.1, 129.3, 124.6, 124.2, 123.4, 123.0, 120.82, 120.80, 120.3, 119.4, 74.7, 36.2, 33.0, 32.4, 29.7, 19.4, 14.2; MS (MALDI-TOF) (CHCA): m/z alcd for \(\mathrm{C}_{120} \mathrm{H}_{120} \mathrm{O}_{6}\) : \(1656.9\left(\mathrm{M}^{+}\right)\), found: 1656.8.

HBCC 5a was synthezied following the same procedure from 3,6-di-tert-butylphenanthrene-9- carbaldehyde (\(114 \mathrm{mg}, 0.36 \mathrm{mmol}\)) and TBB 2a (\(53 \mathrm{mg}, 0.1 \mathrm{mmol}\)). except a second step ferric chloride \((1.94 \mathrm{~g}, 12.0 \mathrm{mmol})\) in 20 mL nitromethane was added dropwise over 1 h at room temperature, then stirred additon 4 h at room temperature, the crude product was purified by column chromatography (silica gel, \(\mathrm{PE}: \mathrm{DCM}=2: 1, \mathrm{v} / \mathrm{v}\)) to give a brick red solid, 51 mg , yield \(36 \%, \mathrm{mp}\) \(>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 10.85(\mathrm{~s}, 6 \mathrm{H}), 9.74(\mathrm{~s}, 6 \mathrm{H})\), \(4.48(\mathrm{~s}, 18 \mathrm{H}), 2.00(\mathrm{~s}, 54 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)): \(\delta 151.4\), \(149.3,130.1,128.9,124.6,124.1,123.5,122.6,120.9,120.4,119.2\),

\section*{4 X-ray crystallographic analysis}

\subsection*{4.1 X-ray crystallographic analysis of \(\boldsymbol{c}\)-HBC 3a (CCDC 984246)}

X-ray quality crystals of \(\boldsymbol{c}\) - HBCs 3a were obtained by slow evaporation of the solution of the compound in 1,2,4-trichlorobenzene (DCB) at room temperature for \(c a .2\) months.

A suitable orange crystal was selected and collected on a single crystal diffractometer (GEMINIE). The crystal was kept at room teperature during data collection. The structure was solved with the Olex2 program using Charge Flipping and refined with the Olex2 using Gauss-Newton minimisation.

\subsection*{4.1.1 Crystal data and structure refinement for \(\boldsymbol{c}\)-HBC 3a}

Table S1 Crystal data and structure refinement for \(\boldsymbol{c}\)-HBC 3a
\begin{tabular}{|c|c|}
\hline Empirical formula & \(\mathrm{C}_{39} \mathrm{H}_{28.5} \mathrm{Cl}_{4.5} \mathrm{O}_{6}\) \\
\hline Formula weight & 752.69 \\
\hline Temperature/K & 293(2) \\
\hline Crystal system & monoclinic \\
\hline Space group & \(\mathrm{P} 21 / \mathrm{n}\) \\
\hline \(\mathrm{a} / \AA\) & 10.6060(3) \\
\hline \(\mathrm{b} / \AA\) & 17.7693(4) \\
\hline \(\mathrm{c} / \AA\) & 18.5377(5) \\
\hline \(\alpha /{ }^{\circ}\) & 90 \\
\hline \(\beta /{ }^{\circ}\) & 91.524(2) \\
\hline \(\gamma /{ }^{\circ}\) & 90 \\
\hline Volume/ \(\AA^{3}\) & 3492.40(16) \\
\hline Z & 4 \\
\hline \(\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}\) & 1.4314 \\
\hline \(\mathrm{m} / \mathrm{mm}^{-1}\) & 3.829 \\
\hline F(000) & 1558.8 \\
\hline Crystal size/ \(/ \mathrm{mm}^{3}\) & \(0.32 \times 0.3 \times 0.27\) \\
\hline \(2 \Theta\) range for data collection & 6.9 to \(132.06^{\circ}\) \\
\hline Index ranges & \(-12 \leq \mathrm{h} \leq 12,-18 \leq \mathrm{k} \leq 21,-22 \leq 1 \leq 17\) \\
\hline Reflections collected & 12715 \\
\hline Independent reflections & \(6074[\mathrm{R}(\mathrm{int})=0.0179]\) \\
\hline Data/restraints/parameters & 6074/0/450 \\
\hline Goodness-of-fit on \(\mathrm{F}^{2}\) & 1.052 \\
\hline Final R indexes [I>=2 \(\sigma\) (I)] & \(\mathrm{R}_{1}=0.0859, \mathrm{wR}_{2}=\mathrm{N} / \mathrm{A}\) \\
\hline Final R indexes [all data] & \(\mathrm{R}_{1}=0.1022, \mathrm{wR}_{2}=0.2642\) \\
\hline Largest diff. peak/hole / e \(\AA^{-3}\) & 1.21/-0.86 \\
\hline
\end{tabular}

\subsection*{4.1.2 Selected Geometries for \(\boldsymbol{c}\)-HBC 3a}

The coronene core in the \(c\)-HBCs:

Figure S3 The instruction of coronene core

Figure S4 The X-ray single crystal structure of \(c\) - \(\mathrm{HBC} \mathbf{3 a}\)

Table S2 Selected bond lengths of the coronene core in \(c\)-HBC 3a (\(\AA\))
\begin{tabular}{cc|cc|lc|cc}
\hline \multicolumn{2}{c|}{ Hub bonds } & \multicolumn{2}{c|}{ Spoke bonds } & \multicolumn{2}{c|}{ Flank bonds } & \multicolumn{2}{c}{ Rim bonds } \\
\hline Bond & Bond length & Bond & Bond length & \multicolumn{2}{c|}{ Bond } & Bond length & Bond \\
\hline \(\mathrm{C}(31)-\mathrm{C}(28)\) & \(1.435(5)\) & \(\mathrm{C}(38)-\mathrm{C}(28)\) & \(1.400(4)\) & \(\mathrm{C}(33)-\mathrm{C}(25)\) & \(1.445(5)\) & \(\mathrm{C}(2)-\mathrm{C}(34)\) & \(1.409(5)\) \\
\(\mathrm{C}(31)-\mathrm{C}(29)\) & \(1.437(4)\) & \(\mathrm{C}(33)-\mathrm{C}(31)\) & \(1.402(5)\) & \(\mathrm{C}(39)-\mathrm{C}(36)\) & \(1.443(5)\) & \(\mathrm{C}(36)-\mathrm{C}(25)\) & \(1.414(5)\) \\
\(\mathrm{C}(28)-\mathrm{C}(29)\) & \(1.442(5)\) & \(\mathrm{C}(39)-\mathrm{C}(29)\) & \(1.399(5)\) & \(\mathrm{C}(39)-\mathrm{C}(34)\) & \(1.447(4)\) & \(\mathrm{C}(20)-\mathrm{C}(26)\) & \(1.413(5)\) \\
& & & & \(\mathrm{C}(38)-\mathrm{C}(2)\) & \(1.444(4)\) & & \\
Average length \\
\hline
\end{tabular}

Table S3 Bond lengths of the benzo units in \(c\)-HBC 3a \((\AA)\)
\begin{tabular}{cccccc}
Bond & Bond length & Bond & Bond length & Bond & Bond length \\
\hline
\end{tabular}
\begin{tabular}{cccclc}
\hline \(\mathrm{C}(17)-\mathrm{C}(25)\) & \(1.425(5)\) & \(\mathrm{C}(17)-\mathrm{C}(21)\) & \(1.363(5)\) & \(\mathrm{C}(21)-\mathrm{C}(15)\) & \(1.418(5)\) \\
\(\mathrm{C}(36)-\mathrm{C}(22)\) & \(1.416(5)\) & \(\mathrm{C}(22)-\mathrm{C}(15)\) & \(1.367(5)\) & \(\mathrm{C}(37)-\mathrm{C}(19)\) & \(1.418(5)\) \\
\(\mathrm{C}(34)-\mathrm{C}(27)\) & \(1.416(5)\) & \(\mathrm{C}(27)-\mathrm{C}(19)\) & \(1.366(5)\) & \(\mathrm{C}(18)-\mathrm{C}(16)\) & \(1.418(6)\) \\
\(\mathrm{C}(32)-\mathrm{C}(2)\) & \(1.427(4)\) & \(\mathrm{C}(37)-\mathrm{C}(32)\) & \(1.359(5)\) & & \\
\(\mathrm{C}(26)-\mathrm{C}(23)\) & \(1.425(5)\) & \(\mathrm{C}(23)-\mathrm{C}(16)\) & \(1.374(5)\) & & \\
\(\mathrm{C}(24)-\mathrm{C}(20)\) & \(1.417(5)\) & \(\mathrm{C}(24)-\mathrm{C}(18)\) & \(1.371(5)\) & & \\
Average & 1.423 & Average & 1.366 & Average & 1.418 \\
\hline
\end{tabular}

Table S4 Splay angles in the molecule of \(c\) - HBC 3a
\begin{tabular}{cc}
\hline Splay angle & Splay angle \({ }^{\circ}\) \\
\hline \(\mathrm{C}(17)-\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(24)\) & 40.699 \\
\(\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{C}(2)-\mathrm{C}(32)\) & 42.363 \\
\(\mathrm{C}(27)-\mathrm{C}(34)-\mathrm{C}(36)-\mathrm{C}(22)\) & 41.607 \\
Average & 41.556 \\
\hline
\end{tabular}

Table S5 Fold angles in the benzofused rings in \(c-\mathrm{HBC}\) 3a
\begin{tabular}{llc}
\hline \multicolumn{1}{c}{ Best plane-1 } & \multicolumn{1}{c}{ Best plane-1 } & Fold angle \(/^{\circ}\) \\
\hline \(\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{C}(25)-\mathrm{C}(33)\) & \(\mathrm{C}(39)-\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{C}(33)\) & 17.951 \\
\(\mathrm{C}(38)-\mathrm{C}(2)-\mathrm{C}(34)-\mathrm{C}(39)\) & \(\mathrm{C}(38)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(39)\) & 17.827 \\
\(\mathrm{C}(33)-\mathrm{C}(20)-\mathrm{C}(26)-\mathrm{C}(38)\) & \(\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(38)\) & 18.027 \\
Average & & 17.935 \\
\hline
\end{tabular}

Table S6 Torsion angles of methoxy groups with benzo units in \(\boldsymbol{c}\)-HBC 3a
\begin{tabular}{lccc}
\hline & Torsion angle \(/^{\circ}\) & Torsion angle \(/^{\circ}\) \\
\hline \(\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(16)\) & 3.888 & \(\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(21)\) & 9.889 \\
\(\mathrm{C}(13)-\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(18)\) & 4.483 & \(\mathrm{C}(12)-\mathrm{O}(5)-\mathrm{C}(19)-\mathrm{C}(37)\) & 9.212 \\
\(\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(15)\) & 5.633 & \(\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(37)-\mathrm{C}(19)\) & 0.935 \\
Average torsion angle \(=6.272^{\circ}\). Max. torsion angle \(=5.633^{\circ}\), min. torsion angle \(=0.935^{\circ}\). & \\
\hline
\end{tabular}

\subsection*{4.1.3 Crystal packing of \(\boldsymbol{c}\) - HBC 3 a}

The dodecamethoxy c-HBC 3a was crystallized with three DCB molecules (Figure S5). In crystals, the three solvent molecules are sandwiched into two neighboring layers and associated with each other by intermolecular \(\pi-\pi\) stacking interactions with a centriod-centriod distance of \(3.727 \AA\). They are arranged almost perpendicularly to the central ring planes of two \(c\) - HBC 3a layers. Two outer TCB molecules are antiparallel arranged to each other and interrelated around an inversion center. The axes along the 1,4 -dichloro groups are essentially vertical the crystallographic \(a\)-axis; while the in-between TCB molecule, which looks as if a 1,2,4,5-tetrachlorobenzene molecule, is packed in a staggered stacking arrangement with respect of the two side TCB molecules by

Figure S5 The columnar packing of \(c\)-HBC 3a along \(a\)-axis (A and B: cooperative interaction between TCB and the \(c\) - HBC ; C: viewed from the co-axial direaction of three TCB molecules)
approximately \(24^{\circ}\). The plane of in-between TCB molecule is approximately parallel to those of the outer TCB molecule. Most notably, all these TCB molecules interact with neighboring \(c\) - HBC 3a layers through cooperative T-shaped \(\mathrm{CH}-\pi\) and \(\mathrm{Cl}-\pi\) interactions. In addition, the chlorine atoms may interact with the close hydrogen atoms of some methoxy groups or benzo rings to a certain extent. In other words, three \(\pi\)-stacked TCB molecules cooperatively mediate the neighboring \(c-\mathrm{HBC}\) molecules via \(\mathrm{CH}-\pi, \mathrm{Cl}-\pi\), and \(\mathrm{Cl}-\mathrm{H}\) interactions, thus forming a unique columnar arrangement by alternating \(c-\mathrm{HBC}\) and TCB molecules. The columnar packing is parallel to the crystallographic \(a\)-axis with the central ring planes of \(c\) - HBC 3 a layers roughly perpendicular.

Table S7 Stacking interactions of TCB with \(c\)-HBC 3a
\begin{tabular}{cclccc}
\hline Entry & H atom & Ring & \(D_{\text {АTP }}{ }^{*}\) & \(d_{\pi^{\text {® }}}\) & \(\theta /^{\circ}\) \\
\hline \(\mathbf{1}\) & \(\mathrm{H}(4)\) & \(\mathrm{C}(28)-\mathrm{C}(38)-\mathrm{C}(2)-\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{C}(29)\) & 2.771 & 2.827 & 78.60 \\
\(\mathbf{2}\) & \(\mathrm{H}(30)\) & \(\mathrm{C}(28)-\mathrm{C}(38)-\mathrm{C}(2)-\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{C}(29)\) & 2.773 & 3.016 & 66.85 \\
\(\mathbf{3}\) & \(\mathrm{H}(8)\) & \(\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{C}(33)-\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{C}(25)\) & 2.804 & 2.837 & 81.30 \\
\(\mathbf{4}\) & \(\mathrm{Cl}(4)\) & \(\mathrm{C}(29)-\mathrm{C}(31)-\mathrm{C}(33)-\mathrm{C}(39)-\mathrm{C}(36)-\mathrm{C}(25)\) & 3.331 & 3.415 & 77.28 \\
\(\mathbf{5}\) & \(\mathrm{Cl}(2)\) & \(\mathrm{C}(27)-\mathrm{C}(34)-\mathrm{C}(2)-\mathrm{C}(32)-\mathrm{C}(37)-\mathrm{C}(19)\) & 3.493 & 3.508 & 84.70 \\
\hline
\end{tabular}

\footnotetext{
* \(\mathrm{D}_{\text {ATP }}=\) Distance of the atom to plane
}

Interestingly, our dodecamethoxy \(c\)-HBC 3a displays much different packing behaviors from the bare \(c\)-HBC reported by Nuckolls et al. \({ }^{[16]}\) wherein two TCB molecules are sandwiched between two \(c\)-HBC layers and parallel to the central benzene planes, indicating that the high and symmetric substitution of drastically change the supermolecular property of \(c\)-HBC core. It should be pointed out that the in-between TCB molecule is not a real 1,2,4,5-tetrachlorobenzene. The resean may be that this TCB molecule is encapsulated in the symmetric hole formed by two TBC cores and two c-HBC molecules with the formation of four types of conformations, cooresponding to the four possibilities for removal of any one chlorine atom from 1,2,4,5-tetrachlorobenzene or of setting three chlorine atoms at \(1,2,4,5\)-positions of a benzene ring. Because that the four possibilities are equal, the probability that chlorine atom appears at each of the \(1,2,4,5\)-positions is \(3 / 4\), while that of hydrogen is \(1 / 4\) probably because the DCB were simply flipped over in the lattice and present in equal abundance. In fact, the empirical formula \(\mathrm{C}_{39} \mathrm{H}_{28.5} \mathrm{Cl}_{4.5} \mathrm{O}_{6}\) reveals that \(c\) - \(\mathrm{HBC} 3 \mathbf{3}\) is solvated with three DCB molecules in solid state.

\subsection*{4.2 X-ray crystallographic analysis of \(\boldsymbol{c}\)-HBC \(3 t\) (CCDC 984247)}

The single crystals of \(c\) - HBC 3 t was growed from the co-solvent \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOH}=1: 1\right.\), v/v) at room temperature.

A suitable orange crystal was selected and collected on a single crystal diffractometer (GEMINIE). The crystal was kept at room teperature during data collection. The structure was solved with the Olex2 program using Charge Flipping and refined with the Olex2 using Gauss-Newton minimisation.

\subsection*{4.2.1 Crystal data and structure refinement for \(\mathbf{c}\) - HBC 3 t}

Table S8 Crystal data and structure refinement for \(\boldsymbol{c}\)-HBC 3t
\begin{tabular}{ll}
\hline Empirical formula & \(\mathrm{C}_{128} \mathrm{H}_{224} \mathrm{O}_{32}\) \\
Formula weight & 2275.07 \\
Temperature \(/ \mathrm{K}\) & \(293(2)\) \\
Crystal system & triclinic \\
Space group & \(\mathrm{P}-1\) \\
\(\mathrm{a} / \AA\) & \(12.5229(7)\) \\
\(\mathrm{b} / \AA\) & \(14.2127(8)\) \\
\(\mathrm{c} / \AA\) & \(17.6666(12)\) \\
\(\alpha^{\circ}\) & \(88.113(5)\) \\
\(\beta /{ }^{\circ}\) & \(73.225(6)\) \\
\(\gamma /{ }^{\circ}\) & \(66.912(5)\) \\
Volume \(/ \AA^{3}\) & \(2757.9(3)\) \\
Z & 1 \\
\(\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}\) & 1.370 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline \(\mathrm{m} / \mathrm{mm}^{-1}\) & 0.775 \\
\(\mathrm{~F}(000)\) & 1248.0 \\
Crystal size \(/ \mathrm{mm}^{3}\) & \(0.37 \times 0.28 \times 0.36\) \\
\(2 \Theta\) range for data collection & 6.78 to \(132.08^{\circ}\) \\
Index ranges & \(-10 \leq \mathrm{h} \leq 14,-16 \leq \mathrm{k} \leq 16,-20 \leq 1 \leq 20\) \\
Reflections collected & 17313 \\
Independent reflections & \(9613[\mathrm{R}(\mathrm{int})=0.0220]\) \\
Data/restraints/parameters & \(9613 / 0 / 853\) \\
Goodness-of-fit on \(\mathrm{F}^{2}\) & 1.027 \\
Final R indexes \([\mathrm{I}>=2 \sigma(\mathrm{I})]\) & \(\mathrm{R}_{1}=0.0751, \mathrm{wR}_{2}=0.2298\) \\
Final R indexes [all data] & \(\mathrm{R}_{1}=0.0958, \mathrm{wR}_{2}=0.2653\) \\
Largest diff. peak/hole \(/ \mathrm{e} \AA^{-3}\) & \(0.36 /-0.28\) \\
\hline
\end{tabular}

\subsection*{4.2.2 Molecular structure and selected geometries for \(\boldsymbol{c}\)-HBC 3t}

Figure S6 The X-ray single crystal structure of \(c-\mathrm{HBC} 3 \mathrm{t}\)

Table S9 Bond lengths of the coronene core in \(c\) - \(\mathrm{HBC} 3 \mathrm{t}(\AA)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Hub bonds} & \multicolumn{2}{|c|}{Spoke bonds} & \multicolumn{2}{|c|}{Flank bonds} & \multicolumn{2}{|c|}{Rim bonds} \\
\hline Bond & Bond length & Bond & Bond length & Bond & Bond length & Bond & Bond length \\
\hline \(\mathrm{C}(44)-\mathrm{C}(45)\) & 1.446(3) & \(\mathrm{C}(40)-\mathrm{C}(45)\) & 1.396(3) & \(\mathrm{C}(40)-\mathrm{C}(41)\) & 1.445(3) & \(\mathrm{C}(38)-\mathrm{C}(39)\) & 1.409(3) \\
\hline \(\mathrm{C}(45)-\mathrm{C}(46)\) & 1.440(3) & \(\mathrm{C}(43)-\mathrm{C}(44)\) & 1.389(3) & \(\mathrm{C}(42)-\mathrm{C}(43)\) & 1.448(3) & \(\mathrm{C}(41)-\mathrm{C}(42)\) & 1.418(3) \\
\hline \(\mathrm{C}(44)-\mathrm{C}(46)\) & 1.439(3) & \(\mathrm{C}(37)-\mathrm{C}(46)\) & 1.399 (3) & \(\mathrm{C}(43)-\mathrm{C}(47)\) & 1.454(3) & \(\mathrm{C}(47)-\mathrm{C}(48)\) & 1.408(3) \\
\hline & & & & \(\mathrm{C}(37)-\mathrm{C}(48)\) & 1.445(3) & & \\
\hline & & & & \(\mathrm{C}(37)-\mathrm{C}(38)\) & 1.449(3) & & \\
\hline & & & & C (39)-C(40) & 1.461(3) & & \\
\hline Average & 1.442 & Average & 1.395 & Average & 1.450 & Average & 1.412 \\
\hline
\end{tabular}

Table S10 Bond lengths of the benzo units in \(c-\mathrm{HBC} 3 \mathrm{t}(\AA)\)
\begin{tabular}{cccccc}
\hline Bond & Bond length & Bond & Bond length & Bond & Bond length \\
\hline \(\mathrm{C}(39)-\mathrm{C}(52)\) & \(1.413(3)\) & \(\mathrm{C}(57)-\mathrm{C}(58)\) & \(1.363(4)\) & \(\mathrm{C}(50)-\mathrm{C}(51)\) & \(1.412(4)\) \\
\(\mathrm{C}(41)-\mathrm{C}(53)\) & \(1.422(3)\) & \(\mathrm{C}(59)-\mathrm{C}(60)\) & \(1.355(4)\) & \(\mathrm{C}(58)-\mathrm{C}(59)\) & \(1.411(4)\) \\
\(\mathrm{C}(42)-\mathrm{C}(56)\) & \(1.411(3)\) & \(\mathrm{C}(49)-\mathrm{C}(50)\) & \(1.354(3)\) & \(\mathrm{C}(54)-\mathrm{C}(55)\) & \(1.418(3)\) \\
\(\mathrm{C}(47)-\mathrm{C}(57)\) & \(1.411(4)\) & \(\mathrm{C}(51)-\mathrm{C}(52)\) & \(1.375(3)\) & & \\
\(\mathrm{C}(48)-\mathrm{C}(60)\) & \(1.424(3)\) & \(\mathrm{C}(53)-\mathrm{C}(54)\) & \(1.365(3)\) & & \\
\(\mathrm{C}(38)-\mathrm{C}(49)\) & \(1.419(3)\) & \(\mathrm{C}(55)-\mathrm{C}(56)\) & \(1.362(3)\) & & \\
Average & 1.415 & Average & 1.362 & Average & 1.421 \\
\hline
\end{tabular}

Table S11 Splay angles in the molecule of \(c\)-HBC 3t
\begin{tabular}{cc}
\hline & Splay Angle \({ }^{\circ}\) \\
\hline \(\mathrm{C}(57)-\mathrm{C}(47)-\mathrm{C}(42)-\mathrm{C}(56)\) & 41.106 \\
\(\mathrm{C}(53)-\mathrm{C}(41)-\mathrm{C}(39)-\mathrm{C}(52)\) & 38.648 \\
\(\mathrm{C}(49)-\mathrm{C}(38)-\mathrm{C}(48)-\mathrm{C}(60)\) & 40.608 \\
Average & 41.121 \\
\hline
\end{tabular}

Table S12 Torsion angles of hexoxy groups with respect to benzo-units in \(\boldsymbol{c}\) - HBC 3 t
\begin{tabular}{lclc}
\hline & Torsion angle \(/{ }^{\circ}\) & & Torsion angle \(/^{\circ}\) \\
\hline \(\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(50)-\mathrm{C}(51)\) & 65.808 & \(\mathrm{C}(19)-\mathrm{O}(4)-\mathrm{C}(55)-\mathrm{C}(54)\) & 2.289 \\
\(\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(51)-\mathrm{C}(50)\) & 6.516 & \(\mathrm{C}(25)-\mathrm{O}(5)-\mathrm{C}(58)-\mathrm{C}(59)\) & 12.016 \\
\(\mathrm{C}(13)-\mathrm{O}(3)-\mathrm{C}(54)-\mathrm{C}(55)\) & 3.894 & \(\mathrm{C}(31)-\mathrm{O}(6)-\mathrm{C}(59)-\mathrm{C}(58)\) & 18.420 \\
\hline
\end{tabular}

Table S13 Fold angles of \(c\)-HBC 3t
\begin{tabular}{ccc}
\hline Best plane-1 & Best plane-2 & Fold angle \({ }^{\circ}\) \\
\hline \(\mathrm{C}(43)-\mathrm{C}(40)-\mathrm{C}(45)-\mathrm{C}(44)\) & \(\mathrm{C}(43)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(44)\) & 18.361 \\
\(\mathrm{C}(37)-\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(40)\) & \(\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)\) & 17.891 \\
\(\mathrm{C}(37)-\mathrm{C}(44)-\mathrm{C}(46)-\mathrm{C}(43)\) & \(\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(47)-\mathrm{C}(43)\) & 17.964 \\
Average & & 18.072 \\
\hline
\end{tabular}

\subsection*{4.3 X-ray crystallographic analysis of TBTTC 4b (CCDC 984248)}

Single crystals of TBTTC \(\mathbf{4 b}\left(\mathrm{C}_{66} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{~S}_{3}\right)\) were obtained by slow evaporation of the solution of \(\mathbf{4 b}\) in a mixed solvent \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CHCl}_{3}: \mathrm{EtOH}=1: 1: 2, \mathrm{v} / \mathrm{v} / \mathrm{v}\right)\) at room temperature for 2 weeks.

A suitable crystal was selected and collected on an X-ray single crystal diffractometer (SuperNova) and the crystal was kept at \(105(7) \mathrm{K}\) during data collection. The structure was solved with the Olex2. Structure solution program using Charge Flipping and refined with the Olex2 using Gauss-Newton minimisation.

\subsection*{4.3.1 Crystal data and structure refinement for TBTTC 4b}

Table S14 Crystal data and structure refinement for TBTTC 4b
\begin{tabular}{ll}
\hline Empirical formula & \(\mathrm{C}_{66} \mathrm{H}_{66} \mathrm{O}_{6} \mathrm{~S}_{3}\) \\
Formula weight & 1051.37 \\
Temperature \(/ \mathrm{K}\) & \(105(7)\) \\
Crystal system & triclinic \\
Space group & \(\mathrm{P}-1\) \\
\(\mathrm{a} / \AA\) & \(12.1545(19)\) \\
\(\mathrm{b} / \AA\) & \(13.507(2)\) \\
\(\mathrm{c} / \AA\) & \(19.3873(17)\) \\
\(\alpha /{ }^{\circ}\) & \(98.703(11)\) \\
\(\beta /{ }^{\circ}\) & \(95.789(10)\) \\
\(\gamma^{\circ}\) & \(108.038(15)\) \\
\(\mathrm{Volume} / \AA^{3}\) & \(2954.4(8)\) \\
Z & 2 \\
\(\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}\) & 1.182 \\
\(\mathrm{~m} / \mathrm{mm}^{-1}\) & 0.175 \\
\(\mathrm{~F}(000)\) & 1116.0 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Crystal size \(/ \mathrm{mm}^{3}\) & \(0.3 \times 0.26 \times 0.25\) \\
\(2 \Theta\) range for data collection & 6 to \(52.04^{\circ}\) \\
Index ranges & \(-15 \leq \mathrm{h} \leq 14,-16 \leq \mathrm{k} \leq 16,-22 \leq 1 \leq 23\) \\
Reflections collected & 21794 \\
Independent reflections & \(11472[\mathrm{R}(\mathrm{int})=0.0387]\) \\
Data/restraints/parameters & \(11472 / 126 / 740\) \\
Goodness-of-fit on \(\mathrm{F}^{2}\) & 0.946 \\
Final R indexes [I>=2 \(\sigma(\mathrm{I})]\) & \(\mathrm{R}_{1}=0.0734, \mathrm{wR}_{2}=0.1964\) \\
Final R indexes [all data] & \(\mathrm{R}_{1}=0.1000, \mathrm{wR}_{2}=0.2162\) \\
Largest diff. peak/hole \(/ \mathrm{e} \AA^{-3}\) & \(0.50 /-0.57\) \\
\hline
\end{tabular}

\subsection*{4.3.2 Molecular structure and selected geometrical data of TBTTC 4b}

\subsection*{4.3.2 Molecular structure of TBTTC 4b}

Figure S7 The X-ray single crystal structure of TBTTC 4b (Hydrogen bonds are symbolized by dashed lines)

Table S15. Bond lengthes of the coronene core in TBTTC 4b (\(\AA\))
\begin{tabular}{cccccccc}
\hline \multicolumn{2}{c}{ Bonds in the hub } & \multicolumn{2}{c}{ Spoke bonds } & \multicolumn{2}{c}{ Flank bonds } & \multicolumn{2}{c}{ Rim bonds } \\
\hline \multicolumn{1}{c}{ Bond } & Length & Bond & Length & Bond & Length & Bond & Length \\
\(\mathrm{C}(12)-\mathrm{C}(25)\) & \(1.442(4)\) & \(\mathrm{C}(11)-\mathrm{C}(12)\) & \(1.402(4)\) & \(\mathrm{C}(10)-\mathrm{C}(11)\) & \(1.447(4)\) & \(\mathrm{C}(2)-\mathrm{C}(3)\) & \(1.396(4)\) \\
\(\mathrm{C}(24)-\mathrm{C}(25)\) & \(1.439(4)\) & \(\mathrm{C}(4)-\mathrm{C}(13)\) & \(1.396(4)\) & \(\mathrm{C}(11)-\mathrm{C}(28)\) & \(1.421(4)\) & \(\mathrm{C}(30)-\mathrm{C}(31)\) & \(1.402(4)\) \\
\(\mathrm{C}(23)-\mathrm{C}(24)\) & \(1.444(4)\) & \(\mathrm{C}(14)-\mathrm{C}(15)\) & \(1.409(4)\) & \(\mathrm{C}(5)-\mathrm{C}(6)\) & \(1.415(4)\) & \(\mathrm{C}(27)-\mathrm{C}(28)\) & \(1.399(4)\) \\
\(\mathrm{C}(14)-\mathrm{C}(23)\) & \(1.442(4)\) & \(\mathrm{C}(22)-\mathrm{C}(23)\) & \(1.419(4)\) & \(\mathrm{C}(2)-\mathrm{C}(4)\) & \(1.437(4)\) & \(\mathrm{C}(16)-\mathrm{C}(21)\) & \(1.402(4)\) \\
\(\mathrm{C}(13)-\mathrm{C}(14)\) & \(1.454(4)\) & \(\mathrm{C}(24)-\mathrm{C}(29)\) & \(1.418(4)\) & \(\mathrm{C}(3)-\mathrm{C}(15)\) & \(1.437(4)\) & \(\mathrm{C}(32)-\mathrm{C}(33)\) & \(1.413(4)\) \\
\(\mathrm{C}(12)-\mathrm{C}(13)\) & \(1.436(4)\) & \(\mathrm{C}(25)-\mathrm{C}(26)\) & \(1.423(4)\) & \(\mathrm{C}(15)-\mathrm{C}(16)\) & \(1.453(4)\) & \(\mathrm{C}(5)-\mathrm{C}(10)\) & \(1.399(4)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \(\mathrm{C}(21)-\mathrm{C}(22)\) & 1.447(4) & & \\
\hline & & & & \(\mathrm{C}(22)-\mathrm{C}(31)\) & 1.429(4) & & \\
\hline & & & & \(\mathrm{C}(29)-\mathrm{C}(30)\) & 1.419(4) & & \\
\hline & & & & \(\mathrm{C}(29)-\mathrm{C}(32)\) & 1.446 (4) & & \\
\hline & & & & C(26)-C(33) & 1.443 (4) & & \\
\hline & & & & C(26)-C(27) & 1.434(4) & & \\
\hline Average & 1.443 & Average & 1.411 & Average & 1.436 & Average & 1.402 \\
\hline
\end{tabular}

Table S16 Bond lengthes of thieno- and benzo-units in TBTTC 4b
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bond & Length/ \(\AA\) & Bond & Length/ \(\AA\) & Bond & Length/ \(\AA\) \\
\hline \multicolumn{6}{|c|}{In the thieno-units} \\
\hline S(1B)-C(2) & 1.663(3) & S(1B)-C(62B) & 1.707(18) & & \\
\hline \(\mathrm{S}(2 \mathrm{~B})-\mathrm{C}(31)\) & \(1.676(3)\) & \(\mathrm{S}(2 \mathrm{~B})-\mathrm{C}(64 \mathrm{~B})\) & 1.717(10) & & \\
\hline \(\mathrm{S}(3 \mathrm{~B})-\mathrm{C}(63 \mathrm{~B})\) & 1.701(17) & S(3B)-C(27) & 1.682(3) & & \\
\hline Average & 1.680 & Average & 1.702 & & \\
\hline \(\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(3)\) & 1.713(3) & \(\mathrm{C}(62 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})\) & 1.323 & & \\
\hline \(\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(28)\) & 1.698(3) & \(\mathrm{C}(63 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})\) & 1.343 & & \\
\hline \(\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(30)\) & 1.697(3) & \(\mathrm{C}(64 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})\) & 1.301 & & \\
\hline Average: & 1.703 & Average & 1.322 & & \\
\hline \multicolumn{6}{|c|}{In the benzo-units} \\
\hline \(\mathrm{C}(16)-\mathrm{C}(21)\) & 1.412 (4) & \(\mathrm{C}(16)-\mathrm{C}(17)\) & 1.407(4) & \(\mathrm{C}(17)-\mathrm{C}(18)\) & 1.377(4) \\
\hline \(\mathrm{C}(32)-\mathrm{C}(33)\) & 1.413(4) & \(\mathrm{C}(20)-\mathrm{C}(21)\) & 1.418 (4) & \(\mathrm{C}(19)-\mathrm{C}(20)\) & \(1.369(4)\) \\
\hline C(32)-C(33) & 1.399(4) & \(\mathrm{C}(32)-\mathrm{C}(37)\) & 1.411(4) & \(\mathrm{C}(35)-\mathrm{C}(36)\) & 1.428 (4) \\
\hline Average & 1.412 & \(\mathrm{C}(33)-\mathrm{C}(34)\) & 1.427(4) & \(\mathrm{C}(36)-\mathrm{C}(37)\) & \(1.374(4)\) \\
\hline C(18)-C(19) & 1.408(5) & \(\mathrm{C}(9)-\mathrm{C}(10)\) & 1.431(4) & \(\mathrm{C}(8)-\mathrm{C}(9)\) & 1.370 (4) \\
\hline \(\mathrm{C}(35)-\mathrm{C}(36)\) & 1.428(4) & \(\mathrm{C}(5)-\mathrm{C}(6)\) & \(1.415(4)\) & \(\mathrm{C}(6)-\mathrm{C}(7)\) & 1.381(4) \\
\hline \(\mathrm{C}(7)-\mathrm{C}(8)\) & 1.419(5) & Average & 1.418 & Average & 1.383 \\
\hline Average & 1.418 & & & & \\
\hline
\end{tabular}
\(\mathrm{C}(3 \mathrm{~B})=\mathrm{S}(2 \mathrm{~A}) ; \mathrm{C}(3 \mathrm{~B})=\mathrm{C}(2 \mathrm{~B}) ; \mathrm{C}(1 \mathrm{~B})=\mathrm{S}(1 \mathrm{~A})\)

Table S17 The splay angles at the bay regions in TBTTC 4b
\begin{tabular}{cc|cc}
\hline All-carbon bays & Torsion angle \(/{ }^{\circ}\) & Sulfur-containing bays & Torsion angle \(/{ }^{\circ}\) \\
\hline \(\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(28)-\mathrm{C}(11)-\mathrm{C}(9)\) & 23.155 & \(\mathrm{~S}(1 \mathrm{~B})-\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{C}(6)\) & 34.279 \\
\(\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(28)-\mathrm{C}(10)-\mathrm{C}(9)\) & 31.496 & \(\mathrm{~S}(2 \mathrm{~B})-\mathrm{C}(31)-\mathrm{C}(21)-\mathrm{C}(20)\) & 24.647 \\
\(\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(30)-\mathrm{C}(32)-\mathrm{C}(37)\) & 32.776 & \(\mathrm{~S}(3 \mathrm{~B})-\mathrm{C}(27)-\mathrm{C}(34)-\mathrm{C}(33)\) & 21.419 \\
Average & 26.782 & Average & 29.142 \\
\hline
\end{tabular}

Table S18 Dihedronal angles of the rings between central and extior rings in TBTTC 4b
\begin{tabular}{lllll}
\hline Entry & Best plane-1 & Best plane-2 & \begin{tabular}{l}
Fold \\
angle \({ }^{\circ}\)
\end{tabular} \\
\hline Thieno-fused rings & 1 & \(C(15)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)\) & \(\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(4)\) & 12.957 \\
& 2 & \(\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(25)-\mathrm{C}(26)\) & \(\mathrm{C}(11)-\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)\) & 13.250 \\
& 3 & \(\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)\) & \(\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(22)\) & 11.439 \\
Benzo-fused rings & 4 & \(\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(29)\) & \(\mathrm{C}(26)-\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(29)\) & 13.509 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline 5 & \(\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(14)-\mathrm{C}(15)\) & \(\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(15)\) & 13.572 \\
& 6 & \(\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)\) & \(\mathrm{C}(4)-\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)\) & 15.570 \\
\hline
\end{tabular}

Table S19 The torsion angles of butoxy groups with the benzo units in TBTTC 4b
\begin{tabular}{lc|lr}
\hline \multicolumn{1}{c|}{ Selected angle } & \begin{tabular}{c}
Torsion \\
angle \(/{ }^{\circ}\)
\end{tabular} & Selected angle & \begin{tabular}{r}
Torsion \\
angle \(/{ }^{\circ}\)
\end{tabular} \\
\hline \(\mathrm{C}(38)-\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(19)\) & 8.548 & \(\mathrm{C}(50)-\mathrm{O}(4)-\mathrm{C}(35)-\mathrm{C}(36)\) & 8.061 \\
\(\mathrm{C}(42)-\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)\) & 9.130 & \(\mathrm{C}(54)-\mathrm{O}(5)-\mathrm{C}(36)-\mathrm{C}(35)\) & 1.291 \\
\(\mathrm{C}(46)-\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(7)\) & 9.501 & \(\mathrm{C}(58)-\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(18)\) & 75.716 \\
\hline
\end{tabular}

\subsection*{4.3.2 Packing diagram of TBTTC 4b}

TBTTC 4b is a twisted, chiral core molecule. \({ }^{1} \mathrm{H}\) NMR spectrum shows two well-resolved doublets assignable to two vicinal protons of the thieno unit, indicating its three-fold symmetry in solution. In the solid state, however, the \(C_{3}\) symmetry is destroyed. In fact, no structural data in the equivalent part in the molecule is identical. Three intramolecular H-bonds are observed in the molecule with the H-S distances of \(2.305 \AA, 2.325 \AA\), and \(2.438 \AA\).

In crystals, two opposite enantimers of this chiral core compounds form a racemic dimer (Figure S9). Between two enantiomeric molecules, the center-center distance is \(3.710 \AA\); the cofacial separation is \(3.439 \AA\). Two molecules are slipped along a tetraceno[2,3-b]thiophene motif by \(1.390 \AA\), close to a half width of benzene ring. Two enantiomers form a shape-complementarity via \(\pi\)-stacking interactions in a centrosymmetric head-to-tail arrangement.

Figure S8 The racemic dimer of two opposite enantiomers of TBTTC 4b (left: side view; right: view of two neighboring molecules projected onto the planes)

\subsection*{4.4 X-ray crystallographic analysis of HBCC 5c (CCDC 984249)}

The single crystals of \(\mathrm{HBCC} 5 \mathbf{c}\) were growed from a mixed solvent \(\left(\mathrm{CHCl}_{3}: \mathrm{EtOH}=1: 1, \mathrm{v} / \mathrm{v}\right)\) at room temperature.

A suitable crystal was selected and collected on a single crystal diffractometer (SuperNova). The crystal was kept at \(100(10) \mathrm{K}\) during data collection. The structure was solved with the Olex2 program using charge flipping and refined with the Olex2 using Gauss-Newton minimization. \({ }^{[17]}\)

\subsection*{4.4.1 Crystal data and structure refinement for HBCC 5c}

Table S20 Crystal data and structure refinement for HBCC 5c
\begin{tabular}{|c|c|}
\hline Empirical formula & \(\mathrm{C}_{134} \mathrm{H}_{146} \mathrm{Cl}_{6} \mathrm{O}_{6}\) \\
\hline Formula weight & 2065.21 \\
\hline Temperature/K & 100.00(10) \\
\hline Crystal system & triclinic \\
\hline Space group & P-1 \\
\hline \(\mathrm{a} / \AA\) & 14.3699(2) \\
\hline b/ \(\AA\) & 18.8611(4) \\
\hline c/A & 20.7510(4) \\
\hline \(\alpha /{ }^{\circ}\) & 91.3836(17) \\
\hline \(\beta /{ }^{\circ}\) & 93.8054(15) \\
\hline \(\gamma^{\circ}\) & 100.7521(16) \\
\hline Volume/ \(/ \AA^{3}\) & 5509.42(19) \\
\hline Z & 2 \\
\hline \(\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}\) & 1.245 \\
\hline \(\mathrm{m} / \mathrm{mm}^{-1}\) & 1.866 \\
\hline F(000) & 2200.0 \\
\hline Crystal size \(/ \mathrm{mm}^{3}\) & \(0.34 \times 0.3 \times 0.23\) \\
\hline \(2 \Theta\) range for data collection & 6.52 to \(145.24^{\circ}\) \\
\hline Index ranges & \(-12 \leq \mathrm{h} \leq 17,-23 \leq \mathrm{k} \leq 23,-25 \leq 1 \leq 25\) \\
\hline \(\mu(\mathrm{CuK} \alpha)\) & \(1.866 \mathrm{~mm}^{-1}\) \\
\hline Reflections collected & 70899 \\
\hline Independent reflections & 21767[R(int) \(=0.0344\)] \\
\hline Data/restraints/parameters & 21767/65/1347 \\
\hline Goodness-of-fit on \(\mathrm{F}^{2}\) & 1.169 \\
\hline Final R indexes \([1>=2 \sigma(\mathrm{I})]\) & \(\mathrm{R}_{1}=0.0964, \mathrm{wR}_{2}=0.2761\) \\
\hline Final R indexes [all data] & \(\mathrm{R}_{1}=0.1115, \mathrm{wR}_{2}=0.2967\) \\
\hline Largest diff. peak/hole / e \(\AA^{-3}\) & 1.74/-1.56 \\
\hline
\end{tabular}

\subsection*{4.4.2 Molecular structure and selected geometries of for HBCC 5c}

Figure S9 The X-ray single crystal structure of \(\operatorname{HBCC} 5 \mathbf{c}\left(\mathrm{R}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right)\)
The all-benzenoid nature of this aromatic core is observed from the difference between inter- and intra-benzenoid C-C bonds (1.435-1.469 and 1.380-1.425 \(\AA\), respectively).

Table S21 The bond lengths of inter- and intra-benzenoid \(\mathrm{C}-\mathrm{C}\) bonds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Intra-benzenoid \(\mathrm{C}-\mathrm{C}\) bonds (average \(1.409 \AA\))} & \multicolumn{3}{|c|}{Inter-benzenoid \(\mathrm{C}-\mathrm{C}\) bonds (average \(1.448 \AA\))} \\
\hline Ring & Bond & Length/ \(\AA\) & Ring & Bond & Length/ \(\AA\) & Ring & Bond & Length/ \(/\) ¢ \\
\hline 1 & \(\mathrm{C}(1)-\mathrm{C}(2)\) & 1.405(4) & 7 & \(\mathrm{C}(20)-\mathrm{C}(21)\) & 1.411(4) & 13 & \(\mathrm{C}(1)-\mathrm{C}(35)\) & 1.469(4) \\
\hline 1 & \(\mathrm{C}(2)-\mathrm{C}(3)\) & 1.394(4) & 7 & \(\mathrm{C}(21)-\mathrm{C}(16)\) & \(1.425(4)\) & 13, 14 & \(\mathrm{C}(6)-\mathrm{C}(7)\) & \(1.439(4)\) \\
\hline 1 & \(\mathrm{C}(3)-\mathrm{C}(4)\) & 1.381(4) & 7 & \(\mathrm{C}(16)-\mathrm{C}(15)\) & 1.414(4) & 13, 22 & \(\mathrm{C}(33)-\mathrm{C}(34)\) & \(1.445(4)\) \\
\hline 1 & \(\mathrm{C}(4)-\mathrm{C}(5)\) & \(1.396(4)\) & 7 & \(\mathrm{C}(15)-\mathrm{C}(18)\) & 1.408(4) & 14 & \(\mathrm{C}(5)-\mathrm{C}(10)\) & \(1.455(4)\) \\
\hline 1 & \(\mathrm{C}(5)-\mathrm{C}(6)\) & \(1.425(4)\) & 7 & \(\mathrm{C}(18)-\mathrm{C}(19)\) & \(1.387(4)\) & 14, 15 & \(\mathrm{C}(8)-\mathrm{C}(9)\) & \(1.443(4)\) \\
\hline 1 & \(\mathrm{C}(6)-\mathrm{C}(1)\) & 1.420(4) & 7 & \(\mathrm{C}(19)-\mathrm{C}(20)\) & \(1.422(4)\) & 15 & \(\mathrm{C}(15)-\mathrm{C}(14)\) & \(1.459(4)\) \\
\hline 2 & \(\mathrm{C}(9)-\mathrm{C}(10)\) & 1.412(4) & 8 & \(\mathrm{C}(68)-\mathrm{C}(69)\) & \(1.387(4)\) & 15,23 & \(\mathrm{C}(16)-\mathrm{C}(17)\) & 1.441 (4) \\
\hline 2 & \(\mathrm{C}(10)-\mathrm{C}(11)\) & \(1.406(4)\) & 8 & C(68)-C(52) & \(1.422(4)\) & 16 & \(\mathrm{C}(20)-\mathrm{C}(22)\) & 1.463(4) \\
\hline 2 & \(\mathrm{C}(11)-\mathrm{C}(12)\) & 1.387(4) & 8 & C(52)-C(53) & 1.421 (4) & 16, 17 & \(\mathrm{C}(27)-\mathrm{C}(28)\) & \(1.438(4)\) \\
\hline 2 & \(\mathrm{C}(12)-\mathrm{C}(13)\) & \(1.392(4)\) & 8 & C(53)-C(54) & \(1.422(4)\) & 16, 23 & \(\mathrm{C}(21)-\mathrm{C}(29)\) & 1.444(4) \\
\hline 2 & \(\mathrm{C}(13)-\mathrm{C}(14)\) & 1.404(4) & 8 & \(\mathrm{C}(54)-\mathrm{C}(67)\) & \(1.419(4)\) & 17 & \(\mathrm{C}(26)-\mathrm{C}(47)\) & 1.467(4) \\
\hline 2 & C(14)-C(9) & \(1.416(4)\) & 8 & \(\mathrm{C}(67)-\mathrm{C}(68)\) & \(1.419(4)\) & 17, 18 & \(\mathrm{C}(45)-\mathrm{C}(46)\) & \(1.442(4)\) \\
\hline 3 & \(\mathrm{C}(25)-\mathrm{C}(26)\) & 1.401(4) & 9 & \(\mathrm{C}(38)-\mathrm{C}(37)\) & \(1.408(4)\) & 18 & \(\mathrm{C}(51)-\mathrm{C}(52)\) & \(1.460(4)\) \\
\hline 3 & C(26)-C(27) & \(1.416(4)\) & 9 & \(\mathrm{C}(37)-\mathrm{C}(36)\) & \(1.389(4)\) & 18, 24 & \(\mathrm{C}(44)-\mathrm{C}(53)\) & 1.451 (4) \\
\hline 3 & \(\mathrm{C}(27)-\mathrm{C}(22)\) & \(1.420(4)\) & 9 & \(\mathrm{C}(36)-\mathrm{C}(35)\) & \(1.409(4)\) & 19 & \(\mathrm{C}(66)-\mathrm{C}(67)\) & \(1.454(4)\) \\
\hline 3 & \(\mathrm{C}(22)-\mathrm{C}(23)\) & 1.403(4) & 9 & C(35)-C(34) & \(1.429(4)\) & 19, 20 & \(\mathrm{C}(56)-\mathrm{C}(65)\) & \(1.442(4)\) \\
\hline 3 & \(\mathrm{C}(23)-\mathrm{C}(24)\) & 1.394(4) & 9 & \(\mathrm{C}(34)-\mathrm{C}(39)\) & \(1.429(4)\) & 19, 24 & \(\mathrm{C}(55)-\mathrm{C}(54)\) & \(1.442(4)\) \\
\hline 3 & \(\mathrm{C}(24)-\mathrm{C}(25)\) & \(1.397(4)\) & 9 & \(\mathrm{C}(39)-\mathrm{C}(38)\) & \(1.419(4)\) & 20 & \(\mathrm{C}(63)-\mathrm{C}(64)\) & \(1.459(4)\) \\
\hline 4 & \(\mathrm{C}(46)-\mathrm{C}(47)\) & 1.421(4) & 10 & \(\mathrm{C}(32)-\mathrm{C}(33)\) & 1.423 (4) & 20, 21 & \(\mathrm{C}(57)-\mathrm{C}(58)\) & \(1.435(4)\) \\
\hline 4 & \(\mathrm{C}(47)-\mathrm{C}(48)\) & \(1.395(4)\) & 10 & \(\mathrm{C}(33)-\mathrm{C}(7)\) & 1.418(4) & 21 & \(\mathrm{C}(38)-\mathrm{C}(59)\) & 1.463(4) \\
\hline
\end{tabular}
\begin{tabular}{llllcllll}
\hline 4 & \(\mathrm{C}(48)-\mathrm{C}(49)\) & \(1.399(4)\) & 10 & \(\mathrm{C}(7)-\mathrm{C}(8)\) & \(1.413(4)\) & 21,22 & \(\mathrm{C}(40)-\mathrm{C}(39)\) & \(1.446(4)\) \\
4 & \(\mathrm{C}(49)-\mathrm{C}(50)\) & \(1.380(4)\) & 10 & \(\mathrm{C}(8)-\mathrm{C}(17)\) & \(1.412(4)\) & 22,25 & \(\mathrm{C}(41)-\mathrm{C}(32)\) & \(1.435(4)\) \\
4 & \(\mathrm{C}(50)-\mathrm{C}(51)\) & \(1.413(4)\) & 10 & \(\mathrm{C}(17)-\mathrm{C}(31)\) & \(1.417(4)\) & 23,25 & \(\mathrm{C}(30)-\mathrm{C}(31)\) & \(1.435(4)\) \\
4 & \(\mathrm{C}(51)-\mathrm{C}(46)\) & \(1.419(4)\) & 10 & \(\mathrm{C}(31)-\mathrm{C}(32)\) & \(1.416(4)\) & 24,25 & \(\mathrm{C}(42)-\mathrm{C}(43)\) & \(1.435(4)\) \\
5 & \(\mathrm{C}(70)-\mathrm{C}(71)\) & \(1.386(4)\) & 11 & \(\mathrm{C}(44)-\mathrm{C}(45)\) & \(1.414(4)\) & & & \\
5 & \(\mathrm{C}(71)-\mathrm{C}(72)\) & \(1.389(4)\) & 11 & \(\mathrm{C}(45)-\mathrm{C}(28)\) & \(1.423(4)\) & & & \\
5 & \(\mathrm{C}(72)-\mathrm{C}(64)\) & \(1.398(4)\) & 11 & \(\mathrm{C}(28)-\mathrm{C}(29)\) & \(1.412(4)\) & & \\
5 & \(\mathrm{C}(64)-\mathrm{C}(65)\) & \(1.412(4)\) & 11 & \(\mathrm{C}(29)-\mathrm{C}(30)\) & \(1.415(4)\) & & \\
5 & \(\mathrm{C}(65)-\mathrm{C}(66)\) & \(1.412(4)\) & 11 & \(\mathrm{C}(30)-\mathrm{C}(43)\) & \(1.424(4)\) & & \\
5 & \(\mathrm{C}(66)-\mathrm{C}(70)\) & \(1.417(4)\) & 11 & \(\mathrm{C}(43)-\mathrm{C}(44)\) & \(1.423(4)\) & & \\
6 & \(\mathrm{C}(63)-\mathrm{C}(62)\) & \(1.390(4)\) & 12 & \(\mathrm{C}(55)-\mathrm{C}(56)\) & \(1.411(4)\) & & \\
6 & \(\mathrm{C}(62)-\mathrm{C}(61)\) & \(1.394(4)\) & 12 & \(\mathrm{C}(56)-\mathrm{C}(57)\) & \(1.421(4)\) & & \\
6 & \(\mathrm{C}(61)-\mathrm{C}(60)\) & \(1.388(4)\) & 12 & \(\mathrm{C}(57)-\mathrm{C}(40)\) & \(1.415(4)\) & & \\
6 & \(\mathrm{C}(60)-\mathrm{C}(59)\) & \(1.409(4)\) & 12 & \(\mathrm{C}(40)-\mathrm{C}(41)\) & \(1.417(4)\) & & \\
6 & \(\mathrm{C}(59)-\mathrm{C}(58)\) & \(1.412(4)\) & 12 & \(\mathrm{C}(41)-\mathrm{C}(42)\) & \(1.422(4)\) & & \\
6 & \(\mathrm{C}(58)-\mathrm{C}(63)\) & \(1.423(4)\) & 12 & \(\mathrm{C}(42)-\mathrm{C}(55)\) & \(1.421(4)\) & & & \\
\hline
\end{tabular}

Table S22 Torsion angles in the bay regions for HBCC 5c*
\begin{tabular}{ccc|ccc}
\hline No & Atom-atom, atom-atom & \({\text { Torsion angle } /{ }^{\circ}}^{2}\) & No & Atom-atom, atom-atom & Torsion angle \(/{ }^{\circ}\) \\
\hline I & \(\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(35)-\mathrm{C}(36)\) & 3.435 & VI & \(\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(69)\) & 6.810 \\
II & \(\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)\) & 8.660 & VII & \(\mathrm{C}(68)-\mathrm{C}(67)-\mathrm{C}(66)-\mathrm{C}(70)\) & 24.085 \\
III & \(\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)\) & 22.882 & VIII & \(\mathrm{C}(72)-\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(62)\) & 17.995 \\
IV & \(\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{C}(23)\) & 17.748 & IX & \(\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{C}(38)-\mathrm{C}(37)\) & 17.851 \\
V & \(\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(47)-\mathrm{C}(48)\) & 10.575 & & & \\
\hline
\end{tabular}
* Only one twist angle at bay region is less than \(5^{\circ}\).

Table S23 Torsion angles of hexoxy with the attached benzene ring in HBCC 5c
\begin{tabular}{cc|cc}
\hline & Torsion angle \(/^{\circ}\) & & Torsion angle \(/^{\circ}\) \\
\hline \(\mathrm{C}(97)-\mathrm{O}(1)-\mathrm{C}(37)-\mathrm{C}(36)\) & 82.019 & \(\mathrm{C}(115)-\mathrm{O}(4)-\mathrm{C}(19)-\mathrm{C}(18)\) & 82.226 \\
\(\mathrm{C}(103)-\mathrm{O}(2)-\mathrm{C}(36)-\mathrm{C}(37)\) & 78.346 & \(\mathrm{C}(121)-\mathrm{O}(5)-\mathrm{C}(69)-\mathrm{C}(68)\) & 67.970 \\
\(\mathrm{C}(109)-\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(19)\) & 69.581 & \(\mathrm{C}(127)-\mathrm{O}(6)-\mathrm{C}(68)-\mathrm{C}(69)\) & 87.020 \\
\hline
\end{tabular}

Table S24 Intermolecular CH \(\cdots \pi\) interactions between two dimers of HBCC 5c
\begin{tabular}{cccccc}
\hline \(\mathrm{H}(\mathrm{C})\) atom & Ring faced by H atom & \begin{tabular}{c}
\(\mathrm{CH} \cdots \pi\) plane \\
distance \(/ \AA\)
\end{tabular} & \(d_{\mathrm{cH}}\) & \(\theta /{ }^{\circ}\) & Project \\
\hline \(\mathrm{H}(\mathrm{C} 109)\) & \(\mathrm{C}(29)-\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(31)-\mathrm{C}(30)\) & 2.930 & 2.933 & 87.59 & 0.123 \\
\(\mathrm{H}(\mathrm{C} 110)\) & \(\mathrm{C}(28)-\mathrm{C}-\mathrm{C}(29)-(45)-\mathrm{C}(44)-\mathrm{C}(43)-(30)\) & 2.676 & 2.680 & 86.86 & 0.147 \\
\(\mathrm{H}(\mathrm{C} 111)\) & \(\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)\) & 2.820 & 2.835 & 84.18 & 0.287 \\
\(\mathrm{H}(\mathrm{C} 112)\) & \(\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)\) & 2.770 & 2.776 & 86.15 & 0.186 \\
\(\mathrm{H}(\mathrm{C} 113)\) & \(\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)\) & 2.706 & 2.750 & 79.71 & 0.491 \\
\(\mathrm{H}(\mathrm{C} 114)\) & \(\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)\) & 2.790 & 2.806 & 83.98 & 0.294 \\
\(\mathrm{H}(\mathrm{C} 115)\) & \(\mathrm{C}(01)-\mathrm{C}(06)-\mathrm{C}(07)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)\) & 2.671 & 2.696 & 82.22 & 0.365 \\
\(\mathrm{H}(\mathrm{C} 116)\) & \(\mathrm{C}(01)-\mathrm{C}(06)-\mathrm{C}(07)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)\) & 2.671 & 2.696 & 82.22 & 0.365 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
\hline \(\mathrm{H}(\mathrm{C} 117)\) & \(\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)\) & 2.942 & 2.984 & 80.29 & 0.503 \\
\(\mathrm{H}(\mathrm{C} 118)\) & \(\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)\) & 2.838 & 2.852 & 84.23 & 0.287 \\
\(\mathrm{H}(\mathrm{C} 119)\) & \(\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)\) & 2.987 & 3.119 & 73.70 & 0.896 \\
Average & & 2.800 & 2.829 & & \\
\hline
\end{tabular}

\subsection*{4.4.3 Crystal packing of HBCC 5c}

Figure S10 illustrates the \(\pi-\pi\) dimer and the \(\mathrm{C}-\mathrm{H} \cdots \pi\) dimer of \(\mathrm{HBCC} \mathbf{5 c}\). The \(\pi-\pi\) dimer is stabilized by the shape complementary \(\pi-\pi\) stacking interactions between two opposite conformers, which associate the molecules into centrosymmetrically related pairs (racemates). Between two \(\pi-\pi\) dimers, two neighboring molecules are held together by a series of 22 coorperative intermolecular \(\mathrm{C}-\mathrm{H}^{\cdots} \pi\) interactions between the hydrogens of the aliphatic long chains and the benzene rings of the large \(\pi\)-system, forming a \(\mathrm{C}-\mathrm{H}^{\cdots} \pi\) dimer around an inversion center. Two terminal methyl groups, which are denoted in green cycles in Figure S11, do not participate the intermolecular \(\mathrm{C}-\mathrm{H} \cdots \pi\) interactions since they are positioned out off the rims of the \(\pi\)-systems. Notice the bent conformation of the hexoxy groups which follow the surface topography of the adjacent aromatic core, keeping the distance of 2.671-2.987 \(\AA\) between an aliphatic H atom and the \(\pi\)-plane of the nearest ring that the H atom is facing. All these \(\mathrm{C}-\mathrm{H} \cdots \pi\) distances are within the common used cutoff distance \((3.05 \AA)^{[18]}\) for \(\mathrm{C}-\mathrm{H} \cdots \pi\) interactions.

Figure S10 The \(\pi-\pi\) dimer and the \(\mathrm{C}-\mathrm{H} \cdots \pi\) dimer of HBCC 5 c

Figure S11 The shape complementary \(\pi-\pi\) dimer and the \(\mathrm{C}-\mathrm{H} \cdots \pi\) dimer of HBCC \(\mathbf{5 c}\) (left: filling mode; right: tube mode) (Hydrogens and other substituents on the aromatic cores are omitted for clarity)

\section*{5 Photophysical properties and thermal stability}

\subsection*{5.1 UV-Vis spectra of the representative \(\boldsymbol{c}\)-HBCs and TBTTCs}

Table 25 UV-Vis spectra of some \(\boldsymbol{c}\) - HBCs and TBTCCs (in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.0 \times 10^{-6} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Product & \(\mathrm{R}^{1} / \mathrm{R}^{2}\) & \(\mathrm{R}^{3} / \mathrm{R}^{4}\) or R & \(\lambda_{\text {max }} / \mathrm{nm}\) & \(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) & \(\lambda_{\text {max }} / \mathrm{nm}\) & \(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) \\
\hline HBC 3a & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & 277 & 135000 & 389 & 231000 \\
\hline HBC 3b & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & \(\mathrm{CH}_{3} / \mathrm{CH}_{3}\) & 276 & 95000 & 386 & 152000 \\
\hline HBC 3e & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & \(\mathrm{CH}_{3} / \mathrm{H}\) & 275 & 95000 & 386 & 159000 \\
\hline HBC 3h & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & Cl/H & 277 & 62000 & 390 & 103000 \\
\hline HBC 3i & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & Br/H & 279 & 48000 & 391 & 81000 \\
\hline HBC 3k & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & H/H & 275 & 111000 & 385 & 186000 \\
\hline HBC 31 & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OC}_{4} \mathrm{H}_{9}\) & 278 & 129000 & 390 & 207000 \\
\hline HBC 3m & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & \(\mathrm{OC}_{8} \mathrm{H}_{17} / \mathrm{OC}_{8} \mathrm{H}_{17}\) & 278 & 107000 & 391 & 195000 \\
\hline HBC 3n & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & \(\mathrm{OC}_{12} \mathrm{H}_{25} / \mathrm{OC}_{12} \mathrm{H}_{25}\) & 279 & 757000 & 391 & 149000 \\
\hline HBC 30 & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OC}_{4} \mathrm{H}_{9}\) & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OC}_{4} \mathrm{H}_{9}\) & 279 & 124000 & 392 & 215000 \\
\hline HBC 3p & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OC}_{4} \mathrm{H}_{9}\) & \(\mathrm{CH}_{3} / \mathrm{CH}_{3}\) & 278 & 145000 & 388 & 242000 \\
\hline HBC 3r & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OC}_{4} \mathrm{H}_{9}\) & Br/H & 279 & 67000 & 394 & 81000 \\
\hline HBC 3t & \(\mathrm{OC}_{6} \mathrm{H}_{13} / \mathrm{OC}_{6} \mathrm{H}_{13}\) & \(\mathrm{OC}_{6} \mathrm{H}_{13} / \mathrm{OC}_{6} \mathrm{H}_{13}\) & 279 & 106000 & 392 & 183000 \\
\hline HBC 3v & \(\mathrm{OC}_{12} \mathrm{H}_{25} / \mathrm{OC}_{12} \mathrm{H}_{25}\) & \(\mathrm{OC}_{12} \mathrm{H}_{25} / \mathrm{OC}_{12} \mathrm{H}_{25}\) & 280 & 63000 & 391 & 125000 \\
\hline HBC 3w & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OCH}_{3}\) & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OCH}_{3}\) & 278 & 119000 & 391 & 183000 \\
\hline TBTTC 4b & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OC}_{4} \mathrm{H}_{9}\) & H & 271 & 75000 & 382 & 113000 \\
\hline TBTTC 4c & \(\mathrm{OC}_{6} \mathrm{H}_{13} / \mathrm{OC}_{6} \mathrm{H}_{13}\) & H & 271 & 88000 & 383 & 112000 \\
\hline
\end{tabular}

Table S26 UV-Vis spectra of the HBCCs (in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.0 \times 10^{-6} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\))
\begin{tabular}{lllcllllll}
\hline Product & \(\mathrm{R}^{1} / \mathrm{R}^{2}\) & \(\lambda_{\max } / \mathrm{nm}\) & \(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) & \(\lambda_{\max } / \mathrm{nm}\) & \(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) & \(\lambda_{\max } / \mathrm{nm}\) & \(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) & \(\lambda_{\max } / \mathrm{nm}\) & \(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) \\
\hline HBCC 5a & \(\mathrm{OCH}_{3} / \mathrm{OCH}_{3}\) & 249 & 265000 & 303 & 130000 & 450 & 174000 & 486 & 189000 \\
HBCC 5b & \(\mathrm{OC}_{4} \mathrm{H}_{9} / \mathrm{OC}_{4} \mathrm{H}_{9}\) & 250 & 151000 & 303 & 106000 & 450 & 340000 & 486 & 192000 \\
\hline
\end{tabular}
\begin{tabular}{llllllllll}
HBCC 5c & \(\mathrm{OC}_{6} \mathrm{H}_{13} / \mathrm{OC}_{6} \mathrm{H}_{13}\) & 249 & 216000 & 303 & 115000 & 450 & 321000 & 487 & 177000
\end{tabular}

\subsection*{5.2 The emission and excitation spectra of the products}

Table S27 The emission and excitation spectra of the products \(\mathbf{3 a - h}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \times 10^{-7} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Product & \(\lambda_{\text {ex }} / \mathrm{nm}\) & \(\lambda_{\mathrm{em}} / \mathrm{nm}\) & Stocks shift & Product & \(\lambda_{\text {ex }} / \mathrm{nm}\) & \(\lambda_{\text {em }} / \mathrm{nm}\) & Stocks shift \\
\hline 3a & 390 & 508 & 108 & 30 & 388 & 506 & 118 \\
\hline 3b & 387 & 507 & 120 & 3 r & 392 & 511 & 119 \\
\hline 3e & 385 & 504 & 119 & 3t & 394 & 510 & 106 \\
\hline 3h & 388 & 508 & 120 & 3v & 393 & 511 & 108 \\
\hline \(3 i\) & 391 & 510 & 119 & 3w & 390 & 507 & 117 \\
\hline 3k & 384 & 503 & 119 & 4b & 377 & 492 & 115 \\
\hline 31 & 391 & 510 & 119 & 4c & 378 & 492 & 114 \\
\hline 3 m & 391 & 510 & 109 & 5a & 451 & 585 & 154 \\
\hline 3n & 392 & 510 & 108 & 5b & 451 & 584 & 153 \\
\hline 30 & 393 & 510 & 117 & 5c & 451 & 583 & 152 \\
\hline
\end{tabular}

Figure S12 The cross UV-visible spectra (left: black) of and the fluorescence spectrum (right: \(\mathrm{E}_{\mathrm{x}}\) blue, \(\mathrm{E}_{\mathrm{m}}\) red) of the selected HBCs, TBTTCs, and HBCCs

\subsection*{5.3 The fluorescence quantum yield of 5 c}

The fluorescence quantum yield \({ }^{[19-2]]}\) of \(5 \mathbf{c}\) was calculated according to the following equation
\[
\Phi=\Phi_{R} \times \frac{I}{I_{R}} \times \frac{A_{R}}{A} \times \frac{\eta^{2}}{\eta_{R}^{2}}
\]

Where \(\Phi\) is the fluorescence quantum yield, \(\Phi_{R}\) is the fluorescence quantum yield, \(A\) is the absorbance of the unknown fluorescent substance, \(A_{R}\) is the absorbance of the standard fluorescent substance, \(I_{R}\) refers to corrected emission intensity of the standard fluorescent substance. \(I\) refers to corrected emission intensity of the unknown fluorescent substance. \(\eta\) is the refractive index of the solvent of unknown fluorescent substance, \(\eta_{R}\) is the refractive index of the solvent of the standard fluorescent substance, R refers to the reference standard of known quantum yield. Rhodamine B in \(2 \mu \mathrm{M}\) ethanol absolute (literature quantum yield 0.89) was chose as a standard. \(5 \mathbf{c} 1.8 \mu \mathrm{M}\) DCM (The fluorescence emission spectrum was employed the same absorbance wavelength method, which is exciting at (391.2 nm), excitation slide 10 nm , emission slide 10 nm , PMT voltage medium, scanning speed: slow, room temperature.

Table S28 The fluorescence quantum yield of 5c
\begin{tabular}{ccccc}
\hline Entry & Integrated wavelength range (nm) & \(A\) & \(\eta\) or \(\eta_{R}\) & \(\Phi\) \\
\hline Rhodamine B & \(475 \sim 700\) & 39056 & \(1.362(\mathrm{EtOH})\) & 0.89 (the standard) \\
\(\mathbf{5 c}\) & \(475 \sim 700\) & 10097 & \(1.424(\mathrm{DCM})\) & 0.24 \\
\hline
\end{tabular}

Figure S13 The cross UV-visible spectra (A) of and the emission spectrum (B) of Rhodamine (green) and \(\mathbf{5 c}\) (blue)

\subsection*{5.4 Thermal stability of representive compounds}

Table S29 The thermal decomposition temperature \(\left(T_{d}\right)\) of representive compounds.
\begin{tabular}{ccc|c|c|c|c|cc}
\hline Product & \(\mathbf{3 a}\) & \(\mathbf{3 d}\) & \(\mathbf{3 h}\) & \(\mathbf{3 j}\) & \(\mathbf{3 k}\) & \(\mathbf{3 t}\) & \(\mathbf{4 b}\) & \(\mathbf{5 c}\) \\
\hline\(T_{\mathrm{d}}\left({ }^{\circ} \mathrm{C}\right)\) & 466 & 456 & 424 & 451 & 353 & 434 & 436 \\
\hline
\end{tabular}

Figure S14 The TG profile of representive compounds

\section*{References:}
1. Zhao, B.; Liu, B.; Png, R.; Zhang, K.; Lim, K. A.; Luo, J.; Shao, J.; Ho, P.; Chi, C.; Wu, J. Chem. Mater. 2010, 22, 435-449.
2. Yelamaggad, C.; Achalkumar, A.; Shankar R.; Prasad, S. J. Org. Chem. 2007, 72, 8308-8318.
3. Romero, C.; Peña, D.; Pérez, D.; Guitián, E. Chem. -Eur. J. 2006, 11, 5677-5684.
4. Bhatta, S.; Nayaka, S.; Synth. Commun. 2007, 37, 1381-1388.
5. Carmen, R.; Diego, P.; Dolores, P.; Enrique, G. Chem.-Eur. J. 2006, 11, 5677-5684.
6. Quimby, J.; Scott, L. Adv. Synth. Catal. 2009, 351, 1009-1013.
7. Chen, S.; Raad, F.; Ahmida, M.; Kaafarani, B.; Eichhorn, S. Org. Lett. 2013, 15, 558-561.
8. Chen, H.; Yin, J.; Wang, Y.; Pei, J. Org. Lett. 2008, 10, 3113-3116.
9. Hope-Ross, K.; Heiney, P.; Kadla, J. Can. J. Chem. 2010, 88, 639-645.
10. Pez, D.; Leal, I.; Zuccotto, F.; Boussard, C.; Brun, R.; Croft, S.; Yardley, V.; Ruiz Perez, L.; Pacanowsk, D.; Gilbert. I. Bioorg. Med. Chem. 2003, 11, 4693-4711.
11. Achalkumar, A.; Hiremath, U.; Shankar Rao, D.; Prasad, S.; Yelamaggad, C. J. Org. Chem. 2013, 78, 527-544.
12. Shin, S.; Moon, D.; Jeong, K.; Kim, J.; Thallapally, P.; Jeong, N. Chem. Commun. 2011, 47, 9402-9404.
13. Liu, L.; Yang, B.; Katz, T.; Poindexter, M. J. Org. Chem. 1991, 56, 3769-3775.
14. Pozdnyakovich, Y. Zh. Org. Khim. 1988, 24, 1076-1082.
15. Bandgar, B.; Bettigeri S.; Phopase, J. Tetrahedron Lett. 2004, 45, 6959-6962.
16. Xiao, S.; Myers, M.; Miao, Q.; Sanaur, S.; Pang, K.; Steigerwald, M. L.; Nuckolls, C. Angew. Chem. Int. Ed. 2005, 44, 7390-7394.
17. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
18. Janiak, C. Dalton Trans. 2000, 3885-3896.
19. Demas, J.; Croby, G. J. Phys. Chem. 1975, 75, 991-1024.
20. Williams, T.; Winfield, S.; Miller, J. Analyst 1983, 108, 1067-1071.
21. Yang, X.; Pan, Z.; Ma, Y. J. Anal. Sci. 2003, 19, 588-589.```

