Supporting Information

Copper-Catalyzed α-Methylenation of Benzylpyridines Using Dimethylacetamide as One-Carbon Source

Masaki Itoh,^a Koji Hirano,^a Tetsuya Satoh,^{a,b}* and Masahiro Miura^a*

^a Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

[Fax: (+81)-6-6879-7362; phone: (+81)-6-6879-7361; e-mail: satoh@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp]

^b JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

List of Contents for Experimental Section

General: S-2 Preparation of E: S-2 – S-4 General Procedure for Methylenation of Benzylpyridines: S-5 Isolation of Intermediate F: S-5 – S-6 Reaction of E under Standard Conditions: S-7 Procedure for Oxygenation of 2-Benzylpyridine (1a): S-7 General Procedure for Dimerization of Benzylpyridines: S-7 X-ray Crystral-Structure Analysis: S-8 Characterization Data of Products: S-9 – S-12 References: S-12 ¹H and ¹³C NMR Spectra of Products: S13 – S35

Experimental Section

General. ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively, for CDCl₃ solutions. HRMS data were obtained by EI using a double focusing mass spectrometer or APCI using a TOF mass spectrometer. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m). GC-MS analysis was carried out using a CBP-1 capillary column (i. d. 0.25 mm x 25 m). IR spectra were recorded as thin film. The structures of all products listed below were unambiguously determined by ¹H and ¹³C NMR with the aid of NOE, COSY, HSQC, and HMBC experiments.

Benzylpyridines **1b-c**, **1e-i**, and **1k**,^{S1} **1j**, and **1l-m**,^{S2} 2-benzyl-4-methylpyridine (**1n**),^{S3} 2-benzylpyrimidine (**1q**),^{S4} and di(2-pyridyl)methane (**1r**)^{S5} were prepared according to published procedures. Compound **E** was prepared as noted below. Other reagents were commercially available.

Preparation of N-methyl-N-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (E).

First, 2-phenyl-2-(pyridin-2-yl)ethan-1-amine was prepared according to a reported method.^{S6, S7} Thus obtained 2-phenyl-2-(pyridin-2-yl)ethan-1-amine (1 mmol, 198 mg), acetic anhydride (2.1 mmol, 214 mg), and CH₂Cl₂ (1 mL) were added to a 20 mL two-necked flask with a calcium chloride tube and a rubber cup. Then, the resulting mixture was stirred under air at ambient temperature for 12 h. After the consumption of amine, which was confirmed by GC, the reaction mixture was extracted with CH₂Cl₂ (100 mL). The organic layer was washed by water (100 mL, three times), and dried over Na₂SO₄. After evaporation of the solvents under vacuum, the residue was dissolved in DMF (1.5 mL). Then, NaH (2 mmol, 48 mg) and methyl iodide (1.2 mmol, 170 mg) were added to the solution. The resulting mixture was stirred at 0 °C for 2 h, and allowed to warm to rt. After 8 h, the reaction mixture was extracted with ethyl acetate (100 mL). The organic layer was washed by water (100 mL, three times) and dried over Na₂SO₄.

concentrated in vacuo and purified by column chromatography on silica gel using ethyl acetate-methanol (10:1, v/v) to afford *N*-methyl-*N*-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (**E**) (167 mg, 66%). This product was isolated as a mixture of two rotamers (25 $^{\circ}$ C, 5:4).

N-Methyl-*N*-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (E). Oil; ¹H NMR (400 MHz, CDCl₃) δ 1.88 (s, 1.34H), 1.97 (s, 1.66H), 2.67 (s, 1.66H), 2.83 (s, 1.34H), 3.90-4.01 (m, 1.11H), 4.18-4.32 (m, 1.34H), 4.59 (t, *J* = 8.0 Hz, 0.55H), 7.10-7.34 (m, 6H), 7.37-7.39 (m, 1H), 7.54-7.60 (m, 1H), 8.58 (dq, *J* = 0.9, 4.8 Hz, 0.55H), 8.62 (dq, *J* = 0.9, 4.8 Hz, 0.45H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 22.0, 33.6, 37.7, 51.0, 52.0, 53.0, 55.5, 121.6, 122.0, 123.85, 123.93, 126.8, 127.2, 128.2, 128.3, 128.4, 128.7, 136.4, 136.6, 140.8, 141.4, 148.9, 149.2, 160.4, 161.4, 170.9, 171.0; HRMS *m*/*z* Calcd for C₁₆H₁₉N₂O (M+H⁺) 255.1497, found 255.1498.

General Procedure for Methylenation of Benzylpyridines. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added benzylpyridine **1** (0.5 mmol), $Cu(OAc)_2 \cdot H_2O$ (0.05 mmol, 10 mg), $Na_2S_2O_8$ (1 mmol, 238 mg), 1-methylnaphthalene (ca. 40 mg) as internal standard, and DMA (2.5 mL). Then, the resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 4 h. After cooling, the reaction mixture was extracted with ethyl acetate (100 mL) and ethylenediamine (1 mL). The organic layer was washed by water (100 mL, three times), and dried over Na_2SO_4 . After evaporation of the solvents under vacuum, product **2** was isolated by column chromatography on silica gel using hexane-ethyl acetate (5:1, v/v) as eluent.

Isolation of Intermediate F. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added 2-benzylpyridine (**1a**) (0.5 mmol, 85 mg), $Cu(OAc)_2 \cdot H_2O$ (0.05 mmol, 10 mg), $Na_2S_2O_8$ (1 mmol, 238 mg), 1-methylnaphthalene (ca. 40 mg) as internal standard, and DMA (2.5 mL). Then, the resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 30 min. After cooling, the reaction mixture was extracted with ethyl acetate (100 mL) and ethylenediamine (1 mL). The organic layer was washed by water (100 mL, three times), and dried over Na_2SO_4 . The mixture was then concentrated in vacuo and purified by column chromatography on silica gel using methanol to afford intermediate **F** (10 mg, 9%), along with **2a** (22 mg, 24%) and recovered **1a** (50 mg, 59%).

N,*N*-Dimethyl-2-phenyl-2-(pyridin-2-yl)ethan-1-amine (F). Mp 58-59 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.26 (s, 6H), 2.88 (dd, *J* = 7.0, 12.4 Hz, 1H), 3.23 (dd, *J* = 8.3, 12.4 Hz, 1H), 4.31 (t, *J* = 7.7 Hz, 1H), 7.08 (ddd, *J* = 1.1, 4.9, 7.5 Hz, 1H), 7.16-7.20 (m, 2H), 7.26-7.30 (m, 2H), 7.33-7.35 (m, 2H), 7.56 (td, *J* = 1.8, 7.7 Hz, 1H), 8.57 (dq, *J* = 0.9, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 45.8, 52.0, 64.1, 121.4, 123.0, 126.5, 128.0, 128.5, 136.4, 142.5, 149.3, 162.6; HRMS *m*/*z* Calcd for C₁₅H₁₉N₂ (M+H⁺) 227.1548, found 227.1549.

Reaction of E under Standard Conditions.

To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added *N*-methyl-*N*-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (**E**) (0.04 mmol, 10 mg), Cu(OAc)₂·H₂O (0.004 mmol, 0.8 mg), Na₂S₂O₈ (0.08 mmol, 19 mg), 1-methylnaphthalene (ca. 10 mg) as internal standard, and DMA (0.25 mL). Then, the resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 30 min. It was confirmed by GC analysis that only a trace amount of **2a** was formed and 94% of **E** was recovered. In addition, treatment of a mixture of **E** (0.04 mmol, 10 mg) and 1-(4-chlorophenyl)-1-(2-pyridyl)methane (**1d**) (0.04 mmol, 8 mg) with Cu(OAc)₂·H₂O (0.008 mmol, 1.6 mg), Na₂S₂O₈ (0.16 mmol, 38 mg), and 1-methylnaphthalene (ca. 20 mg) as internal standard in DMA (0.5 mL) under nitrogen at 120 °C (bath temperature) for 4 h selectively gave **2d** in 91% yield, along with a negligible amount of **2a** (3%). In this case, 70% of **E** was recovered.

Procedure for Oxygenation of 2-Benzylpyridine (1a). To a 20 mL two-necked flask with a reflux condenser, a calcium chloride tube, and a rubber cup were added 2-benzylpyridine (**1a**) (0.5 mmol, 85 mg), $Cu(OAc)_2 \cdot H_2O$ (0.05 mmol, 10 mg), 1-methylnaphthalene (ca. 40 mg) as internal standard, and DMA (2.5 mL). Then, the resulting mixture was stirred at 120 °C (bath temperature) for 48 h under air. After cooling, the reaction mixture was extracted with ethyl acetate (100 mL) and ethylenediamine (1 mL). The organic layer was washed by water (100 mL, three times), and dried over Na₂SO₄. The mixture was then concentrated in vacuo and purified by column chromatography on silica gel using hexane-ethyl acetate (3:1, v/v) to afford 2-benzoylpyridine (**3**) (81 mg, 89%).

General Procedure for Dimerization of Benzylpyridines. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added benzylpyridine 1 (0.5 mmol), $Cu(OAc)_2 \cdot H_2O$ (1 mmol, 200 mg), 1-methylnaphthalene (ca. 40 mg) as internal standard, and DMA (2.5 mL). Then, the resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 8 h. After cooling, the reaction mixture was extracted with ethyl acetate (100 mL) and ethylenediamine (1 mL). The organic layer was washed by water (100 mL, three times), and dried over Na₂SO₄. After evaporation of the solvents under vacuum, product **4** was isolated by column chromatography on silica gel using hexane-ethyl acetate (2:1, v/v) as eluent.

X-ray Crystal-Structure Analysis. The configuration of *meso-40* was determined for a white microcrystal obtained from acetonitrile/dioxane (Figure S1).

Figure S1. ORTEP drawing of compound *meso*-**40**•C₄H₈O₂. Crystal data: C₂₈H₂₈N₂O₂, Mw = 424.54, monoclinic, space group P 1 2₁/c 1, T = 296 K, a = 8.4619(3), b = 16.3894(6), c = 16.8746(7), β = 102.4883(17), V = 2284.88(15), Z = 4, 4146 reflections measured, R = 0.1041, Rw = 0.3693.

Characterization Data of Products

2-(1-Phenylvinyl)pyridine (2a).^{3a} Oil, 63 mg (70%); ¹H NMR (400 MHz, CDCl₃) δ 5.60 (d, J = 1.5 Hz, 1H), 5.99 (d, J = 1.5 Hz, 1H), 7.20 (ddd, J = 1.1, 4.8, 7.5 Hz, 1H), 7.26 (dt, J = 1.0, 7.9 Hz, 1H), 7.32-7.36 (m, 5H), 7.62 (td, J = 1.8, 7.8 Hz, 1H), 8.64 (dq, J = 1.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 117.6, 122.4, 122.8, 127.8, 128.2, 128.4, 136.2, 140.3, 149.2, 149.4, 158.5; HRMS *m/z* Calcd for C₁₃H₁₂N (M+H⁺) 182.0970, found 182.0969.

2-(1-Phenylvinyl-2,2-*d*₂**)pyridine (2a-***d*₂**).** Oil, 51 mg (55%); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (ddd, J = 1.1, 4.8, 7.5 Hz, 1H), 7.26 (dt, J = 1.0, 7.9 Hz, 1H), 7.32-7.36 (m, 5H), 7.62 (td, J = 1.8, 7.8 Hz, 1H), 8.64 (dq, J = 1.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 117.5(5) (J = 27.9 Hz), 122.4, 122.8, 127.8, 128.3, 128.4, 136.2, 140.3, 149.0, 149.4, 158.5; HRMS *m/z* Calcd for C₁₃H₁₀D₂N (M+H⁺) 184.1095, found 184.1094.

2-[1-(*p***-Tolyl)vinyl]pyridine (2b).** Oil, 53 mg (55%); IR: (neat, cm⁻¹) 3024, 1581, 1512, 1466, 1427, 1334, 1041, 910, 802; ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H), 5.58 (d, *J* = 1.5 Hz, 1H), 5.93 (d, *J* = 1.5 Hz, 1H), 7.15-7.21 (m, 3H), 7.24-7.29 (m, 3H), 7.61 (td, *J* = 1.8, 7.6 Hz, 1H), 8.63 (dq, *J* = 1.0, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 117.0, 122.3, 122.8, 128.3, 128.9, 136.2, 137.5, 137.6, 149.0, 149.3, 158.7; HRMS *m/z* Calcd for C₁₄H₁₄N (M+H⁺) 196.1126, found 196.1125. **2-[1-(4-Methoxyphenyl)vinyl]pyridine (2c).**^{2a} Oil, 25 mg (24%); ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 5.55 (d, *J* = 1.5 Hz, 1H), 5.86 (d, *J* = 1.5 Hz, 1H), 6.87-6.91 (m, 2H), 7.20 (ddd, *J* = 1.1, 4.9, 7.6 Hz, 1H), 7.27-7.30 (m, 3H), 7.63 (td, *J* = 1.8, 7.6 Hz, 1H), 8.64 (dq, *J* = 1.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 113.7, 116.4, 122.3, 122.8, 129.5, 132.8, 136.2, 148.7, 149.3, 158.9, 159.4; HRMS *m/z* Calcd for C₁₄H₁₄NO (M+H⁺) 212.1075, found 212.1077.

2-[1-(4-Chlorophenyl)vinyl]pyridine (2d).^{2a} Oil, 87 mg (81%); ¹H NMR (400 MHz, CDCl₃) δ 5.60 (d, *J* = 1.2 Hz, 1H), 5.96 (d, *J* = 1.2 Hz, 1H), 7.21 (ddd, *J* = 1.2, 4.8, 7.6 Hz, 1H), 7.26-7.34 (m, 5H), 7.64 (td, *J* = 1.8, 7.7 Hz, 1H), 8.63 (dq, *J* = 1.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 118.0, 122.5, 122.6, 128.4, 129.7, 133.7, 136.4, 138.7, 148.1, 149.4, 158.1; HRMS *m/z* Calcd for C₁₃H₁₁ClN (M+H⁺) 216.0580, found 216.0577.

2-[1-[4-(Trifluoromethyl)phenyl]vinyl]pyridine (2e). Oil, 104 mg (83%); IR: (neat, cm⁻¹) 3008, 1581, 1327, 1165, 1126, 1072, 849; ¹H NMR (400 MHz, CDCl₃) δ 5.67 (d, *J* = 1.0 Hz, 1H), 6.05 (d, *J* = 1.0 Hz, 1H), 7.23 (ddd, *J* = 1.1, 4.9, 7.6 Hz, 1H), 7.30 (dt, *J* = 1.0, 8.0 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 2H), 7.66 (td, *J* = 1.8, 7.7 Hz, 1H), 8.64 (dq, *J* = 1.0, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.1, 122.6, 122.7, 124.2 (q, *J* = 272.2 Hz), 125.2 (q, *J* = 3.7 Hz), 128.7, 129.8 (q, *J* = 32.3 Hz), 136.5, 143.9, 148.2, 149.5, 157.8; HRMS *m*/*z* Calcd for C₁₄H₁₁F₃N (M+H⁺) 250.0844, found 250.0845.

4-(1-(Pyridin-2-yl)vinyl)benzonitrile (2f). Oil, 77 mg (75%); IR: (neat, cm⁻¹) 3055, 2229, 1581, 1466, 1403, 925, 848, 802; ¹H NMR (400 MHz, CDCl₃) δ 5.70 (d, *J* = 0.9 Hz, 1H), 6.04 (d, *J* = 0.9 Hz, 1H), 7.26 (ddd, *J* = 1.1, 4.9, 7.6 Hz, 1H), 7.33 (dt, *J* = 1.0, 7.9 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 2H),

7.65 (d, J = 8.7 Hz, 2H), 7.70 (td, J = 1.8, 7.7 Hz, 1H), 8.63 (dq, J = 1.0, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 111.4, 118.8, 119.7, 122.6, 122.8, 129.0, 132.0, 136.6, 144.9, 147.9, 149.4, 157.4; HRMS *m*/*z* Calcd for C₁₄H₁₀N₂ (M⁺) 206.0844, found 206.0837.

2-[1-[3-(Trifluoromethyl)phenyl]vinyl]pyridine (2g). Oil, 83 mg (67%); IR: (neat, cm⁻¹) 3008, 1581, 1466, 1435, 1311, 1122, 1072, 802; ¹H NMR (400 MHz, CDCl₃) δ 5.66 (d, J = 1.1 Hz, 1H), 6.04 (d, J = 1.1 Hz, 1H), 7.23 (ddd, J = 1.1, 4.8, 7.6 Hz, 1H), 7.30 (dt, J = 1.1, 7.9 Hz, 1H), 7.45-7.60 (m, 3H), 7.64 (s, 1H), 7.67 (td, J = 1.7, 7.6 Hz, 1H), 8.64 (dq, J = 1.0, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 118.9, 122.6, 122.7, 124.1 (q, J = 272.2 Hz), 124.5 (q. J = 3.7 Hz), 125.1 (q. J = 3.7 Hz), 128.7, 130.7 (q, J = 32.3 Hz), 131.7 (d, J = 1.5 Hz), 136.5, 141.1, 148.1, 149.5, 157.8; HRMS *m/z* Calcd for C₁₄H₁₀F₃N (M⁺) 249.0765, found 249.0767.

2-[1-(*o***-Tolyl)vinyl]pyridine (2h).^{S8}** Oil, 67 mg (69%); ¹H NMR (400 MHz, CDCl₃) δ 2.07 (s, 3H), 5.39 (d, J = 2.0 Hz, 1H), 6.42 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 7.15 (ddd, J = 1.1, 4.9, 7.5 Hz, 1H), 7.20-7.30 (m, 4H), 7.54 (td, J = 1.8, 7.6 Hz, 1H), 8.63 (dq, J = 0.9, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.0, 118.6, 121.5, 122.2, 125.9, 127.7, 129.98, 130.04, 136.2, 136.4, 140.4, 148.5, 149.5, 157.3; HRMS *m*/*z* Calcd for C₁₄H₁₃N (M⁺) 195.1048, found 195.1047.

2-[1-(2-Fluorophenyl)vinyl]pyridine (2i).^{S8} Oil, 76 mg (76%); ¹H NMR (400 MHz, CDCl₃) δ 5.60 (d, J = 1.5 Hz, 1H), 6.28 (d, J = 1.5 Hz, 1H), 7.05-7.10 (m, 1H), 7.15-7.22 (m, 3H), 7.31-7.38 (m, 2H), 7.61 (td, J = 1.8, 7.8 Hz, 1H), 8.61 (dq, J = 0.9, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 115.6 (d, J = 22.0 Hz), 120.2, 121.4, 122.4, 124.2 (d, J = 3.7 Hz), 128.2 (d, J = 14.7 Hz), 129.6 (d, J = 8.1 Hz), 131.4 (d, J = 3.6 Hz), 136.4, 143.8, 149.2, 157.3, 160.0 (d, J = 248.7 Hz); HRMS *m/z* Calcd for C₁₃H₁₀FN (M⁺) 199.0797, found 199.0794.

2-[1-(2-Bromophenyl)vinyl]pyridine (2j).^{S8} Oil, 79 mg (61%); ¹H NMR (400 MHz, CDCl₃) δ 5.46 (d, *J* = 1.5 Hz, 1H), 6.44 (d, *J* = 1.5 Hz, 1H), 7.03 (dt, *J* = 1.0, 8.0 Hz, 1H), 7.16 (ddd, *J* = 1.1, 4.8, 7.6 Hz, 1H), 7.23 (dt, *J* = 4.6, 8.0 Hz, 1H), 7.36-7.38 (m, 2H), 7.55-7.62 (m, 2H), 8.62 (dq, *J* = 0.9, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.6, 121.5, 122.3, 123.3, 127.5, 129.2, 131.6, 132.8, 136.4, 141.6, 148.4, 149.4, 156.3; HRMS *m*/*z* Calcd for C₁₃H₁₁BrN (M+H⁺) 260.0075, found 260.0072.

2-[1-(Naphthalen-1-yl)vinyl]pyridine (2k). Oil, 75 mg (65%); IR: (neat, cm⁻¹) 3008, 1581, 1466, 1427, 1157, 1049, 926, 779; ¹H NMR (400 MHz, CDCl₃) δ 5.57 (d, *J* = 2.1 Hz, 1H), 6.67 (d, *J* = 2.1 Hz, 1H), 6.83 (d, *J* = 7.9 Hz, 1H), 7.12 (ddd, *J* = 1.1, 4.8, 7.5 Hz, 1H), 7.32 (ddd, *J* = 1.2, 6.9, 8.2 Hz, 1H), 7.40-7.53 (m, 4H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 8.65 (dq, *J* = 0.9, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 120.0, 122.1, 122.3, 125.5, 125.8, 125.9, 126.2, 127.3, 128.1, 128.2, 131.9, 133.6, 136.4, 138.6, 147.3, 149.4, 157.5; HRMS *m*/*z* Calcd for C₁₇H₁₃N (M⁺) 231.1048, found 231.1049.

2-[1-(Pyridin-3-yl)vinyl]pyridine (2l). Oil, 56 mg (61%); IR: (neat, cm⁻¹) 3046, 1581, 1473, 1411, 1335, 1026, 918, 802; ¹H NMR (400 MHz, CDCl₃) δ 5.68 (d, *J* = 1.1 Hz, 1H), 6.07 (d, *J* = 1.1 Hz,

1H), 7.24 (ddd, J = 1.1, 4.8, 7.6 Hz, 1H), 7.28-7.34 (m, 2H), 7.65-7.70 (m, 2H), 8.58 (dd, J = 1.6, 4.9 Hz, 1H), 8.63-8.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 119.0, 122.4, 122.7, 123.0, 135.7, 135.9, 136.5, 146.1, 148.9, 149.35, 149.40, 157.5; HRMS *m*/*z* Calcd for C₁₂H₁₁N₂ (M+H⁺) 183.0922, found 183.0925.

2-[1-(Thiophen-3-yl)vinyl]pyridine (**2m**). Oil, 15 mg (16%); IR: (neat, cm⁻¹) 3008, 1581, 1466, 1434, 1288, 1149, 995, 795; ¹H NMR (400 MHz, CDCl₃) δ 5.69 (d, J = 1.4 Hz, 1H), 5.81 (d, J = 1.4 Hz, 1H), 7.18 (dd, J = 1.4, 4.9 Hz, 1H), 7.23 (ddd, J = 1.1, 4.9, 7.6 Hz, 1H), 7.28 (dd, J = 1.4, 2.9 Hz, 1H), 7.31 (dd, J = 2.9, 4.9 Hz, 1H), 7.38 (dt, J = 1.1, 7.8 Hz, 1H), 7.67 (td, J = 1.8, 7.7 Hz, 1H), 8.65 (dq, J = 0.9, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.6, 122.5, 122.6, 123.4, 125.4, 127.4, 136.4, 140.9, 143.7, 149.3, 158.6; HRMS *m*/*z* Calcd for C₁₁H₁₀NS (M+H⁺) 188.0534, found 188.0536.

4-Methyl-2-(1-phenylvinyl)pyridine (2n) + 2-(1-Phenylvinyl)-4-vinylpyridine (2n'). 51 mg (52%); ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H, **2n**), 5.44 (d, J = 10.8 Hz, 1H, **2n'**), 5.58 (d, J = 1.5 Hz, 1H, **2n**), 5.62 (d, J = 1.5 Hz, 1H, **2n'**), 5.91 (d, J = 17.6 Hz, 1H, **2n'**), 5.96 (d, J = 1.5 Hz, 1H, **2n'**), 5.98 (d, J = 1.5 Hz, 1H, **2n'**), 6.62 (dd, J = 10.8, 17.6 Hz, 1H, **2n'**), 7.02-7.04 (m, 1H, **2n**), 7.08-7.09 (m, 1H, **2n**), 7.21-7.24 (m, 2H, **2n'**), 7.32-7.37 (m, 5H+5H, **2n+2n'**), 8.50 (d, J = 4.9 Hz, 1H, **2n**), 8.59 (d, J = 5.0 Hz, 1H, **2n'**); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 117.5, 117.7, 118.6, 119.3, 120.2, 123.4, 123.7, 127.7, 127.8, 128.2, 128.27, 128.33, 128.4, 134.8, 140.3, 140.5, 145.1, 147.3, 149.1 (overlapped), 149.2, 149.7, 158.4, 159.1; HRMS *m*/z Calcd for C₁₄H₁₄N (M+H⁺) 196.1126, found 196.1127, and C₁₅H₁₄N (M+H⁺) 208.1126, found 208.1128.

4-(1-Phenylvinyl)pyridine (**2o**).^{4b} Oil, 68 mg (75%); ¹H NMR (400 MHz, CDCl₃) δ 5.60 (d, *J* = 0.7 Hz, 1H), 5.61 (d, *J* = 0.7 Hz, 1H), 7.24 (dd, *J* = 1.7, 4.5 Hz, 2H), 7.28-7.32 (m, 2H), 7.34-7.39 (m, 3H), 8.58 (dd, *J* = 1.7, 4.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 116.9, 122.7, 128.1, 128.2, 128.4, 139.7, 147.9, 148.7, 149.9; HRMS *m/z* Calcd for C₁₃H₁₁N (M⁺) 181.0891, found 181.0889.

4-[1-(4-Chlorophenyl)vinyl)]pyridine (2p). Oil, 60 mg (56%); IR: (neat, cm⁻¹) 3410, 1597, 1489, 1412, 1281, 1095, 918, 833; ¹H NMR (400 MHz, CDCl₃) δ 5.59 (d, J = 0.4 Hz, 1H), 5.62 (d, J = 0.4 Hz, 1H), 7.21-7.25 (m, 4H), 7.32-7.35 (m, 2H), 8.59 (dd, J = 1.7, 4.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 117.3, 122.6, 128.6, 129.4, 134.2, 138.2, 146.8, 148.2, 150.0; HRMS *m*/*z* Calcd for C₁₃H₁₀ClN (M⁺) 215.0502, found 215.0500.

2-(1-Phenylvinyl)pyrimidine (2q). Oil, 59 mg (65%); IR: (neat, cm⁻¹) 3055, 1558, 1496, 1419, 1350, 1072, 926, 833; ¹H NMR (400 MHz, CDCl₃) δ 5.83 (d, J = 1.7 Hz, 1H), 6.48 (d, J = 1.7 Hz, 1H), 7.17 (t, J = 4.8 Hz, 1H), 7.32-7.43 (m, 5H), 8.75 (d, J = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 119.1, 122.4, 127.8, 128.0, 128.6, 139.4, 148.3, 156.9, 166.2; HRMS *m*/*z* Calcd for C₁₂H₁₁N₂ (M+H⁺) 183.0922, found 183.0921.

2-Benzoylpyridine (**3**).^{13a} Mp 40-41 °C, 81 mg (89%); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.50 (m, 3H), 7.57-7.61 (m, 1H), 7.89 (td, *J* = 1.7, 7.7 Hz, 1H), 8.02-8.08 (m, 3H), 8.72 (dq, *J* = 0.9, 4.8 Hz,

1H); ¹³C NMR (100 MHz, CDCl₃) δ 124.5, 126.1, 128.1, 130.9, 132.8, 136.2, 137.0, 148.5, 155.0, 193.8; HRMS *m*/*z* Calcd for C₁₂H₉NO (M⁺) 183.0684, found 183.0685.

1,2-Diphenyl-1,2-di(pyridin-2-yl)ethane (4a).^{\$9} 69 mg (82%); ¹H NMR (400 MHz, CDCl₃) δ 5.27 (d, J = 8.3 Hz, 4H), 6.90 (dddd, J = 1.1, 3.7, 4.8, 8.6 Hz, 4H), 6.98-7.03 (m, 4H), 7.08-7.14 (m, 10H), 7.23 (dt, J = 1.1, 7.8 Hz, 2H), 7.33-7.41 (m, 8H), 7.44-7.46 (m, 4H), 8.42 (dq, J = 1.0, 4.9 Hz, 2H), 8.47 (dq, J = 1.0, 4.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 57.6, 57.7, 120.8, 121.0, 123.9, 124.2, 126.0, 126.1, 127.9, 128.0, 128.6, 128.8, 135.9, 136.0, 142.0, 142.2, 148.8, 149.2, 162.0, 162.5; HRMS *m/z* Calcd for C₂₄H₂₀N₂ (M⁺) 336.1626, found 336.1624.

meso-1,2-Diphenyl-1,2-di(pyridin-4-yl)ethane (*meso*-4o).^{\$9} Mp 234-235 °C, 37 mg (44%); ¹H NMR (400 MHz, CDCl₃) δ 4.73 (s, 2H), 7.05-7.19 (m, 14H), 8.34 (d, J = 5.5 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 55.2, 123.6, 127.0, 128.3, 128.7, 140.8, 149.7, 151.5; HRMS *m*/*z* Calcd for C₂₄H₂₁N₂ (M+H⁺) 337.1705, found 337.1708.

dl-1,2-Diphenyl-1,2-di(pyridin-4-yl)ethane (*dl*-4o).⁸⁹ Mp 217-218 °C, 35 mg (42%); ¹H NMR (400 MHz, CDCl₃) δ 4.73 (s, 2H), 7.05-7.16 (m, 14H), 8.37 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 55.1, 123.6, 126.8, 128.3, 128.5, 140.8, 149.9, 151.5; HRMS *m*/*z* Calcd for C₂₄H₂₁N₂ (M+H⁺) 337.1705, found 337.1707.

1,1,2,2-Tetra(pyridin-2-yl)ethane (4r).^{S10} Mp > 300 °C, 70 mg (82%); ¹H NMR (400 MHz, CDCl₃) δ 5.73 (s, 2H), 6.90 (ddd, J = 1.7, 4.8, 7.1 Hz, 4H), 7.37-7.43 (m, 8H), 8.44 (ddd, J = 1.0, 1.7, 4.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 58.8, 121.1, 124.1, 135.9, 149.1, 161.0; HRMS *m*/*z* Calcd for C₂₂H₁₈N₄ (M⁺) 338.1531, found 338.1533.

References

- (2) (a) Lawson, M. et al. Org. Biomol. Chem. 2013, 11, 3664.
- (3) (a) Ahmed, M. et al. Chem. Eur. J. 2007, 13, 1594.
- (4) (b) Hansen, A. L. et al. Chem. Commun. 2006, 4137.
- (13) (a) de Houwer, J. et al. Angew. Chem., Int. Ed. 2012, 51, 2745.
- (S1) Niwa, T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2007, 46, 2643.
- (S2) Shang, R.; Yang, Z.-W.; Wang, Y.; Zhang, S.-L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391.
- (S3) Khatib, S.; Tal, S.; Godsi, O.; Peskin, U.; Eichen, Y. Tetrahedron 2000, 56, 6753.
- (S4) Niwa, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 2373.
- (S5) Park, B. S.; Lee, S. W.; Kim, I. T.; Tae, J. S.; Lee, S. H. Heteroat. Chem. 2012, 23, 66.
- (S6) Kawano, T.; Kurimoto, M.; Hatanaka, M.; Ueda, I. Chem. Pharm. Bull. 1992, 40, 3067.
- (S7) Prat, L. et al., J. Heterocyclic Chem. 2000, 37, 767.
- (S8) Schubert, R.; Gruetzmacher, H. F. J. Am. Chem. Soc. 1980, 102, 5323.
- (S9) Chiu, K. K.; Huang, H. H. J. Chem. Soc. (C), 1969, 2758.
- (S10) Canty, A. J.; Minchin, N. J. Inorg. Chim. Acta 1985, 100, L13

S-13

δ/ppm 40 20 0

CN

S-23

100 δ/ppm 80

60 40 20 0

87

160

200 180

⁶ 5

140

120

