Understanding of the Weak Intermolecular Interactions Involving Halogens in Substituted N-benzylideneanilines: Insights from Structural and Computational Perspectives

Gurpreet Kaur, and Angshuman Roy Choudhury*
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO, Mohali, 140306. Punjab, India.

Keywords: Weak interactions, organic fluorine, benzylideneanilines, in situ crystallization, polymorphism.

Electronic Supplementary Information

Procedure for synthesis:

All the starting materials, namely ortho-, meta- and para- halogenated benzaldehydes and anilines were purchased from Sigma Aldrich and were used without further purification. Corresponding benzaldehyde (0.5 mmol) and aniline (0.5 mmol) were dissolved in dichloromethane (DCM) at 298 K . Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added to that mixture to remove the water molecules produced during the condensation reaction. The solution was stirred for ~ 10 minutes and then the solvent was evaporated under reduced pressure to get the condensed product. Pure crystals were obtained by recrystallization from different organic solvents like methanol, ethanol, hexane, ethyl acetate, chloroform and DCM.

Details of Powder X-ray Diffraction:

Powder X-ray Diffraction (PXRD) data were recorded on a Rigaku Ultimia IV diffractometer using parallel beam geometry, $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, 2.5° primary and secondary solar slits, 0.5° divergence slit with 10 mm height limit slit, sample rotation stage (120 rpm) attachment and DTex Ultra detector. The tube voltage and current applied were 40 kV and 40 mA respectively. The data sets were collected over 2θ ranging from 5 to 50° with a scanning speed of 5° per minute with 0.02° step for all the solid compounds.
Details of Single Crystal X-ray Diffraction Data Collection, Structure Solution and Refinement:

Single crystals of all the purified solids were grown from different organic solvents (methanol, ethanol, acetone, dichloromethane, hexane, toluene etc.) and solvent mixtures (Table 1) at low temperature ($4{ }^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$). All the crystallization products were checked
using optical polarizing microscope for their morphologies and those were then checked for the identification of different polymorphs, if any, by unit cell determination using single crystal X-ray diffraction (SCXRD) technique. The compounds 18, 22, 28, and 34 yielded two polymorphs each from different solvents (Table 1). Single crystal X-ray diffraction data for all the compounds were collected using Bruker AXS KAPPA APEX-II CCD diffractometer (Monochromatic $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation) equipped with Oxford cryosystem 700Plus at 100.0(1) K. Data collection and unit cell refinement for the data sets were done using Bruker APEXII 1 suit, data reduction and integration were performed by SAINT V7.685A12 (Bruker AXS, 2009) and absorption corrections and scaling was done using SADABS V2008/112 (Bruker AXS). The crystal structures were solved by using Olex 2^{2} or WinGx ${ }^{3}$ packages using SHELXS 97^{4} and the structures were refined using SHELXL97 ${ }^{4}$. All the hydrogen atoms have been geometrically fixed and refined using the riding model. Table 1 lists the crystal and refinement data for all the compounds. All the packing and interaction diagrams have been generated using Mercury 3.1.1. Geometric calculations have been done using PARST ${ }^{5}$ and PLATON ${ }^{6}$.

Crystal Growth and Data collection for Liquids:

Out of 54 synthesized compounds, compounds 20, 23, 27, 29, 30, 38, 44, 45, 47 and 48 were found to be liquids at room temperature $\left(25^{\circ} \mathrm{C}\right)$. Out of these, structure of compound 23 (Melting point $22{ }^{\circ} \mathrm{C}$) could be determined when room temperature was around $20^{\circ} \mathrm{C}$. Structure of compound $\mathbf{4 4}$ was determined by in situ crystallization technique ${ }^{7}$. In this case, the compound was taken in 0.3 mm Lindemann quartz capillary and was sealed at both ends with glue and was mounted on Bruker AXS KAPPA APEX-II CCD diffractometer with the capillary aligned vertically. For Compound 44, the capillary was then cooled at $200 \mathrm{~K} / \mathrm{hr}$ to 180 K , the liquid solidified by itself at this temperature. At the same rate, then it was heated from 180 to 220 K . Still images were taken from time to time to see if there is any formation of crystals. It has been seen that at 210 K , compound got converted into a polycrystalline material. After that, even by heating from 220 K to 260 K at $200 \mathrm{~K} / \mathrm{hr}$, it remained polycrystalline. Then at 260 K , a few cycles of zone melting scans using the CO_{2} LASER of the OHCD^{8} were repeated for 6 hours to grow single crystal in the capillary. After the formation of a single crystal, one Φ scan (scan width 0.3°, 1200 frames) data were collected keeping ω and κ fixed at 0° and the detector fixed at 30° and with a detector distance of 6.0 cm .

For rest of the liquid compounds, the single crystal structure could not be determined as all those compounds were not crystallizing even by repeated heating or cooling cycles. Rather, they were forming only glassy material. DSC's of all those compounds have not shown any features too except in compound 29, where a sharp peak has been seen in DSC, but still could not be crystallized in situ.

Crystallographic modelling of disorder:

Among all the 45 compounds reported in this paper, compound number (C.N.) 33, 51, 52, and 56 were found to exhibit positional disorder due to in plane flipping of the molecule around $\mathrm{C}=\mathrm{N}$ bond. But C.N. $\mathbf{2 3}$ and $\mathbf{4 1}$ were found to have positional disorder due to rotation of the aniline ring around $\mathrm{C} 8-\mathrm{N} 1$ bond. All these positional disorders were analysed with PART command using SHELXL97 and were refined for two independent positions, namely A and B ('A' for higher occupancy). For the purpose of refinement, the position of the carbon atoms in part A and B of the phenyl rings were fixed at same position using EXYZ command in SHELXL97. Thermal parameters were also constrained to be equal for the atoms at the same position using EADP command in SHELXL97. All hydrogen atoms were then positioned geometrically and refined using a riding model with Uiso $(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}, \mathrm{N})$. The occupancy ratio for the two parts in C.N. 23, 33, 41, 52, and 56 were found to be $0.617(4)$: $0.383(4), 0.909(1): 0.091(1), 0.525(2): 0.475(2), 0.544(2): 0.456(2)$, and $0.627(1): 0.373(1)$ respectively. The remaining molecules didn't find to exhibit any disorder.

Crystallographic Data Tables for all the compounds reported in the manuscript

Identification code	43	25	16F1	16F2	34
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$
Formula weight	233.66	278.12	278.12	278.12	233.66
Temperature (K)	100.0K	100.0K	100.0K	100.0K	100.0K
CCDC No.	904772	904759	904752	904753	904765
Solvent system	Acetone	Methanol	DCM+Hexane	Ethanol	Ethyl Acetate
Morphology	block	plate	rect. block	plate	block
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic	monoclinic
Space group	$P \overline{1}$	$P 2_{1} / \mathrm{c}$	$P 2{ }_{1} / \mathrm{c}$	Pna2 ${ }_{1}$	$P 2{ }_{1} / \mathrm{c}$
a/A	9.240(2)	15.2489(5)	23.950(5)	11.646(4)	23.596(2)
b/Å	9.283(2)	15.6548(5)	6.3629(15)	26.988(8)	6.3391(4)
c/Å	13.168(3)	17.0477(7)	7.2093(15)	7.113(2)	7.0801(4)
$\alpha /{ }^{\circ}$	81.794(5)	90.00	90.00	90.00	90.00
$\beta /{ }^{\circ}$	80.917(5)	123.158(1)	94.890(7)	90.00	95.323(4)
$\gamma /{ }^{\circ}$	77.366(5)	90.00	90.00	90.00	90.00
Volume/ \AA^{3}	1081.5(4)	3406.9(2)	1094.7(4)	2235.6(11)	1054.5(1)
Z	4	12	4	8	4
Z'	2	3	1	1	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.435	1.627	1.688	1.653	1.472
μ / mm^{-1}	0.334	3.602	3.737	3.659	0.343
$\mathrm{F}(000)$	480	1656.0	552	1104	480
Crystal size/mm ${ }^{3}$	$\begin{gathered} 0.2 \times 0.2 \times \\ 0.1 \end{gathered}$	$\begin{gathered} 0.3 \times 0.1 \times \\ 0.1 \end{gathered}$	$0.2 \times 0.2 \times 0.1$	$0.2 \times 0.2 \times 0.1$	$\begin{gathered} 0.2 \times 0.2 \times \\ 0.1 \end{gathered}$
$\Theta_{\text {min, max }}$	1.58, 25.02°	1.93, $25.03{ }^{\circ}$	2.56, 25.03°	2.31, 25.02°	2.6, 25.02 ${ }^{\circ}$
hmin, hmax; kmin, kmax; lmin, lmax	$\begin{gathered} -10,10 ;-11 \\ 10 ;-15,15 \end{gathered}$	$\begin{gathered} -16,18 ;-18 \\ 18 ; 20,14 \end{gathered}$	$\begin{gathered} -28,27 ;-3,7 ;- \\ 8,8 \end{gathered}$	$\begin{gathered} -13,13 ;-32, \\ 32 ;-3,8 \end{gathered}$	$\begin{gathered} -28,24 ;-7, \\ 7 ;-8,8 \end{gathered}$
No. of reflections	7091	24812	8569	12225	4831
No. of Observed Reflections	3820	6024	1945	3060	1863
No. of unique reflections	3053	5149	1681	2760	1670
R(int)	0.0206	0.0285	0.0309	0.0362	0.0197
Data/restraints/par ameters	3820/0/361	6024/0/541	1945/0/145	3060/1/284	1863/0/181
Goodness-of-fit on F^{2}	1.042	1.040	1.031	1.038	1.126
R_obs	0.0454	0.0402	0.0262	0.0244	0.0358
wR2(obs)	0.1064	0.1008	0.0648	0.0478	0.0824
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	0.057/-0.339	2.41/-1.13	0.772/-0.376	0.228/-0.248	0.273/-0.386

Identification code	44	26	35	17
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$
Formula weight	233.66	278.12	233.66	278.12
Temperature (K)	100.0 K	100.0K	100.0K	100.0 K
CCDC No.	904773	904760	967464	904754
Solvent system	Methanol	Ethanol	Ethyl Acetate	DCM + Hexane
Morphology	In situ	plate	needle	plate
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2{ }_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$
a / \AA	12.626(2)	12.8032(8)	11.504(2)	11.664(2)
b/Å	7.004(1)	7.0146(4)	4.725(1)	4.7226(9)
c/Å	12.228(2)	12.2477(8)	24.275(4)	21.437(4)
$\alpha{ }^{10}$	90.00	90.00	90.00	90.00
$\beta /{ }^{\circ}$	92.568(1)	92.867(2)	127.34(1)	113.688(8)
$\gamma^{\prime /}$	90.00	90.00	90.00	90.00
Volume/ \AA^{3}	1080.3(3)	1098.6(1)	1049.1(3)	1079.5(3)
Z	4	4	4	4
Z'	1	1	1	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.437	1.682	1.479	1.711
μ / mm^{-1}	0.335	3.723	0.345	3.789
$\mathrm{F}(000)$	480	552	480	552
Crystal size/mm ${ }^{3}$	In situ	$\begin{gathered} 0.3 \times 0.2 \times \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \times 0.1 \times \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \times 0.2 \times \\ 0.1 \\ \hline \end{gathered}$
$\Theta_{\text {min, max }}$	3.23, 25.02 ${ }^{\circ}$	3.19, 25.02°	1.93, 25.03°	1.91, 25.03 ${ }^{\circ}$
hmin, hmax; kmin, kmax; lmin, lmax	$\begin{gathered} -15,15 ;-6,6 ; \\ -14,14 \\ \hline \end{gathered}$	$\begin{gathered} -15,15 ; 0,8 ; \\ 0,14 ; \\ \hline \end{gathered}$	$\begin{gathered} -13,13 ;-5,3 ; \\ -28,27 \\ \hline \end{gathered}$	$\begin{gathered} -8,13 ;-3,5 ;- \\ 25,24 \\ \hline \end{gathered}$
No. of reflections	4852	6185	3888	5336
No. of Observed Reflections	1540	1946	1825	1882
No. of unique reflections	1475	1719	1335	1439
R(int)	0.0193	0.0283	0.0362	0.0468
Data/restraints/par ameters	1540/0/181	1946/0/181	1825/0/145	1882/0/145
Goodness-of-fit on F^{2}	1.056	1.046	1.027	1.067
R_obs	0.0257	0.0234	0.0452	0.041
wR2(obs)	0.0699	0.0651	0.1058	0.0726
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	0.038/-0.192	0.468/-0.338	0.779/-0.294	0.637/-0.656

Identification code	36F1	36F2	18F1	18F2
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$
Formula weight	233.66	233.66	278.12	278.12
Temperature (K)	100.0K	100.0K	100.0K	100.0K
CCDC No.	904766	967465	967460	967467
Solvent system	Acetone	Methanol	Acetone + Methanol	DCM + Hexane
Morphology	plate	needle	block	plate
Crystal system	orthorhombic	orthorhombic	orthorhombic	monoclinic
Space group	$P 2{ }_{12}{ }_{1}{ }_{1}$	Pna2 ${ }_{1}$	$P 2{ }_{1} 1_{1}{ }_{1}$	$P 2_{1}$
a / \AA	6.182(2)	26.077(3)	6.1982(5)	13.424(2)
b/Å	7.123(2)	5.8390(7)	7.1066(7)	6.0702(6)
c/Å	25.074(8)	14.513(2)	25.399(2)	15.467(2)
$\alpha{ }^{\circ}$	90.00	90.00	90.00	90.00
$\beta /{ }^{\circ}$	90.00	90.00	90.00	115.534(6)
$\gamma /{ }^{\circ}$	90.00	90.00	90.00	90.00
Volume/ ${ }^{\text {a }}{ }^{3}$	1104.1(6)	2209.78(4)	1118.77(2)	1137.2(2)
Z	4	8	4	4
Z'	1	2	1	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.406	1.40	1.65	1.627
μ / mm^{-1}	0.328	0.327	3.656	3.597
$\mathrm{F}(000)$	480	960	552	552
Crystal size/mm ${ }^{3}$	$\begin{gathered} 0.3 \times 0.2 \times \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.3 \times 0.1 \times \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \times 0.2 \times \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.3 \times 0.2 \times \\ 0.15 \\ \hline \end{gathered}$
$\Theta_{\text {min, max }}$	2.97, 25.02°	2.10, 26.40°	1.60, 25.00°	1.46, 25.68°
hmin, hmax; kmin, kmax; 1 min, 1 max	$\begin{gathered} -7,7 ;-7,8 ;- \\ 12,29 \end{gathered}$	$\begin{gathered} -32,28 ;-7,7 \\ -18,18 \end{gathered}$	$\begin{gathered} -7,7 ;-8,8 ;- \\ 30,29 \end{gathered}$	$\begin{gathered} -16,13 ;-7,6 ; \\ -18,18 \end{gathered}$
No. of reflections	3797	8743	5888	7418
No. of Observed Reflections	1927	2870	1754	3850
No. of unique reflections	1776	3643	1987	3422
R(int)	0.0193	0.045	0.042	0.0368
Data/restraints/par ameters	1927/0/181	3643/0/289	1927/0/145	3850/1/289
Goodness-of-fit on F^{2}	1.046	1.041	0.957	1.074
R_obs	0.0267	0.042	0.027	0.047
wR_{2} (obs)	0.0595	0.087	0.049	0.0997
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	0.165/-0.143	0.229/-0.300	0.461/-0.444	0.608/-0.659

Identification code	46	28F1	28F2	37	19
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$
Formula weight	233.66	278.12	278.12	233.66	278.12
Temperature (K)	100.0K	100.0K	100.0K	100.0K	100.0K
CCDC No.	904774	904761	967463	904767	904755
Solvent system	Acetone	Acetone + Methanol	DCM + Hexane	Ethyl Acetate	Methanol
Morphology	block	rect. Prism	block	plate	plate
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1}$	$P 2,2{ }_{21}$	$P 2_{1}$	$P 2{ }_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$
a / A	8.371(1)	3.9096(7)	8.4843(3)	24.330(6)	24.639(3)
b/Å	5.8235(6)	10.202(2)	5.8153(2)	6.156(2)	6.1809(6)
c/Å	11.239(1)	27.608(6)	11.3383(5)	7.129(2)	7.2279(7)
$\alpha /{ }^{\circ}$	90.00	90.00	90	90.00	90.00
$\beta{ }^{\circ}$	95.359(4)	90.00	94.559(2)	96.144(3)	96.537(5)
$\gamma^{/{ }^{\circ}}$	90.00	90.00	90	90.00	90.00
Volume/ \AA^{3}	545.5(1)	1101.11(3)	557.65(4)	1054.5(1)	1093.6(2)
Z	2	4	2	4	4
Z'	0.5	1	1	1	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.423	1.678	1.656	1.462	1.689
μ / mm^{-1}	0.332	3.715	3.668	0.341	3.741
$\mathrm{F}(000)$	240	552	552	480	552
Crystal size/mm ${ }^{3}$	$\begin{gathered} 0.4 \times 0.3 \times \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \times 0.2 \times \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.4 \times 0.2 \times \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \times 0.3 \times \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \times 0.1 \times \\ 0.1 \\ \hline \end{gathered}$
$\Theta_{\text {min, max }}$	$\begin{gathered} \hline 2.44, \\ 25.03^{\circ} \\ \hline \end{gathered}$	2.13, 25.02°	$\begin{gathered} \hline 3.12, \\ 32.74^{\circ} \end{gathered}$	$\begin{gathered} \hline 2.53, \\ 25.02^{\circ} \\ \hline \end{gathered}$	2.5, 24.71°
hmin, hmax; kmin, kmax; lmin, Imax	$\begin{gathered} -9,9 ;-6,6 \\ -13,13 \end{gathered}$	$\begin{gathered} -4,4 ; 0,12 \\ -15,32 \end{gathered}$	$\begin{aligned} & -10,10 ;- \\ & 7,5 ;-11 \\ & \quad 14 \end{aligned}$	$\begin{gathered} -21,28 ;-7, \\ 2 ;-8,6 \end{gathered}$	$\begin{gathered} -28,28 ;-7 \\ 5 ;-8,7 \end{gathered}$
No. of reflections	3114	4619	2988	4982	6660
No. of Observed Reflections	1610	1913	1817	1863	1851
No. of unique reflections	1578	1769	1757	1743	1686
R(int)	0.0141	0.0196	0.0159	0.014	0.0318
Data/restraints/parameters	1610/0/181	1913/0/177	1817/1/145	1863/0/181	1851/0/145
Goodness-of-fit on F^{2}	1.086	1.062	1.028	1.065	1.044
R_obs	0.0212	0.0236	0.0191	0.0289	0.0259
wR_{2} (obs)	0.0536	0.0525	0.0463	0.0791	0.0700
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	$\begin{gathered} 0.114 /- \\ 0.177 \\ \hline \end{gathered}$	0.41/-0.25	$\begin{gathered} 0.257 /- \\ 0.278 \\ \hline \end{gathered}$	0.319/-0.26	$\begin{gathered} 0.725 /- \\ 0.368 \\ \hline \end{gathered}$

Identification code	39	21
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$
Formula weight	233.66	278.12
Temperature (K)	100.0K	100.0K
CCDC No.	904768	967461
Solvent system	Ethanol	Acetone
Morphology	block	block
Crystal system	orthorhombic	orthorhombic
Space group	$P 2,2{ }_{1}{ }_{1}$	$P 2{ }_{12} 1_{21}$
a/Å	6.1450(1)	6.1317(4)
b/Å	12.8880(3)	13.1483(8)
c/Å	13.6233(3)	13.8815(9)
$\alpha^{/ 0}$	90.00	90
$\beta /{ }^{\circ}$	90.00	90
$\gamma{ }^{\circ}$	90.00	90
Volume/ \AA^{3}	1078.92(4)	1119.2(2)
Z	4	4
Z'	1	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.438	1.651
μ / mm^{-1}	0.335	3.655
$\mathrm{F}(000)$	480	552
Crystal size/mm ${ }^{3}$	$\begin{gathered} 0.2 \times 0.1 \times \\ 0.1 \end{gathered}$	$\begin{gathered} 0.2 \times 0.2 \times \\ 0.1 \end{gathered}$
$\Theta_{\text {min, max }}$	2.18, 25.02°	2.13, 28.28
hmin, hmax; kmin, kmax; lmin, lmax	$\begin{gathered} -7,7 ;-15,11 ; \\ -16,13 \end{gathered}$	$\begin{gathered} -8,5 ;-16,17 \\ -17,18 \end{gathered}$
No. of reflections	7193	6479
No. of Observed Reflections	1897	2768
No. of unique reflections	1871	2547
R(int)	0.0161	0.0307
Data/restraints/par ameters	1897/0/181	2768/0/145
Goodness-of-fit on F^{2}	1.046	0.992
R_obs	0.0203	0.0269
wR ${ }_{2}$ (obs)	0.0525	0.0547
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	0.161/-0.14	0.41/-0.604

Identification code	49	31	40	22
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$
Formula weight	233.66	278.12	233.66	278.12
Temperature (K)	100.0K	100.0K	100.0K	100.0K
CCDC No.	904775	904762	904769	967462
Solvent system	Ethanol	Acetone	DCM + Hexane	Ethyl Acetate
Morphology	rectangular	block	irregular	needle
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1} / \mathrm{c}$		$P 2_{1} / \mathrm{c}$	$P 2{ }_{1} / \mathrm{c}$
a/Å	13.129(1)	13.4031(9)	3.8515(8)	3.8890(4)
b/Å	11.0236(8)	11.0048(9)	25.069(6)	24.937(3)
c/Å	7.6940(6)	7.7272(7)	10.864(2)	11.0177(10)
$\alpha{ }^{\circ}$	90.00	90.00	90.00	90.00
$\beta /{ }^{\circ}$	106.445(5)	106.161(4)	93.302(3)	93.160(5)
γ^{\prime}	90.00	90.00	90.00	90.00
Volume/A ${ }^{3}$	1068.0(1)	1094.7(2)	1047.2(4)	1066.9(2)
Z	4	4	4	4
Z^{\prime}	1	1	1	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.453	1.688	1.482	1.732
μ / mm^{-1}	0.339	3.737	0.345	3.834
$\mathrm{F}(000)$	480	552.0	480	552
Crystal size/mm ${ }^{3}$	$0.4 \times 0.2 \times 0.1$	$0.3 \times 0.2 \times 0.1$	$0.2 \times 0.2 \times 0.1$	$0.3 \times 0.1 \times 0.1$
$\Theta_{\text {min, max }}$	2.46, 26.37°	2.43, 25.02	$1.62,25.12^{\circ}$	2.02, 25.02
hmin, hmax; kmin, kmax; lmin, lmax	$\begin{gathered} -12,16 ;-13,13 ; \\ -9,7 \end{gathered}$	$\begin{gathered} -15,15 ;-13, \\ 10 ;-9,8 ; \end{gathered}$	$\begin{gathered} -4,4 ;-29,29 ;- \\ 12,11 \end{gathered}$	$\begin{gathered} -4,2 ;-29,28 ;- \\ -13,12 \end{gathered}$
No. of reflections	9936	5574	5691	5135
No. of Observed Reflections	2186	1779	1874	1875
No. of unique reflections	1844	1925	1705	1616
R(int)	0.0439	0.0181	0.0184	0.0262
Data/restraints/parameters	2186/0/181	1925/0/181	1874/0/181	1875/1/145
Goodness-of-fit on F^{2}	1.077	1.038	1.12	1.036
R_obs	0.0372	0.0209	0.03	0.0254
wR_{2} (obs)	0.09	0.0526	0.0783	0.0602
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	0.283/-0.312	0.38/-0.38	0.254/-0.304	1.025/-0.436

Identification code	50	32	41	23
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$
Formula weight	233.66	278.12	233.66	278.12
Temperature (K)	100.0K	100.0K	100.0K	100.0K
CCDC No.	904776	904763	904770	904757
Solvent system	Ethanol	Acetone	Hexane	Methanol
Morphology	block	plate	irregular	irregular
Crystal system	monoclinic	monoclinic	orthorhombic	orthorhombic
Space group	$P 2{ }_{1} / \mathrm{c}$	$P 2{ }_{1} / \mathrm{c}$	$P 22_{1} 2_{1}$	$P 22_{1} 2_{1}$
a/Å	15.377(5)	15.490(1)	3.8567(2)	3.9037(9)
b/Å	3.925 (1)	3.9477(2)	12.0890(8)	12.190(3)
c/Å	22.648(8)	24.348 (2)	22.859(2)	22.760(5)
$\alpha{ }^{\circ}$	90	90.00	90.00	90
$\beta /{ }^{\circ}$	129.569(9)	133.511(3)	90.00	90
γ^{\prime}	90	90.00	90.00	90
Volume $/ \AA^{3}$	1053.8(6)	1079.8 (1)	1065.8(1)	1083.03(4)
Z	4	4	4	4
Z^{\prime}	1	1	1	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.473	1.711	1.456	1.71
μ / mm^{-1}	0.343	3.788	0.339	3.777
$\mathrm{F}(000)$	480	552	480	552
Crystal size $/ \mathrm{mm}^{3}$	$0.2 \times 0.1 \times 0.1$	$0.2 \times 0.1 \times 0.05$	$0.5 \times 0.2 \times 0.1$	$0.4 \times 0.2 \times 0.1$
$\Theta_{\text {min, max }}$	$1.72,26.37^{\circ}$	$1.81,25.02^{\circ}$	1.78, 25.02°	2.9, 25.03 ${ }^{\circ}$
hmin, hmax; kmin, kmax; 1min, lmax	$\begin{gathered} \hline-19,19 ;-4,4 ;- \\ 27,28 \\ \hline \end{gathered}$	$\begin{gathered} \hline-17,18 ;-4,4 ;- \\ 28,28 ; \\ \hline \end{gathered}$	$\begin{gathered} \hline-7,7 ;-7,8 ;-12, \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} \hline-3,4 ;-14,14 ;- \\ 24,27 \\ \hline \end{gathered}$
No. of reflections	6284	7459	7013	4097
No. of Observed Reflections	2139	1798	1859	1926
No. of unique reflections	1861	1915	1748	1892
R(int)	0.0254	0.0203	0.0256	0.0130
Data/restraints/parameters	2139/0/181	1915/0/181	1859/0/175	1926/0/175
Goodness-of-fit on F^{2}	1.054	1.059	1.085	1.046
R_obs	0.029	0.0192	0.0273	0.0243
wR_{2} (obs)	0.0712	0.0483	0.0639	0.0627
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	0.281/-0.228	0.313/-0.264	0.039/-0.238	0.21/-0.27

Identification code	51	33	42	24
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClFN}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrFN}$
Formula weight	233.66	278.12	233.66	278.12
Temperature (K)	100.0K	100.0K	100.0K	100.0K
CCDC No.	967466	904764	904771	904758
Solvent system	Methanol	Acetone	Ethanol	Methanol
Morphology	plate	block	block	plate
Crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	Pbon	$P \mathrm{bca}$	$P 2_{1} / \mathrm{c}$
a/Å	10.030(4)	12.9933(6)	12.4117(3)	12.112(2)
b/Å	3.8427(15)	11.4999(5)	9.8248(2)	3.9009(7)
c/Å	28.062(11)	14.9358(7)	17.9456(4)	23.337(5)
$\alpha{ }^{\circ}$	90	90.00	90.00	90.00
$\beta /{ }^{\circ}$	90.806(8)	90.00	90.00	104.714(4)
$\gamma^{\prime}{ }^{\circ}$	90	90.00	90.00	90.00
Volume/ \AA^{3}	1081.4(7)	2231.7(2)	2188.33(8)	1066.5(4)
Z	4	8	8	4
Z'	1	1	2	1
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.435	1.656	1.418	1.732
μ / mm^{-1}	0.334	3.666	0.331	3.835
$\mathrm{F}(000)$	480	1104	960	552
Crystal size/mm ${ }^{3}$	$0.4 \times 0.2 \times 0.1$	$0.2 \times 0.2 \times 0.1$	$0.4 \times 0.2 \times 0.1$	$0.2 \times 0.15 \times 0.1$
$\Theta_{\text {min, max }}$	2.03, 25.03	$\begin{gathered} \hline 2.73, \\ 27.79^{\circ} \end{gathered}$	2.27, 26.37°	$2.16,25.03$
hmin, hmax; kmin, kmax; lmin, lmax	$\begin{gathered} -5,11 ;-4,4 ;-32, \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} -7,15 ;-13,13 ; \\ 17,16 ; \\ \hline \end{gathered}$	$\begin{gathered} -15,7 ;-11,12 ; \\ 20,22 \\ \hline \end{gathered}$	$\begin{gathered} -14,12 ;-4,2 ;- \\ 27,25 \\ \hline \end{gathered}$
No. of reflections	6584	12745	11432	6185
No. of Observed Reflections	1909	1712	2235	1873
No. of unique reflections	1640	1973	1979	1658
R(int)	0.0221	0.0274	0.018	0.0283
Data/restraints/parameters	1909/0/157	1973/13/157	2235/0/181	1873/0/177
Goodness-of-fit on F^{2}	1.043	1.058	1.039	1.051
R_obs	0.0364	0.0236	0.0279	0.0245
wR_{2} (obs)	0.0837	0.0513	0.0735	0.0598
$\Delta \rho_{\text {min,max }} / \mathrm{e} \AA^{-3}$	0.244/-0.344	0.260/-0.316	0.261/-0.273	0.514/-0.399

Structural description of the compounds belonging to class 1a and 1c:

4-chloro-N-(4-fluorobenzylidene)aniline (43):

Compound $\mathbf{4 3}$ crystallizes in the centrosymmetric triclinic $P \overline{1}$ space group with $\mathrm{Z}=$ 4 and having two molecules in the asymmetric unit $\left(Z^{\prime}=2\right)$. The molecules have been found to form hexameric network involving two different $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (one between F 1 and H26 and the other between F 2 and H 13) and a type $\mathrm{I} \mathrm{C}-\mathrm{Cl} \cdots \mathrm{Cl}-\mathrm{C}$ interactions (table 1, figure 1b). Further, a number of weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, which interconnect these molecules, have been found in the lattice (table S1a, figure S1a and S1b).
S1a

Figure S1: (a) Chains of dimers through $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions in 43, (b) formation of network through $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions present in 43.

4-bromo-N-(4-fluorobenzylidene)aniline (25):

Compound $\mathbf{2 5}$ was found to crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $\mathrm{Z}=12$ and having three molecules in the asymmetric unit. All the three molecules of the asymmetric unit pack in the lattice through type I C-F $\cdots \mathrm{Br}$ interaction, which results in the formation of chains in the $b c$ plane. These chains are interlinked with each other through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (table 1, figure 1c). Three molecules of the asymmetric unit have also been found to interact with each other through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (involving H 9 with $\mathrm{N} 1, \mathrm{H} 23$ with N3, H17 with N 1 and H 38 with Br 1) (table 1, figure S1c). These interactions ($\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$) are also further supported by $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions (ESI, table S1, figure S1c].

Figure S1: (c) Molecules connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hyderogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 25.

4-fluoro-N-(4-chlorobenzylidene)aniline bromobenzylidene)aniline (16 Form I, 16F1):

and
4-fluoro-N-(4-

Compounds 34 and 16F1 (Polymorph 1 of 16) have been found to crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $Z=4$, while 16F2 (Polymorph 2 of 16) was crystallized in the non-centrosymmetric orthorhombic $P n a 2_{1}$ space group with $Z=8$ and $Z^{\prime}=2$. Compounds 34 and 16F1 have been found to be isostructural with similar packing characteristics as described below.

Both the structures, when viewed down the c-axis, were found to have zigzag molecular chains through $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (involving H 12 with F 1) in the $a b$ plane by the utilization of 2_{1} screws along b-axis. These chains have been found to run antiparallel along the b axis (table 1 , figure 1 d and 1e). A pair of antiparallel chains are found to be further interconnected by the formation of dimers by the molecules related by inversion center through $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds in case of $\mathbf{3 4}$ (table 1, figure 1d) and by type I $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}-\mathrm{C}$ interactions in case of $\mathbf{1 6 F 1}$ (table 1, figure 1e), thus results in the formation of sheets in the $a b$ plane. The homohalogen interactions found in 16F1 are in contrast to the observation made by Nayak et al., in the cases of fluorinated benzenanilides, in which preference for type II geometry for homo/hetero halogen short contacts involving heavier halogens $(\mathrm{Br}$ and Cl$)$ in the solid state have been revealed. The sheets thus formed have been found to interact with other sheets in the lattice through weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (involving H3 and H6 with Cg1, H13 and H10 with Cg2) (ESI, table S1, figure S1d, S1e, S1f and S1g).

The $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ chains found in this molecule are similar to those observed in the case of 4-fluoro-N-(4-fluorobenzylidene)aniline reported by us earlier.* In the earlier case as
fluorine was there at the para position on both the phenyl rings, both the fluorine atoms were found to be involved in the formation of chains by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bond and no $\mathrm{F} \cdots \mathrm{F}$ contact was found.
Sid

Figure S1: (d) Chains of dimers formed by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions along b-axis in 34, (e) formation of molecular network via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 34, (f) Chains of dimers formed by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions along b-axis in 16F1, (g) formation of molecular network via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 16F1.

4-fluoro-N-(4-bromobenzylidene)aniline (16 Form II, 16F2):

Compound 16F2 has been found to crystallize in the non-centrosymmetric orthorhombic $P n a 2_{1}$ space group with $Z=8$ and $Z^{\prime}=2$. A network of chains has been found to form through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds in both the molecules of the asymmetric unit (involving H 14 with F 2 and H 1 with F 1). Then $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ (involving H 23 with Br 1) hydrogen bonds between the two molecules of the asymmetric unit have been found to interconnect these chains to form sheets (table 1, figure 1f). These sheets have been found to propagate along c-axis through weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (ESI, table S1, figure S 1 h).

Figure S1: (h) Molecules interacting via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions along c-axis.
Table S1: Intermolecular $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions metrics for compounds 43, 25, 34, 16F1 and 16F2

Code	C-H $\cdots \pi$	$\mathrm{C} \cdots \pi$ (A)	$\overline{H \cdots \pi}$ (Å)	$\angle \mathrm{C}-\mathrm{H} \cdots \pi$ $\left({ }^{\circ}\right)$	Symmetry Code
43	$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 4$	3.46	2.78	129	x, y, 1+z
	C7-H7 $\cdots \mathrm{Cg} 4$	3.40	2.68	133	$-1+x, y, 1+z$
	C10-H10 . Cg 1	3.67	2.96	133	$1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$
	C12-H12 $\cdots \mathrm{Cg} 1$	3.59	2.88	132	1-x, 1-y,1-z
	C17-H17...Cg2	3.50	2.92	121	$\mathrm{x}, \mathrm{y}, \mathrm{z}$
	C19-H19...Cg2	3.69	2.96	135	1+x,y,z
	C22-H22 $\cdots \mathrm{Cg} 3$	3.42	2.74	130	$2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$
	C25-H25 ...Cg3	3.49	2.77	133	$2-\mathrm{x},-\mathrm{y},-\mathrm{z}$
25	C3-H3 \cdots Cg 3	3.44	2.78	127	$\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$
	C10-H10 $\cdots \mathrm{Cg} 4$	3.56	2.75	143	x,1/2-y,1/2+z
	C12-H12 \cdots Cg6	3.41	2.73	129	1-x,-y,1-z
	C30-H30 $\cdots \mathrm{Cg} 1$	3.44	2.86	120	1-x,-y,1-z
	C16-H16. Cg 2	3.55	2.68	151	x,y,z
	C22-H22 \cdots Cg6	3.59	2.89	132	$x, 1 / 2-y,-1 / 2+z$
	C36-H36 \cdots Cg2	3.55	2.97	121	$\mathrm{x}, \mathrm{y}, \mathrm{z}$
34	$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cg} 1$	3.69	2.98	133	x,1/2-y,-1/2+z
	C13-H13...Cg2	3.63	2.94	131	x,1/2-y,-1/2+z
	C6-H6 $\cdots \mathrm{Cg} 1$	3.50	2.85	126	x,-1/2-y,1/2+z
	C10-H10 $\cdots \mathrm{Cg} 2$	3.51	2.82	130	$\mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$
16F1	C6-H6 $\cdots \mathrm{Cg} 1$	3.55	2.90	126	x,5/2-y,1/2+z
	C10-H10…Cg2	3.54	2.84	131	x,1/2-y,1/2+z
	C13-H13 \cdots Cg2	3.68	2.98	132	x, 1/2-y, 1/2+z
	C3-H3 $\cdots \mathrm{Cg} 1$	3.73	3.06	133	x,1/2-y, $1 / 2+z$
16F2	$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 1$	3.45	2.76	138	2-x,-y,-/2+z
	C7-H7 ...Cg 3	3.59	2.93	128	x,y,z
	C12-H12...Cg4	3.50	2.84	127	$\mathrm{x}, \mathrm{y},-1+\mathrm{z}$
	C17-H17...Cg1	3.36	2.73	124	$\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$
	C22-H22 $\cdots \mathrm{Cg} 2$	3.42	2.69	134	$\mathrm{x}, \mathrm{y}, \mathrm{z}$
	C25-H25 \cdots Cg2	3.58	2.84	135	-1/2+x,1/2-y,1+z

Structural description of the compounds belonging to class 1b and 5a:

fluorobenzylidene) aniline (26)

Both the compounds 44 and 26 were found to crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $Z=4$ with similar unit cell dimensions. These compounds are isostructural and have similar packing features as described below.

Molecules related by c glide have been found to interact through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bond, which resulted into the formation of chains in both. Then these chains were found to be interconnected through type II C-F $\cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ hetero halogen interactions in 44 and 26 respectively and thus giving rise to a sheet like structure in the $a c$ plane (table 2 , figure 2 b and 2 c). On viewing down the $b c$ plane, molecules having a center of symmetry have been found to interact by forming dimers through weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (involving H 6 with Cg 2). Then these dimers have been found to extend by the utilization of 2_{1} screw along b-axis through another weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (involving H 1 with Cg1) (ESI, table S2, figure S2a and S2b).

Figure S2: (a) Extension of molecular dimers, formed by $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions, through $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interaction in 44, (b) Extending molecular dimers, formed by $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions, through C $-\mathrm{H}^{\cdots} \pi$ interaction in 26.

3-fluoro-N-(4-chlorobenzylidene)aniline bromobenzylidene) aniline (17):
and

The compounds 35 and 17 have been found to pack in the monoclinic centrosymmetric space group $P 2_{1} / c$ with $Z=4$. Dimers have been found to form between the two molecules related by center of inversion involving H9 and H1 with F1 in the packing of both $\mathbf{3 5}$ and $\mathbf{1 7}$ (table 2, figure 2d and 2e). The fluorine atom involved in these dimers have been found to have bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds. These dimers have been found to
propagate along the c glide through $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ hydrogen bonds in the compounds $\mathbf{3 5}$ and 17 respectively (table 2, figure 2 d and 2 e).

Table S2: Intermolecular C-H $\cdots \pi$ interactions metrics for compounds 44 and 26

Code	C-H $\cdots \pi$	$\mathrm{C} \cdots \pi$ (A)	$\mathrm{H} \cdots \pi$ (A)	$\begin{gathered} \angle \mathrm{C}-\mathrm{H} \cdots \pi \\ \left({ }^{\circ}\right) \end{gathered}$	Symmetry Code
44	C1-H1 \cdots CG1	3.50	2.84	127	$\begin{gathered} -\mathrm{x},- \\ 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z} \end{gathered}$
	C6-H6..CG2	3.50	2.78	133	-x,1-y,1-z
26	$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cg} 1$	3.51	2.85	128	$\begin{gathered} \mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2- \\ \mathrm{z} \end{gathered}$
	C6-H6 - Cg 2	3.53	2.81	134	-x,1-y,1-z

Structural comparison of the compounds belonging to class 1c and 6a:

2-chloro-N-(4-fluoro-benzylidene)aniline
 and
 2-bromo-N-(4-

 fluorobenzylidene)aniline (27):Among the compounds belonging to the group 1c (3, 27, 45), only $\mathbf{3}$ was solid, while 27 and $\mathbf{4 5}$ were found to be liquids at room temperature. The DSC data on $\mathbf{4 5}$ and 27 didn't indicate any sharp solidification or melting feature. Several trials of crystal growth using in situ crystallization technique were failed to grow single crystals suitable for structural analysis.

2-fluoro-N-(4-chlorobenzylidene)aniline (36 Form I, 36F1) and 2-fluoro-N-(4chlorobenzylidene) aniline (18 Form I, 18F1):

Compounds 36F1 and 18F1 were found to crystallize in the orthorhombic noncentrosymmetric $P 2_{1} 2_{1} 2_{1}$ space group with $\mathrm{Z}=4$. The molecules of 36 F 1 and 18 F 1 have been found to form chains through $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (involving H1 with F1) along b axis (table 1, figure 3c and 3d) and these chains have been found to be interconnected with each other through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving H 6 with Cg 1 and H 9 with Cg 2 by the utilization of 2_{1} screw axis along b and c directions respectively (ESI, table S3), (figure 3c and 3d).

2-fluoro-N-(4-chlorobenzylidene)aniline (36 Form II, 36F2):

Compound 36F2 was found to crystallize in the orthorhombic non-centrosymmetric $P n a 2_{1}$ space group with $\mathrm{Z}=8$ and $\mathrm{Z}^{\prime}=2$. Along the b-axis, both the molecules of the asymmetric unit have been found to form chains through $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (involving H1 with F1 and H14 with F2) (table 3, figure 3e). These chains have been found to be interlinked along the c-axis through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (H17 and H 22 with $\mathrm{Cg} 1, \mathrm{H} 9$ with Cg 3 and H 12 with Cg4) (ESI, table S3, figure S3a).

Figure S3a: $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, connecting the molecules belonging to different chains in 36F2.

2-fluoro-N-(4-bromobenzylidene)aniline (18 Form II, 18F2):

Compound 18F2 has been found to crystallize in the non-centrosymmetric $P 2_{1}$ space group with $\mathrm{Z}=4$ and $\mathrm{Z}^{\prime}=2$. The two molecules, designated as A (grey) and B (orange), present in the asymmetric unit were found to form chains of the type $\cdots A^{\cdots} A^{\cdots} A^{\cdots} A^{\cdots}$ and $\cdots \mathrm{B} \cdots \mathrm{B} \cdots \mathrm{B} \cdots \mathrm{B} \cdots$ in the lattice by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bond along b-axis. But in molecule A of the asymmetric unit, the $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{F}$ hydrogen bond is bifurcated at the F atom. Due to this bifurcation at F1, these chains (A and B) are further interlinked forming a ladder like structure, which is has been found to extend along the b axis (table 3, figure 3f). The chains formed by both the molecule of asymmetric unit have been found to interact with other chains by the utilization of $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions along the b-axis (ESI, table S3, figure S3b).

Figure S3b: $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present between the molecules of the two different chains, which were formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bond.

Table S3: Intermolecular $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions metrics for compounds 36F1, 18F1, 36F2 and 18F2

Code	$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{C} \cdots \pi(\AA)$	$\mathrm{H} \cdots \pi(\AA)$	$\angle \mathrm{C}-\mathrm{H} \cdots \pi\left({ }^{\circ}\right)$	Symmetry Code
	$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cg} 1$	3.42	2.85	120	$-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$
	$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cg} 2$	3.42	2.54	147	$-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-\mathrm{z}$
18F1	$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 1$	3.48	2.78	132	$-\mathrm{x},-1 / 2+\mathrm{y}, 1-\mathrm{z}$
	$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 2$	3.64	2.85	141	$1-\mathrm{x},-1 / 2+\mathrm{y}, 1-\mathrm{z}$
	$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{Cg} 3$	3.53	2.84	130	$2-\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z}$
	$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{Cg} 4$	3.51	2.70	144	$1-\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z}$
36 F 2	$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cg} 4$	3.58	2.94	126	$-\mathrm{x},-\mathrm{y}, 1 / 2+\mathrm{z}$
	$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{Cg} 1$	3.43	2.78	127	$\mathrm{x}, \mathrm{y}, \mathrm{z}$
	$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{Cg} 2$	3.57	2.93	126	$-\mathrm{x},-\mathrm{y},-1 / 2+\mathrm{z}$
	$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cg} 1$	3.59	2.78	144	$-\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z}$
	$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cg} 3$	3.54	2.75	141	$-\mathrm{x}, 1-\mathrm{y}, 1 / 2+\mathrm{z}$
18F2	$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cg} 1$	3.45	2.87	121	$1-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$
	$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cg} 2$	3.38	2.57	143	$-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-\mathrm{z}$
	$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 2$	3.50	2.71	140	$\mathrm{x},-1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$

Structural description of the compounds belonging to class 2a and 4b:

4-chloro-N-(3-fluoro-benzylidene)aniline
 (46) and
 4-bromo-N-(3fluorobenzylidene) aniline (28 Form I, 28F1):

Both the compounds 46 and 28F1 were found to be crystallized in the monoclinic non-centrosymmetric $P 2_{1}$ space group with $Z=2$ with similar unit cell dimensions and packing features in the crystal lattice, which have been described below.

Zigzag chains were found to form by molecules through weak C-H‥F hydrogen bond (involving H5 with F1), which are propagating along the 2_{1} screw axis (table 4, figure $4 b$ and $4 c$). A chain of hetero dimer has also been observed via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bond
(involving H9 with F 1), and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (involving H 7 with Cg 1$)$ (ESI, table S4, figure S 4 a and S 4 b). Further, these chains have been found to extend along the a-axis through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (involving H10 with Cg1 and H12 with Cg2) (ESI, table S4, figure S4a and S 4 b). But, neither Cl nor Br was found to involve in any kind of interaction in 46 and 28F1 respectively.

Figure S4: (a) Molecules interacting through weak $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions in the crystal structure of 46, (b) formation of molecular network via weak $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions in 28F1.

4-bromo-N-(3-fluorobenzylidene)aniline (28 Form II, 28F2):

The form II of compound 28 (referred to as 28F2) was found to crystallize in the orthorhombic non-centrosymmetric $P 2_{1} 2_{1} 2_{1}$ space group with $Z=4$. The crystal packing of the molecules were found to involve weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (involving H 4 with N 1 by using 2_{1} screw along b-axis) and type II Br $1 \cdots \mathrm{~F} 1$ interaction (by using 2_{1} screw along c axis) to form of a zigzag chain in the $b c$ plane (table 4, figure 4f).
4-fluoro-N-(3-chlorobenzylidene)aniline
and
4-fluoro-N-(3bromobenzylidene)aniline (19):

Both the compounds $\mathbf{3 7}$ and 19 were found to crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $Z=4$. Both the molecules have been found to form ribbons in the $a b$ plane by the utilization of 2_{1} screw axis and involving $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (involving H10 with F1) in the similar fashion as was observed in the case of compounds 34 and 16 F 1 . Then these molecular ribbons were found to be interconnected through type $\mathrm{I} C-\mathrm{X} \cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ interactions (table 4, figure 4 g and 4 h$)$. Very weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (involving H 7 with $\mathrm{Cg} 1, \mathrm{H} 9$ and H 12 with Cg 2) in the ac plane have also been identified in between the sheets formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and $\mathrm{C}-\mathrm{X} \cdots \mathrm{X}$ interactions (table S4, figure S4c and S4d)

Figure S4: (c) Sheets formed interact among each other by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 37, (b) interactioning molecular sheets in $\mathbf{1 9}$ by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Table S4: Intermolecular C-H $\cdots \pi$ interactions metrics for compounds 46 and 28F2

Code	$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{C} \cdots \pi$ (\AA)	$\mathrm{H} \cdots \pi$ (\AA)	$\angle \mathrm{C}-\mathrm{H}$ $\cdots \pi\left({ }^{\circ}\right)$	Symmetry Code
	$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1$	3.52	2.83	130	$1-\mathrm{x},-1 / 2+\mathrm{y}, 1-\mathrm{z}$
	$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cg} 1$	3.42	2.75	127	$-1+\mathrm{x}, \mathrm{y}, \mathrm{z}$
	$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 1$	3.46	2.72	135	$-\mathrm{x},-1 / 2+\mathrm{y},-\mathrm{z}$
28 F 2	$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1$	3.54	2.86	129	$-\mathrm{x}, 1 / 2+\mathrm{y}, 1-\mathrm{z}$
	$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cg} 1$	3.43	2.74	130	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$
	$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 2$	3.52	2.75	139	$1-\mathrm{x}, 1 / 2+\mathrm{y}, 2-\mathrm{z}$

Structural comparison of the compounds belonging to class 2b and 5b:

All the compounds belonging to the sub-class $\mathbf{2 b}(\mathbf{5}, \mathbf{4 7}, 29)$ and $\mathbf{5 b}(\mathbf{5}, \mathbf{3 8}, \mathbf{2 0})$ were found to be liquid at $25^{\circ} \mathrm{C}$. Among these, crystal structure of $\mathbf{5}$ could be determined using in situ crystallization technique, while crystals of the others could not be grown in the same way. The DSC data of compounds 20 and 47 have not shown any indication of solidification in the cooling and heating cycles ($25{ }^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$ and heated back to $25^{\circ} \mathrm{C}$) (ESI, figure S4:5 and 32).

Structural comparison of the compounds belonging to class 2c and 6b:

2-chloro-N-(3-fluorobenzylidene)aniline

 and2-bromo-N-(3-

fluorobenzylidene) aniline (30)

Among the compounds belonging to the sub-class $2 \mathrm{c}(\mathbf{6}, \mathbf{3 0}, 48), 6$ was found to be solid at $25^{\circ} \mathrm{C}$ and was found to crystallize in the monoclinic $P 2_{1} 2_{1} 2_{1}$ space group utilizing $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, and $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions. Crystal structures of $\mathbf{4 8}$ and $\mathbf{3 0}$ could not be
determined as none of them could be crystallized when cooled from room temperature to $170^{\circ} \mathrm{C}$ in a glass capillary on he diffractometer using Oxford cryosystem.

2-fluoro-N-(3-chlorobenzylidene)aniline
and
2-fluoro-N-(3bromobenzylidene)aniline (21):

Compound 39 and 21 were found to crystallize in the orthorhombic noncentrosymmetric $P 2_{1} 2_{1} 2_{1}$ space group with $\mathrm{Z}=4$ with similar packing features. Molecules are found to extend along the a-axis in the form of chains through bifurcated weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (involving H1 and H3 with F1). These chains have been found to be interlinked through type I inter-halogen $\mathrm{C}-\mathrm{F} \cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ interactions along the b-axis (table 5, figure 5c and 5d). Further, weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (involving H 12 with Cg 1) were found to interconnect these chains by the utilization of 2_{1} screw parallel to the c-axis (ESI, table S5, figure S5a and S5b).

Figure S5: (a) Interconnecting molecular layers, which were found to form by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, through $\mathrm{C}-\mathrm{F} \cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ interactions in $\mathbf{3 9}$ and 21 respectively (b) $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, which were found to interconnect these layers along c-axis.

Table S5: Intermolecular $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions metrics for compounds 39 and 21

Code	$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{C} \cdots \pi$ (\AA)	$\mathrm{H} \cdots \pi$ (\AA)	$\angle \mathrm{C}-\mathrm{H}$ $\cdots \pi\left({ }^{\circ}\right)$	Symmetry Code
39	$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 1$	3.73	2.93	143	$3 / 2-\mathrm{x},-$ $\mathrm{y}, 1 / 2+\mathrm{z}$
21	$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 1$	3.75	2.94	144	$1 / 2-\mathrm{x}, 1-$, $1 / 2+\mathrm{z}$

Structural comparison of the compounds belonging to class 3a and 4c:

4-chloro-N-(2-fluorobenzylidene)aniline
 and
 4-bromo-N-(2-

 fluorobenzylidene)aniline (31):Compounds 49 and 31 were found to be crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $\mathrm{Z}=4$. Chains have been found to form by the molecules via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds along a-axis in 49 and 31 respectively (table 6 , figure 6 b and 6 c). Further, weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (involving H 7 with Cg 1) were found to hold these chains in both the compounds (ESI, table S6a), (figure 6 b and 6c).

4-fluoro-N-(2-chlorobenzylidene) aniline
and
4-fluoro-N-(2bromobenzylidene) aniline (22)

Both the compounds 40 and 22 were found to crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $\mathrm{Z}=4$. Chains have been found to form along c-axis through $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ hydrogen bond in compound 40 and 22 (table 6, figure 6 d and 6 e). Very weak $\pi \cdots \pi$ interactions have been found along the b-axis between the two molecules of $\mathbf{4 0}$ or $\mathbf{2 2}$ in their respective crystal structures (ESI, table S6b, figure S6a and S6b).

Figure S6: (a) weak $\pi \cdots \pi$ interactions between the molecules of 40 along b-axis. (b) weak $\pi \cdots \pi$ interactions between the molecules of $\mathbf{2 2}$ along b-axis.

Table S6a: Intermolecular C-H $\cdots \pi$ interactions metrics for compounds 49 and 31

Code	$\mathrm{C}-\mathrm{H} \cdots \pi$	$\mathrm{C} \cdots \pi(\AA)$	$\mathrm{H} \cdots \pi(\AA)$	$\angle \mathrm{C}-\mathrm{H} \cdots \pi\left({ }^{\circ}\right)$	Symmetry Code
31	$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1$	3.76	2.88	154	$\mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$
49	$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1$	3.73	2.85	153	$\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$

Table S6b: Intermolecular $\pi \cdots \pi$ interactions metrics for compounds 22

Code	$\pi \cdots \pi$	$\mathrm{Cg} 1 \cdots \mathrm{Cg} 2$ (\AA)	$(\mathrm{Cg} 1 \cdots \mathrm{Per})^{*}$ (\AA)	$(\mathrm{Cg} 2 \cdots \mathrm{Per})^{* *}(\AA)$	Slippage	Symmetry Code
GK22F1	$\mathrm{Cg} 1 \cdots \mathrm{Cg} 1$	3.96	3.41	3.41	2.01	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$

Structural comparison of the compounds belonging to class 3b and 5c:

3-chloro-N-(2-fluorobenzylidene)aniline (50) and 3-bromo-N-(2fluorobenzylidene)aniline (32):

Compound 50 and 32 were found to be crystallized in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $Z=4$. These compounds display similar structural features. Both the compounds were found to form hetero-dimers by the use of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, involving H 9 and H 1 with F 1 (table 7, figure 7 b and 7c) by the utilization 2_{1} screw along b-axis. The molecular dimers have been found to be interconnected through $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ (again involving H 9 and H 1 with F 1) hydrogen bonds and have been found to propagate along the crystallographic b-axis, thus generating a chain of hetero-dimers along that axis.

3-fluoro-N-(2-chlorobenzylidene)aniline

and
3-fluoro-N-(2bromobenzylidene)aniline (23):

Compounds 41 and 23 were found to crystallize in the orthorhombic non-centrosymmetric $P 2_{1} 2_{1} 2_{1}$ space group with $\mathrm{Z}=4$. Molecules have been found to be disordered due to rotation of the aryl ring around $\mathrm{N}-\mathrm{C}$ (Ar) bond. Therefore, fluorine atom is present on both the sides of the meta position of the ring (F1A and F1B) with 0.5 occupancy on each position. The disorder modelling has been done by partitioning the ring in two parts with 0.5 occupancies each for both $\mathbf{2 3}$ and $\mathbf{4 1}$ as described in the section under disorder refinement.

In both the compounds, linear chains have been found to form through $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bond (involving H 5 with F1A) by the utilization of 2_{1} screw parallel to the c-axis (table 7, Figure 7d and 7e). The atom F1B is found to be trifurcated and it forms hydrogen bonds with H 1 and H9B, while it is also found to be involved in the type I inter-halogen $\mathrm{C}-\mathrm{F} \cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ interactions in $\mathbf{4 1}$ and $\mathbf{2 3}$ respectively (table 7, Figure 7 d and 7 e).

Structural comparison of the compounds belonging to class 3 c and $\mathbf{6 c}$:

2-chloro-N-(2-fluorobenzylidene)aniline (51):

Compound 51 has been found to crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $Z=4\left(Z^{\prime}=1\right)$. The molecule has been found to have a static disorder in the crystal lattice in which 55% of the molecule crystallizes in one orientation, while the remaining in other, by in plane 180° rotation of the molecule around the $\mathrm{C}=\mathrm{N}$ bond. Disorder refinement for the molecule has been explained in the disorder refinement section. Molecules have been found to form $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Cl}$ hydrogen bonds (involving H 6 A with Cl 1 A). These dimers further interconnect with each other through another $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (involving H4A with $\mathrm{Cl1A}$) and thus resulting into a tetrameric unit (table 8, figure 8c).

2-bromo-N-(2-fluorobenzylidene) aniline (33):

Compound $\mathbf{3 3}$ was found to crystallize in the monoclinic centrosymmetric $P b c n$ space group with $\mathrm{Z}=8$. The molecule is found to be disordered and displays positional disorder around $\mathrm{C}=\mathrm{N}$ bond with the occupancy ratio $0.9: 0.1$. The disorder was analysed using PART command in SHELXL97 and refined for two independent positions, namely A and B ('A' for higher occupancy), which has been described. The atoms in the major conformer of the molecule are considered for intermolecular interactions analysis.

Molecules related by center of inversion have been found to form dimers through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond and these dimers were found to propagate in the lattice through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions by the utilization of c glide (table 8 , figure 8 d).

2-fluoro-N-(2-chlorobenzylidene) aniline (42):

Compound 42 was found to crystallize in the orthorhombic centrosymmetric $P b c a$ space group with $\mathrm{Z}=8$. The molecules of $\mathbf{4 2}$ have been found to interact through the formation of hetero dimers using weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (involving H 11 with F 1 and H 12 with N 1) by the utilization of 2_{1} screw parallel to the b-axis in the bc plane (table 8 , figure 8e). Heterodimers involving $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (involving H 5 with F 1 and H 6 with Cl 1) have also been found to form between the molecules related by 2_{1} screw along a-axis. Then these dimers have been found to propagate in the $a c$ plane by another set of $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (involving H 9 with F 1) and a weak $\mathrm{C}-\mathrm{Cl} \cdots \pi$ interactions (ESI, table S 7) involving Cl 1 with Cg 2 through a glide perpendicular to c-axis (Table 8, figure 8 f).

2-fluoro-N-(2-bromobenzylidene) aniline (24):

Compound 24 was found to crystallize in the monoclinic centrosymmetric $P 2_{1} / c$ space group with $Z=4$. The molecules related by the center of inversion have been found to form dimers through $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds involving H12 with F1. These dimers have been found to be interconnected by another group of $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds involving H 6 and H 5 with F1 (Table 8, figure 8g). In this case, the F atom has been found to be trifurcated and the Br atom in the A ring has not been found to get involved in any kind of intermolecular interactions.

Table S7: Intermolecular $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ and $\mathrm{C}-\mathrm{Cl} \cdots \pi$ interactions metrics for compounds 33 and 42 respectively.

Code	$\mathrm{C}-\mathrm{X} \cdots \pi$ $(\mathrm{X}=\mathrm{H}, \mathrm{Cl})$	$\mathrm{C} \cdots \pi(\AA)$	$\mathrm{X} \cdots \pi(\AA)$	$\angle \mathrm{C}-\mathrm{X} \cdots \pi\left({ }^{\circ}\right)$	Symmetry Code
33	$\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cg} 2$	3.53	2.62	160	$\mathrm{x},-\mathrm{y},-1 / 2+\mathrm{z}$
42	$\mathrm{C} 3-\mathrm{Cl} 1 \cdots \mathrm{Cg} 2$	5.18	3.56	154	$-1 / 2+\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$

Table S8: Details of the geometrical parameters for all the $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, the values of electron densities and Laplacians at their BCPs and the bond paths $\left(\mathrm{R}_{\mathrm{ij}}\right)$ as calculated by AIM2000, which are found in the structures reported herein

Code	$\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$	$\begin{gathered} d \\ \mathrm{H} \cdots \mathrm{~F} / \mathrm{A} \end{gathered}$	$\begin{gathered} \theta \\ \angle \mathrm{C}-\mathrm{H} \cdots \mathrm{~F} /^{\circ} \end{gathered}$	$\stackrel{\rho}{\left(\mathrm{e} \AA^{-3}\right)}$	$\begin{gathered} \nabla^{2} \rho \\ \left(\mathrm{e} \AA^{-5}\right) \end{gathered}$	$\mathrm{R}_{\mathrm{ij}}(\mathrm{A})$
1	C6-H6 ..F2	2.67	131	0.027	0.555	2.70
	C12-H12 \cdots F1	2.69	130	0.027	0.555	2.70
43	C13-H13 \cdots F2	2.44	150	0.047	0.893	2.46
	C26-H26 \cdots F1	2.51	143	0.041	0.772	2.54
34	C12-H12 \cdots F1	2.56	153	0.035	0.694	2.58
16F1	C12-H12 \cdots F1	2.57	153	0.034	0.676	2.59
16F2	C1-H1 \cdots F1	2.68	153	0.027	0.531	2.71
	C14-H14...F2	2.68	155	0.027	0.555	2.70
2	C6-H6 . ${ }^{\text {F1 }}$	2.52	128	0.039	0.758	2.60
	C11-H11 \cdots F2	2.55	134	0.038	0.695	2.60
	C13-H13 \cdots F2	2.55	161	0.036	0.707	2.59
44	C11-H11 \cdots F1	2.52	164	0.036	0.71	2.54
26	C11-H11...F1	2.63	166	0.027	0.548	2.65
35	C1-H1 \cdots F1	2.56	153	0.036	0.678	2.59
	C9-H9...F1	2.76	156	0.023	0.471	2.79
17	C1-H1 \cdots F1	2.58	155	0.034	0.659	2.60
	C9-H9 ...F1	2.66	162	0.03	0.589	2.68
3	C1-H1 \cdots F2	2.32	162	0.068	1.11	2.35
	C14-H14 \cdots F 4	2.3	161	0.068	1.135	2.34
	C10-H10 \cdots F1	2.66	131	0.034	0.603	2.70
36F1	C1-H1 \cdots F1	2.4	160	0.056	0.987	2.42
18F1	C1-H1 \cdots F1	2.44	156	0.054	0.958	2.46
18F2	C1-H1 \cdots F1	2.35	168	0.06	1.045	2.38
	C14-H14 \cdots F2	2.41	159	0.054	0.958	2.43
	C23-H23 ..F1	2.43	142	0.049	0.927	2.46
36F2	C1-H1 . F 1	2.37	173	0.054	0.99	2.40
	C14-H14 \cdots F2	2.38	168	0.054	0.99	2.41
4	C13A-H13A \cdots F3A	2.59	160	0.032	0.642	2.63
	C16A-H16A \cdots F1A	2.62	157	0.031	0.606	2.67
	C18A-H18A \cdots F3A	2.53	135	0.04	0.77	2.58
	C23A-H23A \cdots F4A	2.56	140	0.035	0.69	2.61
	C5A-H5A \cdots F1A	2.56	136	0.037	0.715	2.61
	C5A-H5A \cdots F2A	2.7	128	0.026	0.543	2.74
46	C5-H5 ..F1	2.62	136	0.034	0.659	2.65
	C9-H9 . . F1	2.7	156	0.023	0.48	2.72
28F1	C5-H5 . . F1	2.65	138	0.031	0.616	2.68

	C9-H9...F1	2.65	156	0.026	0.536	2.68
37	C10-H10..F1	2.62	126	0.031	0.623	2.67
19	C10-H10 \ldots F1	2.63	126	0.031	0.618	2.68
6	C1-H1 \cdots F1	2.47	163	0.041	0.768	2.51
39	C1-H1 \cdots F1	2.46	153	0.048	0.864	2.49
	C3-H3 \cdots F1	2.66	149	0.027	0.558	2.69
21	C1-H1 \cdots F1	2.49	152	0.045	0.823	2.52
	C3-H3 \cdots F1	2.64	150	0.029	0.594	2.66
7	C6A-H6A \cdots F1	2.61	127	0.035	0.596	2.66
	C6A-H6A \cdots F2	2.54	136	0.041	0.775	2.57
	C1-H1 \cdots F1	2.32	146	0.067	1.154	2.35
8	C9-H9...F1	2.55	169	0.038	0.734	2.56
	C1-H1 \cdots F1	2.67	157	0.03	0.584	2.68
50	C9-H9 ...F1	2.61	164	0.032	0.628	2.64
	C1-H1 $\cdots \mathrm{F} 1$	2.69	155	0.027	0.546	2.71
32	C9-H9 ...F1	2.66	163	0.029	0.57	2.68
	C1-H1 \cdots F1	2.7	154	0.026	0.531	2.72
41	C1-H1 \cdots F1B	2.61	167	0.028	0.575	2.61
	C9B-H9B..F1B	2.56	125	0.043	0.797	2.60
	C5-H5 \cdots F1A	2.57	124	0.043	0.797	2.64
23	C1-H1 \cdots F1B	2.66	163	0.025	0.521	2.68
	C9B-H9B \cdots F1B	2.55	126	0.043	0.801	2.60
	C5-H5 ..F1A	2.62	124	0.029	0.716	2.67
9 F 1	C6-H6 \cdots F2	2.68	131	0.026	0.56	2.70
9 F 2	C5-H5 \cdots F2	2.62	132	0.028	0.558	2.65
	C12-H12 \cdots F2	2.64	176	0.027	0.555	2.67
42	C11-H11..FF	2.6	131	0.037	0.715	2.64
	C9-H9 . ${ }^{\text {F }}$ 1	2.6	142	0.035	0.676	2.63
	C5-H5 \cdots F1	2.53	139	0.036	0.719	2.55
24	C5-H5 \cdots F1	2.65	124	0.029	0.608	2.70
	C6-H6 \cdots F1	2.69	122	0.029	0.601	2.74

Figure S1: ${ }^{\mathbf{1}} \mathbf{H}$ NMR of all compounds: All NMR experiments were recorded on 400 MHz spectrometer (from Bruker) in CDCl_{3} as solvent.

FigureS1:1 Compound 16: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H})$, 7.75-7.77 (d, 2 H), 7.60-7.62 (d, 2H), 7.18-7.22 (m, 2H), 7.06-7.10 (t, 2H)

FigureS1:2 Compound 17: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.78$ $7.80(\mathrm{~d}, 2 \mathrm{H}), 7.63-7.65(\mathrm{~d}, 2 \mathrm{H}), 7.34-7.40(\mathrm{q}, 1 \mathrm{H}), 6.93-7.02(\mathrm{~m}, 3 \mathrm{H})$.

FigureS1:3
Compound 18: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.78$ $7.80(\mathrm{~d}, 2 \mathrm{H}), 7.60-7.62(\mathrm{~d}, 2 \mathrm{H}), 7.11-7.20(\mathrm{~m}, 4 \mathrm{H})$,

FigureS1:4 Compound 19: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}$, $1 \mathrm{H}), 7.77-7.79(\mathrm{~d}, 1 \mathrm{H}), 7.59-7.61(\mathrm{~d}, 1 \mathrm{H}), 7.33-7.36(\mathrm{t}, 1 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.07-$ 7.11 (m, 2H),

FigureS1:5 Compound 20: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.08$ $8.09(\mathrm{t}, 1 \mathrm{H}), 7.77-7.79(\mathrm{dt}, 1 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.99(\mathrm{~m}$, $3 \mathrm{H})$,

FigureS1:6 Compound 21: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.14-$ $8.15(\mathrm{t}, 1 \mathrm{H}), 7.83-7.85(\mathrm{~d}, 1 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.40(\mathrm{t}, 1 \mathrm{H}), 7.15-7.24(\mathrm{~m}$, 4H)

FigureS1:7 Compound 22: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.19-$ $8.22(\mathrm{dd}, 1 \mathrm{H}), 7.61-7.63(\mathrm{dd}, 1 \mathrm{H}), 7.38-7.42(\mathrm{t}, 1 \mathrm{H}), 7.30-7.34(\mathrm{td}, 1 \mathrm{H}), 7.22-7.25(\mathrm{~m}$, 2H), 7.07-7.13 (m, 2H)

FigureS1:8
Compound 23: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.21-$ $8.23(\mathrm{dd}, 1 \mathrm{H}), 7.63-7.65(\mathrm{q}, 1 \mathrm{H}), 7.32-7.48(\mathrm{~m}, 4 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 2 \mathrm{H})$

FigureS1:9 Compound 24: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.26-$ $8.28(\mathrm{~d}, 1 \mathrm{H}), 7.61-7.63(\mathrm{~d}, 1 \mathrm{H}), 7.32-7.43(\mathrm{dt}, 2 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 4 \mathrm{H})$

FigureS1:10 Compound 25: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.26-$ 8.28 ($\mathrm{q}, 2 \mathrm{H}$), 7.51-7.54 (d, 2H), 7.16-7.21 (t, 2H), 7.09-7.11 (d, 2H)

FigureS1:11 Compound 26: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.90-$ $7.93(\mathrm{q}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~d}, 2 \mathrm{H}), 7.26-7.30(\mathrm{t}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 3 \mathrm{H})$

FigureS1:12 Compound 27: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.97-$ $8.00(\mathrm{q}, 2 \mathrm{H}), 7.65-7.68(\mathrm{~d}, 1 \mathrm{H}), 7.33-7.37(\mathrm{t}, 1 \mathrm{H}), 7.08-7.26(\mathrm{~m}, 4 \mathrm{H})$

FigureS1:13 Compound 28: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.60-$ $7.67(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.47(\mathrm{q}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m} \mathrm{1H}), 7.07-7.11(\mathrm{~m}$, 2H)

FigureS1:14 Compound 29: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.14-$ $8.15(\mathrm{t}, 1 \mathrm{H}), 7.83-7.85(\mathrm{~d}, 1 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.40(\mathrm{t}, 1 \mathrm{H}), 7.15-7.24(\mathrm{~m}$, 4H)

FigureS1:15 Compound 30: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.66-$ $7.77(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.26(\mathrm{t}, 1 \mathrm{H}), 7.02-7.05(\mathrm{~d}$, 1H)

FigureS1:16 Compound 31: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.16-$ $8.21(\mathrm{t}, 1 \mathrm{H}), 7.47-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.29(\mathrm{~m}, 4 \mathrm{H})$,

FigureS1:17 Compound 32: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.16-$ $8.20(\mathrm{t}, 1 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.30(\mathrm{~m}, 4 \mathrm{H})$,

FigureS1:18 Compound 33: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.28$ $8.32(\mathrm{t}, 1 \mathrm{H}), 7.66-7.68(\mathrm{~d}, 1 \mathrm{H}), 7.28-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.19(\mathrm{~m}, 3 \mathrm{H})$,

FigureS1:19 Compound 34: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.90-$ $7.94(\mathrm{~d}, 2 \mathrm{H}), 7.44-7.44(\mathrm{~d}, 2 \mathrm{H}), 7.18-7.21(\mathrm{t}, 2 \mathrm{H}), 7.06-7.10(\mathrm{t}, 2 \mathrm{H})$

FigureS1:20 Compound 35: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.83-$ $7.85(\mathrm{~d}, 2 \mathrm{H}), 7.45-7.46(\mathrm{~d}, 2 \mathrm{H}), 7.32-7.37(\mathrm{q}, 1 \mathrm{H}), 6.91-6.99(\mathrm{~m}, 3 \mathrm{H})$

FigureS1:21 Compound 36: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.85-$ $7.88(\mathrm{~d}, 2 \mathrm{H}), 7.44-7.47(\mathrm{~d}, 2 \mathrm{H}), 7.12-7.21(\mathrm{~m}, 4 \mathrm{H})$

FigureS1:22 Compound 37: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.92-$ $7.93(\mathrm{t}, 1 \mathrm{H}), 7.72-7.74(\mathrm{dt}, 1 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.12(\mathrm{~m}$, 2H)

FigureS1:23 Compound 38: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.14-$ $8.18(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.38(\mathrm{dt}, 2 \mathrm{H}), 7.23-7.27(\mathrm{t}, 1 \mathrm{H}), 7.11-7.19$ (m,3H)

FigureS1:24 Compound 39: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.95-$ $7.96(\mathrm{t}, 1 \mathrm{H}), 7.75-7.77(\mathrm{dt}, 1 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.43(\mathrm{t}, 1 \mathrm{H}), 7.12-7.22(\mathrm{~m}$, 4H)

FigureS1:25 Compound 40: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.21-$ $8.23(\mathrm{dd}, 1 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 2 \mathrm{H})$

FigureS1:26 Compound 41: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.21-$ $8.24(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.45(\mathrm{~m}, ~ 4 \mathrm{H}), 7.00-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.18(\mathrm{~m}, 2 \mathrm{H})$

FigureS1:27 Compound 42: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.23-$ $8.28(\mathrm{td}, 1 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.06(\mathrm{dd}$, 1H)

FigureS1:28 Compound 43: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.87-$
$7.92(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 4 \mathrm{H})$

FigureS1:29 Compound 44: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.88$ -
$7.91(\mathrm{t}, 2 \mathrm{H}), 7.29-7.33 \quad(\mathrm{t}, 1 \mathrm{H}), 7.14-7.21 \quad(\mathrm{q}, ~ 4 \mathrm{H}), 7.14-7.21 \quad(\mathrm{~d}, 1 \mathrm{H})$

FigureS1:30 Compound 45: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.92-$ $7.96 \quad(\mathrm{~m}, \quad 2 \mathrm{H}), \quad 7.42-7.44 \quad(\mathrm{dd}, \quad 1 \mathrm{H}), \quad 7.11-7.28 \quad(\mathrm{~m}, \quad 5 \mathrm{H})$

FigureS1:31 Compound 46: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.61-$ $7.67(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, ~ 2 \mathrm{H}), 7.14-7.22(\mathrm{~m}, ~ 3 \mathrm{H})$

FigureS1:32 Compound 47: White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.61-$ $7.68(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 1 \mathrm{H})$.

FigureS1:33 Compound 48: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.66-$ $7.77(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.26(\mathrm{t}, 1 \mathrm{H}), 7.02-7.05(\mathrm{~d}$, $1 \mathrm{H})$.

FigureS1:34 Compound 49: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.14-$ $8.18(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.38(\mathrm{dt}, 2 \mathrm{H}), 7.23-7.27(\mathrm{t}, 1 \mathrm{H}), 7.11-7.19(\mathrm{~m}$, 3 H),

FigureS1:35 Compound 50: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.14-$ $8.18(\mathrm{td}, 1 \mathrm{H}), 7.46-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.17(\mathrm{~m}$, 2 H).

FigureS1:36 Compound 51: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.23-$ $8.28(\mathrm{td}, 1 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.06(\mathrm{dd}$, $1 \mathrm{H})$.

Figure S2: IR-S1pectra of the compoundS1: All IR S1pectra were recorded on
Figure S2:1 Compound 16

Figure S2:2 Compound 17

Figure S2:3 Compound 18

Figure S2:4 Compound 19

Figure S2:5 Compound 20

Figure S2:6 Compound 21

Figure S2:7 Compound 22

Figure S2:8 Compound 23

Figure S2:9 Compound 24

Figure S2:10 Compound 25

Figure S2:11 Compound 26

Figure S2:12 Compound 27

Figure S2:13 Compound 28

Figure S2:14 Compound 29

Figure S2:15 Compound 30

Figure S2:16 Compound 31

Figure S2:17 Compound 32

Figure S2:18 Compound 33

Figure S2:19 Compound 34

Figure S2:20 Compound 35

Figure S2:21 Compound 36

Figure S2:22 Compound 37

Figure S2:23 Compound 38

Figure S2:24 Compound 39

Figure S2:25 Compound 40

Figure S2:26 Compound 41

Figure S2:27 Compound 42

Figure S2:28 Compound 43

Figure S2:29 Compound 44

Figure S2:30 Compound 45

Figure S2:31 Compound 46

Figure S2:32 Compound 47

Figure S2:33 Compound 48

Figure S2:34 Compound 49

Figure S2:35 Compound 50

Figure S2:36 Compound 51

Figure S3: Powder X-ray Data for all solid compounds recorded on and their comparison with stimulated PXRD pattern. Patterns displayed in blue colour were recorded on the purified product, while the patterns simulated from the single crystal data are shown in red colour and green colour ($2^{\text {nd }}$ polymorph).

Figure S3:1 Compound 16, 16F1, 16F2

Figure S3:2 Compound 17

Figure S3:3 Compound 18

Figure S3:4 Compound 19

Figure S3:5 Compound 21

Figure S3:6 Compound 22

Figure S3:7 Compound 23

Figure S3:8 Compound 24

Figure S3:9 Compound 25

Figure S3:10 Compound 26

Figure S3:11 Compound 28, 28F1, 28F2

Figure S3:12 Compound 31

Figure S3:13 Compound 32

Figure S3:14 Compound 33

Figure S3:15 Compound 34

Figure S3:16 Compound 35

Figure S3:17 Compound 36

Figure S3:18 Compound 37

Figure S3:19 Compound 39

Figure S3:20 Compound 40

Figure S3:21 Compound 41

Figure S3:22 Compound 42

Figure S3:23 Compound 43

Figure S3:24 Compound 44

Figure S3:25 Compound 46

Figure S3:26 Compound 49

Figure S3:27 Compound 50

Figure S3:28 Compound 51

Table S1: Melting Point (in ${ }^{0} \mathrm{C}$) of solid compounds determined from DSC data:

Compound Code	Melting point (M.P.) $/^{\mathbf{0}} \mathbf{C}$ (Onset value from DSC)	$\Delta \mathbf{H}(\mathbf{J} / \mathbf{g})$
16	62.46	63.70
17	51.41	81.05
18	68.39	73.85
19	$34.44,33.05$	$66.14,16.42$
20	--	--
21	40.29	65.07
22	49.07	72.33
23	29.07	59.47
24	47.72	61.89
25	57.22	64.05
26	35.38	65.62
27	--	--
28	69.84	80.02
29	-7.42	45.12
30	--	--
31	65.63	60.36
32	65.34	93.39
33	45.45	93.27
34	46.51	66.35
35	43.25	46.62
36	47.34	74.16
37	36.70	96.92
38	14.36	54.11
39	54.15	91.70
40	55.98	98.05
41	26.33	77.25
42	48.38	90.72
43	72.68	95.40
44	20.02	25.83
45	-8.50	251.02
46	$43.72,49.45$	$46.31,28.90$
47	--	--
48	--	---
49	52.03	94.98
50	60.75	101.92
51	$48.65,35.46$	$96.66,81.74$

The symbol "--" signifies that the compound has not shown any characteristic in its DSC traces.

Figure S4: DSC traces for all solid compounds
Figure S4:1

Figure S4:2

Figure S4:3

Figure S4:4

Figure S4:5

Figure S4:6

Figure S4:7

Figure S4:8

Figure S4:9

Figure S4:10

Figure S4:11

Figure S4:12

Figure S4:13

Figure S4:14

Figure S4:15

Figure S4:16

Figure S4:17

Figure S4:18

Figure S4:19

Figure S4:20

Figure S4:21

Figure S4:22

Figure S4:23

Figure S4:24

Figure S4:25

Figure S4:26

Figure S4:27

Figure S4:28

Figure S4:29

Figure S4:30

Figure S4:31

Figure S4:32

Figure S4:33

Figure S4:34

Figure S4:35

Figure S4:36

Figure S4: ORTEP of all compounds drawn with 50% ellipsoidal probability with atom-numbering scheme.

Figure S5:1 Compound 16F1

Figure S5:2 Compound 16F2

Figure S5:3 Compound 17

Figure S5:4 Compound 18F1

Figure S5:5 Compound 18F2

Figure S5:6 Compound 19

Figure S5:7 Compound 21

Figure S5:8 Compound 22

Figure S5:9 Compound 23

Figure S5:10 Compound 24

Figure S5:11 Compound 25

Figure S5:12 Compound 26

Figure S5:13 Compound 28F1

Figure S5:14 Compound 28F2

Figure S5:15 Compound 31

Figure S5:16 Compound 32

Figure S5:17 Compound 33

Figure S5:18 Compound 34

Figure S5:19 Compound 35

Figure S5:20 Compound 36F1

Figure S5:21 Compound 36F2

Figure S5:22 Compound 37

Figure S5:23 Compound 39

Figure S5:24 Compound 40

Figure S5:25 Compound 41

Figure S5:26 Compound 42

Figure S5:27 Compound 43

Figure S5:28 Compound 44

Figure S5:29 Compound 46

Figure S5:30 Compound 49

Figure S5:31 Compound 50

Figure S5:32 Compound 51

References

1. APEX2, SADABS and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
3. Farrugia, L. J. WinGx, J. Appl. Cryst. 1999, 32, 837-838.
4. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
5. Nardelli, M. J. Appl. Crystallogr. 1995, 28, 569.
6. Spek, A. L. Acta Crystallogr. 2009, D65, 148-155.
7. (a) Thalladi, V. R.; Weiss, H. -C.; Bläser, D.; Boese, R.; Nangia, A.; Desiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702-8710. (b) Choudhury, A. R.; Winterton, N.; Steiner, A.; Cooper, A. I.; Johnson, K. A. J. Am. Chem. Soc. 2005, 127, 1679216793. (c) Choudhury, A. R.; Islam, K.; Kirchner, M. T.; Mehta, G.; Guru Row, T. N. J. Am. Chem. Soc. 2004, 126, 12274-12275
8. http://www.ohcd-system.com/infos/infos.htm.
