Supporting Information

Copper-Catalyzed α-Methylenation of Benzylpyridines Using Dimethylacetamide as One-Carbon Source

Masaki Itoh, ${ }^{\text {a }}$ Koji Hirano, ${ }^{a}$ Tetsuya Satoh, ${ }^{\text {a,b }} *$ and Masahiro Miura ${ }^{\mathrm{a}}$ *
a Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
[Fax: (+81)-6-6879-7362; phone: (+81)-6-6879-7361; e-mail: satoh@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp]
b JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

List of Contents for Experimental Section

General: S-2
Preparation of E: S-2 - S-4
General Procedure for Methylenation of Benzylpyridines: S-5
Isolation of Intermediate F: S-5 - S-6
Reaction of \mathbf{E} under Standard Conditions: S-7
Procedure for Oxygenation of 2-Benzylpyridine (1a): S-7
General Procedure for Dimerization of Benzylpyridines: S-7
X-ray Crystral-Structure Analysis: S-8
Characterization Data of Products: S-9 - S-12
References: S-12
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products: S13-S35

Experimental Section

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 100 MHz , respectively, for CDCl_{3} solutions. HRMS data were obtained by EI using a double focusing mass spectrometer or APCI using a TOF mass spectrometer. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 $\mathrm{mm} \times 1.5 \mathrm{~m}$). GC-MS analysis was carried out using a CBP-1 capillary column (i. d. $0.25 \mathrm{~mm} \times 25$ $\mathrm{m})$. IR spectra were recorded as thin film. The structures of all products listed below were unambiguously determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR with the aid of NOE, COSY, HSQC, and HMBC experiments.

Benzylpyridines $\mathbf{1 b} \mathbf{- c}, \mathbf{1 e - i}$, and $\mathbf{1 k},{ }^{\text {S1 }} \mathbf{1 j}$, and $\mathbf{1 1}-\mathbf{m},{ }^{\text {S2 }}$ 2-benzyl-4-methylpyridine ($\mathbf{1 n}$), ${ }^{\text {S3 }}$ 2-benzylpyrimidine (1q), ${ }^{\text {S4 }}$ and di(2-pyridyl)methane ($\left.\mathbf{1 r}\right)^{\text {S5 }}$ were prepared according to published procedures. Compound \mathbf{E} was prepared as noted below. Other reagents were commercially available.

Preparation of N-methyl- N-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (E).

First, 2-phenyl-2-(pyridin-2-yl)ethan-1-amine was prepared according to a reported method. ${ }^{\text {S6, }}$ S7 Thus obtained 2-phenyl-2-(pyridin-2-yl)ethan-1-amine ($1 \mathrm{mmol}, 198 \mathrm{mg}$), acetic anhydride (2.1 mmol, 214 mg), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added to a 20 mL two-necked flask with a calcium chloride tube and a rubber cup. Then, the resulting mixture was stirred under air at ambient temperature for 12 h . After the consumption of amine, which was confirmed by GC, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic layer was washed by water (100 mL , three times), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents under vacuum, the residue was dissolved in DMF (1.5 mL). Then, $\mathrm{NaH}(2 \mathrm{mmol}, 48 \mathrm{mg})$ and methyl iodide ($1.2 \mathrm{mmol}, 170$ mg) were added to the solution. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , and allowed to warm to rt . After 8 h , the reaction mixture was extracted with ethyl acetate (100 mL). The organic layer was washed by water (100 mL , three times) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was then
concentrated in vacuo and purified by column chromatography on silica gel using ethyl acetate-methanol (10:1, v/v) to afford N-methyl- N-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (E) $(167 \mathrm{mg}, 66 \%)$. This product was isolated as a mixture of two rotamers $\left(25^{\circ} \mathrm{C}, 5: 4\right)$.
N-Methyl- N-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (E). Oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.88(\mathrm{~s}, 1.34 \mathrm{H}), 1.97(\mathrm{~s}, 1.66 \mathrm{H}), 2.67(\mathrm{~s}, 1.66 \mathrm{H}), 2.83(\mathrm{~s}, 1.34 \mathrm{H}), 3.90-4.01(\mathrm{~m}, 1.11 \mathrm{H}), 4.18-4.32$ $(\mathrm{m}, 1.34 \mathrm{H}), 4.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.55 \mathrm{H}), 7.10-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.60(\mathrm{~m}, 1 \mathrm{H})$, $8.58(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}, 0.55 \mathrm{H}), 8.62(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}, 0.45 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,22.0,33.6,37.7,51.0,52.0,53.0,55.5,121.6,122.0,123.85,123.93,126.8,127.2,128.2$, 128.3, 128.4, 128.7, 136.4, 136.6, 140.8, 141.4, 148.9, 149.2, 160.4, 161.4, 170.9, 171.0; HRMS m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$255.1497, found 255.1498.

General Procedure for Methylenation of Benzylpyridines. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added benzylpyridine $\mathbf{1}(0.5 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol}, 10 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(1 \mathrm{mmol}, 238 \mathrm{mg})$, 1-methylnaphthalene (ca. 40 mg) as internal standard, and DMA $(2.5 \mathrm{~mL})$. Then, the resulting mixture was stirred under nitrogen at $120{ }^{\circ} \mathrm{C}$ (bath temperature) for 4 h . After cooling, the reaction mixture was extracted with ethyl acetate $(100 \mathrm{~mL})$ and ethylenediamine $(1 \mathrm{~mL})$. The organic layer was washed by water $(100 \mathrm{~mL}$, three times), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents under vacuum, product $\mathbf{2}$ was isolated by column chromatography on silica gel using hexane-ethyl acetate ($5: 1, \mathrm{v} / \mathrm{v}$) as eluent.

Isolation of Intermediate \mathbf{F}. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added 2-benzylpyridine (1a) $(0.5 \mathrm{mmol}, 85 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol}, 10$ $\mathrm{mg}), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(1 \mathrm{mmol}, 238 \mathrm{mg})$, 1-methylnaphthalene (ca. 40 mg) as internal standard, and DMA $(2.5 \mathrm{~mL})$. Then, the resulting mixture was stirred under nitrogen at $120{ }^{\circ} \mathrm{C}$ (bath temperature) for 30 min. After cooling, the reaction mixture was extracted with ethyl acetate (100 mL) and ethylenediamine (1 mL). The organic layer was washed by water (100 mL , three times), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was then concentrated in vacuo and purified by column chromatography on silica gel using methanol to afford intermediate \mathbf{F} ($10 \mathrm{mg}, 9 \%$), along with $\mathbf{2 a}$ ($22 \mathrm{mg}, \mathbf{2 4 \%}$) and recovered 1a ($50 \mathrm{mg}, 59 \%$).
$\boldsymbol{N}, \mathbf{N}$-Dimethyl-2-phenyl-2-(pyridin-2-yl)ethan-1-amine (F). Mp 58-59 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.88(\mathrm{dd}, J=7.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=8.3,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, J=1.1,4.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.56(\mathrm{td}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dq}, J=0.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.8,52.0,64.1,121.4,123.0,126.5,128.0,128.5,136.4,142.5,149.3,162.6$; HRMS m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$227.1548, found 227.1549.

Reaction of E under Standard Conditions.

To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added N-methyl- N-[2-phenyl-2-(pyridin-2-yl)ethyl]acetamide (E) $(0.04 \mathrm{mmol}, 10 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($0.004 \mathrm{mmol}, 0.8 \mathrm{mg}$), $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.08 \mathrm{mmol}, 19 \mathrm{mg}), 1-\mathrm{methylnaph}$ thalene (ca. 10 mg) as internal standard, and DMA (0.25 mL). Then, the resulting mixture was stirred under nitrogen at $120{ }^{\circ} \mathrm{C}$ (bath temperature) for 30 min . It was confirmed by GC analysis that only a trace amount of $\mathbf{2 a}$ was formed and 94% of \mathbf{E} was recovered. In addition, treatment of a mixture of $\mathbf{E}(0.04 \mathrm{mmol}, 10 \mathrm{mg})$ and 1-(4-chlorophenyl)-1-(2-pyridyl)methane (1d) ($0.04 \mathrm{mmol}, 8 \mathrm{mg}$) with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.008$ mmol, 1.6 mg), $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.16 \mathrm{mmol}, 38 \mathrm{mg})$, and 1-methylnaphthalene (ca. 20 mg) as internal standard in DMA (0.5 mL) under nitrogen at $120{ }^{\circ} \mathrm{C}$ (bath temperature) for 4 h selectively gave $\mathbf{2 d}$ in $\mathbf{9 1 \%}$ yield, along with a negligible amount of $\mathbf{2 a}(3 \%)$. In this case, 70% of \mathbf{E} was recovered.

Procedure for Oxygenation of 2-Benzylpyridine (1a). To a 20 mL two-necked flask with a reflux condenser, a calcium chloride tube, and a rubber cup were added 2-benzylpyridine ($\mathbf{1 a}$) (0.5 mmol , $85 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol}, 10 \mathrm{mg}), 1-m e t h y l n a p h t h a l e n e(\mathrm{ca} .40 \mathrm{mg})$ as internal standard, and DMA (2.5 mL). Then, the resulting mixture was stirred at $120^{\circ} \mathrm{C}$ (bath temperature) for 48 h under air. After cooling, the reaction mixture was extracted with ethyl acetate (100 mL) and ethylenediamine (1 mL). The organic layer was washed by water (100 mL , three times), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was then concentrated in vacuo and purified by column chromatography on silica gel using hexane-ethyl acetate (3:1, v/v) to afford 2-benzoylpyridine (3) (81 mg, 89\%).

General Procedure for Dimerization of Benzylpyridines. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added benzylpyridine $\mathbf{1}(0.5 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 200 \mathrm{mg})$, 1-methylnaphthalene (ca. 40 mg) as internal standard, and DMA $(2.5 \mathrm{~mL})$. Then, the resulting mixture was stirred under nitrogen at $120^{\circ} \mathrm{C}$ (bath temperature) for 8 h . After cooling, the reaction mixture was extracted with ethyl acetate $(100 \mathrm{~mL})$ and ethylenediamine $(1 \mathrm{~mL})$. The organic layer was washed by water (100 mL , three times), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents under vacuum, product 4 was isolated by column chromatography on silica gel using hexane-ethyl acetate ($2: 1, \mathrm{v} / \mathrm{v}$) as eluent.

X-ray Crystal-Structure Analysis. The configuration of meso-4o was determined for a white microcrystal obtained from acetonitrile/dioxane (Figure S1).

Figure S1. ORTEP drawing of compound meso- $\mathbf{4 0}{ }^{\circ} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$.
Crystal data: $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{Mw}=424.54$, monoclinic, space group $\mathrm{P} 121 / \mathrm{c} 1, \mathrm{~T}=296 \mathrm{~K}, \mathrm{a}=$ $8.4619(3), \mathrm{b}=16.3894(6), \mathrm{c}=16.8746(7), \beta=102.4883(17), \mathrm{V}=2284.88(15), \mathrm{Z}=4,4146$ reflections measured, $\mathrm{R}=0.1041$, $\mathrm{Rw}=0.3693$.

Characterization Data of Products

2-(1-Phenylvinyl)pyridine (2a). ${ }^{3 \mathrm{a}}$ Oil, $63 \mathrm{mg}(70 \%) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.60(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=1.1,4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.62(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dq}, J=1.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 117.6,122.4,122.8,127.8,128.2,128.4,136.2,140.3,149.2,149.4,158.5 ;$ HRMS m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right) 182.0970$, found 182.0969 .

2-(1-Phenylvinyl-2,2- $\boldsymbol{d}_{\mathbf{2}}$)pyridine (2a- $\boldsymbol{d}_{\mathbf{2}}$). Oil, $51 \mathrm{mg}(55 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20$ (ddd, $J=1.1,4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.62(\mathrm{td}, J=1.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dq}, J=1.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 117.5(5)(J=27.9 \mathrm{~Hz})$, $122.4,122.8,127.8,128.3,128.4,136.2,140.3,149.0,149.4,158.5 ;$ HRMS m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{D}_{2} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$184.1095, found 184.1094.
2-[1-(p-Tolyl)vinyl]pyridine (2b). Oil, 53 mg (55\%); IR: (neat, cm^{-1}) 3024, 1581, 1512, 1466, 1427, $1334,1041,910,802 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{td}, J=1.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{dq}, J=$ $1.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2,117.0,122.3,122.8,128.3,128.9,136.2$, 137.5, 137.6, 149.0, 149.3, 158.7; HRMS m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$196.1126, found 196.1125. 2-[1-(4-Methoxyphenyl)vinyl]pyridine (2c). ${ }^{2 \mathrm{a}}$ Oil, $25 \mathrm{mg}(24 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 5.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{ddd}, J=$ $1.1,4.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{td}, J=1.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dq}, J=1.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.3,113.7,116.4,122.3,122.8,129.5,132.8,136.2,148.7$, 149.3, 158.9, 159.4; HRMS m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}\left(\mathrm{M}+\mathrm{H}^{+}\right)$212.1075, found 212.1077.

2-[1-(4-Chlorophenyl)vinyl]pyridine (2d). ${ }^{2 \mathrm{a}} \mathrm{Oil}, 87 \mathrm{mg}(81 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=1.2,4.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H})$, $7.64(\mathrm{td}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{dq}, J=1.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 118.0$, $122.5,122.6,128.4,129.7,133.7,136.4,138.7,148.1,149.4,158.1 ;$ HRMS m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}\left(\mathrm{M}+\mathrm{H}^{+}\right)$216.0580, found 216.0577.

2-[1-[4-(Trifluoromethyl)phenyl]vinyl]pyridine (2e). Oil, 104 mg (83\%); IR: (neat, cm^{-1}) 3008, $1581,1327,1165,1126,1072,849 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=1.1,4.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{td}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dq}, J=1.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 119.1,122.6,122.7,124.2(\mathrm{q}, J=272.2 \mathrm{~Hz}), 125.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 128.7$, $129.8(\mathrm{q}, J=32.3 \mathrm{~Hz}), 136.5,143.9,148.2,149.5,157.8$; HRMS m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 250.0844 , found 250.0845 .

4-(1-(Pyridin-2-yl)vinyl)benzonitrile (2f). Oil, 77 mg (75\%); IR: (neat, cm^{-1}) 3055, 2229, 1581, $1466,1403,925,848,802 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.70(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{ddd}, J=1.1,4.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{td}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{dq}, J=1.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 111.4,118.8,119.7,122.6,122.8,129.0,132.0,136.6,144.9,147.9,149.4,157.4$; HRMS m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$206.0844, found 206.0837.

2-[1-[3-(Trifluoromethyl)phenyl]vinyl]pyridine (2g). Oil, 83 mg (67\%); IR: (neat, cm^{-1}) 3008, $1581,1466,1435,1311,1122,1072,802 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.66(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.04(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=1.1,4.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=1.1,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=1.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dq}, J=1.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 118.9,122.6,122.7,124.1(\mathrm{q}, J=272.2 \mathrm{~Hz}$), $124.5(\mathrm{q} . J=3.7 \mathrm{~Hz}), 125.1$ (q. $J=3.7 \mathrm{~Hz}), 128.7,130.7(\mathrm{q}, J=32.3 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 136.5,141.1,148.1,149.5$, 157.8; HRMS m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$249.0765, found 249.0767.

2-[1-(o-Tolyl)vinyl]pyridine (2h). ${ }^{58}$ Oil, $67 \mathrm{mg}(69 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07(\mathrm{~s}, 3 \mathrm{H})$, $5.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=1.1,4.9$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{td}, J=1.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 20.0,118.6,121.5,122.2,125.9,127.7,129.98,130.04,136.2,136.4$, 140.4, 148.5, 149.5, 157.3; HRMS m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}\left(\mathrm{M}^{+}\right)$195.1048, found 195.1047.

2-[1-(2-Fluorophenyl)vinyl]pyridine (2i). ${ }^{58} \mathrm{Oil}, 76 \mathrm{mg}(76 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.61(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 115.6(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 120.2,121.4,122.4,124.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 129.6(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 136.4,143.8,149.2,157.3,160.0(\mathrm{~d}, J=248.7 \mathrm{~Hz}) ; H R M S \mathrm{~m} / \mathrm{z}$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FN}\left(\mathrm{M}^{+}\right)$199.0797, found 199.0794 .

2-[1-(2-Bromophenyl)vinyl]pyridine (2j). ${ }^{\text {S8 }}$ Oil, $79 \mathrm{mg}(61 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.46$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dt}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=1.1,4.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=4.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.62(\mathrm{~m}, 2 \mathrm{H}), 8.62(\mathrm{dq}, J=0.9$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 119.6,121.5,122.3,123.3,127.5,129.2,131.6,132.8$, 136.4, 141.6, 148.4, 149.4, 156.3; HRMS m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrN}\left(\mathrm{M}+\mathrm{H}^{+}\right) 260.0075$, found 260.0072.

2-[1-(Naphthalen-1-yl)vinyl]pyridine (2k). Oil, 75 mg (65%); IR: (neat, cm^{-1}) 3008, 1581, 1466, $1427,1157,1049,926,779 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=1.1,4.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{ddd}, J=1.2,6.9,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 120.0,122.1,122.3,125.5,125.8,125.9,126.2,127.3,128.1$, 128.2, 131.9, 133.6, 136.4, 138.6, 147.3, 149.4, 157.5; HRMS m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}\left(\mathrm{M}^{+}\right)$231.1048, found 231.1049 .
2-[1-(Pyridin-3-yl)vinyl]pyridine (21). Oil, $56 \mathrm{mg}(61 \%)$; IR: (neat, cm^{-1}) 3046, 1581, 1473, 1411, $1335,1026,918,802 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=1.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.24$ (ddd, $J=1.1,4.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}), 8.58(\mathrm{dd}, J=1.6,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.63-8.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 119.0$, 122.4, 122.7, 123.0, 135.7, 135.9, 136.5, 146.1, 148.9, 149.35, 149.40, 157.5; HRMS m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 183.0922$, found 183.0925.

2-[1-(Thiophen-3-yl)vinyl]pyridine (2m). Oil, 15 mg (16\%); IR: (neat, cm^{-1}) 3008, 1581, 1466, $1434,1288,1149,995,795 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.69(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=1.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{ddd}, J=1.1,4.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=1.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{dd}, J=2.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dt}, J=1.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.65$ $(\mathrm{dq}, J=0.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 116.6,122.5,122.6,123.4,125.4,127.4$, 136.4, 140.9, 143.7, 149.3, 158.6; HRMS m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$188.0534, found 188.0536.

4-Methyl-2-(1-phenylvinyl)pyridine (2n) + 2-(1-Phenylvinyl)-4-vinylpyridine (2n'). 51 mg $(52 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathbf{2 n}), 5.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 n}$), $5.58(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 n}$), $5.62\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathbf{n}^{\prime}\right), 5.91(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 n}), 5.96(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, 2n), $5.98(\mathrm{~d}, ~ J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 n}$ '), $6.62(\mathrm{dd}, J=10.8,17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 n}$ '), $7.02-7.04(\mathrm{~m}, 1 \mathrm{H}, \mathbf{2 n})$, 7.08-7.09 (m, 1H, 2n), 7.21-7.24 (m, 2H, 2n'), 7.32-7.37 (m, 5H+5H, 2n+2n'), $8.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathbf{2 n}), 8.59(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2 n}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,117.5,117.7,118.6$, $119.3,120.2,123.4,123.7,127.7,127.8,128.2,128.27,128.33,128.4,134.8,140.3,140.5,145.1$, 147.3, 149.1 (overlapped), 149.2, 149.7, 158.4, 159.1; HRMS m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 196.1126, found 196.1127, and $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$208.1126, found 208.1128 .

4-(1-Phenylvinyl)pyridine (20). ${ }^{4 \mathrm{~b}}$ Oil, $68 \mathrm{mg}(75 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60$ (d, $J=0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=1.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}$, $3 \mathrm{H}), 8.58(\mathrm{dd}, J=1.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 116.9,122.7,128.1,128.2,128.4$, 139.7, 147.9, 148.7, 149.9; HRMS m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}\left(\mathrm{M}^{+}\right) 181.0891$, found 181.0889 .

4-[1-(4-Chlorophenyl)vinyl)]pyridine (2p). Oil, 60 mg (56\%); IR: (neat, cm^{-1}) 3410, 1597, 1489, 1412, 1281, 1095, 918, 833; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=0.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}), 8.59(\mathrm{dd}, J=1.7,4.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 117.3,122.6,128.6,129.4,134.2,138.2,146.8,148.2,150.0 ;$ HRMS m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClN}\left(\mathrm{M}^{+}\right) 215.0502$, found 215.0500.

2-(1-Phenylvinyl)pyrimidine (2q). Oil, 59 mg (65\%); IR: (neat, cm^{-1}) 3055, 1558, 1496, 1419, 1350, 1072, 926, 833; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 5 \mathrm{H}), 8.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 119.1,122.4,127.8,128.0,128.6,139.4,148.3,156.9,166.2$; HRMS m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$183.0922, found 183.0921.

2-Benzoylpyridine (3). ${ }^{13 \mathrm{a}} \mathrm{Mp} 40-41^{\circ} \mathrm{C}, 81 \mathrm{mg}(89 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.50(\mathrm{~m}$, $3 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{td}, J=1.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-8.08(\mathrm{~m}, 3 \mathrm{H}), 8.72(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 124.5,126.1,128.1,130.9,132.8,136.2,137.0,148.5,155.0$, 193.8; HRMS m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\left(\mathrm{M}^{+}\right)$183.0684, found 183.0685.

1,2-Diphenyl-1,2-di(pyridin-2-yl)ethane (4a). ${ }^{59} 69 \mathrm{mg}(82 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.27$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.90(\mathrm{dddd}, J=1.1,3.7,4.8,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.98-7.03(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 10 \mathrm{H})$, $7.23(\mathrm{dt}, J=1.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 4 \mathrm{H}), 8.42(\mathrm{dq}, J=1.0,4.9 \mathrm{~Hz}, 2 \mathrm{H})$, 8.47 (dq, $J=1.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.6,57.7,120.8,121.0,123.9,124.2$, $126.0,126.1,127.9,128.0,128.6,128.8,135.9,136.0,142.0,142.2,148.8,149.2,162.0,162.5$; HRMS m / z Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$336.1626, found 336.1624.
meso-1,2-Diphenyl-1,2-di(pyridin-4-yl)ethane (meso-4o). ${ }^{59} \mathrm{Mp} 234-235{ }^{\circ} \mathrm{C}$, $37 \mathrm{mg}(44 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.73(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.19(\mathrm{~m}, 14 \mathrm{H}), 8.34(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.2,123.6,127.0,128.3,128.7,140.8,149.7,151.5$; HRMS m / z Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 337.1705$, found 337.1708 .
$\boldsymbol{d l}$-1,2-Diphenyl-1,2-di(pyridin-4-yl)ethane (dl-4o). ${ }^{59} \mathrm{Mp} 217-218{ }^{\circ} \mathrm{C}, 35 \mathrm{mg}(42 \%) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.73(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.16(\mathrm{~m}, 14 \mathrm{H}), 8.37(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.1$, 123.6, 126.8, 128.3, 128.5, 140.8, 149.9, 151.5; HRMS m / z Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 337.1705$, found 337.1707 .
1,1,2,2-Tetra(pyridin-2-yl)ethane (4r). ${ }^{\text {S10 }} \mathrm{Mp}>300{ }^{\circ} \mathrm{C}, 70 \mathrm{mg}(82 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.73(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{ddd}, J=1.7,4.8,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 8 \mathrm{H}), 8.44(\mathrm{ddd}, J=1.0,1.7,4.8 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 58.8,121.1,124.1,135.9,149.1,161.0 ;$ HRMS m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right) 338.1531$, found 338.1533 .

References

(2) (a) Lawson, M. et al. Org. Biomol. Chem. 2013, 11, 3664.
(3) (a) Ahmed, M. et al. Chem. Eur. J. 2007, 13, 1594.
(4) (b) Hansen, A. L. et al. Chem. Commun. 2006, 4137.
(13) (a) de Houwer, J. et al. Angew. Chem., Int. Ed. 2012, 51, 2745.
(S1) Niwa, T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2007, 46, 2643.
(S2) Shang, R.; Yang, Z.-W.; Wang, Y.; Zhang, S.-L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391.
(S3) Khatib, S.; Tal, S.; Godsi, O.; Peskin, U.; Eichen, Y. Tetrahedron 2000, 56, 6753.
(S4) Niwa, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 2373.
(S5) Park, B. S.; Lee, S. W.; Kim, I. T.; Tae, J. S.; Lee, S. H. Heteroat. Chem. 2012, 23, 66.
(S6) Kawano, T.; Kurimoto, M.; Hatanaka, M.; Ueda, I. Chem. Pharm. Bull. 1992, 40, 3067.
(S7) Prat, L. et al., J. Heterocyclic Chem. 2000, 37, 767.
(S8) Schubert, R.; Gruetzmacher, H. F. J. Am. Chem. Soc. 1980, 102, 5323.
(S9) Chiu, K. K.; Huang, H. H. J. Chem. Soc. (C), 1969, 2758.
(S10) Canty, A. J.; Minchin, N. J. Inorg. Chim. Acta 1985, 100, L13

No.	ppm	Hz	Height
1	119.97	12071.0	87.95
2	122.05	12280.1	94.51
3	122.31	12305.7	97.08
4	125.53	12630.0	94.07
5	125.75	12652.0	87.57
6	125.94	12671.1	100
7	126.18	12695.3	84.26
8	127.25	12803.1	99.03
9	128.12	12890.4	93.08
10	128.21	12899.2	96.11
11	131.88	13269.0	33.90
12	133.61	13442.8	31.06
13	136.39	13723.1	96.80
14	138.55	13940.2	35.95
15	147.26	14816.1	41.39
16	149.40	15031.8	96.09
17	157.50	15846.8	33.76

No.	ppm	Hz	Height
1	116.61	11732.8	52.84
2	122.51	12326.3	46.08
3	122.58	12332.9	45.20
4	123.43	12418.7	49.37
5	125.35	12611.7	47.15
6	127.41	12819.3	50.60
7	136.37	13720.9	40.47
8	140.89	14174.9	12.10
9	143.73	14461.1	15.39
10	149.25	15016.4	43.10
11	158.60	15957.6	13.48

No.	ppm	Hz	Height
1	55.16	5550.1	47.59
2	123.63	12438.5	46.66
3	126.96	12773.8	48.50
4	128.26	12904.4	100
5	128.72	12950.6	96.80
6	140.75	14161.7	22.75
7	149.69	15060.4	59.08
8	151.51	15243.8	22.42

No.	ppm	Hz	Height
1	58.82	5918.3	22.76
2	121.07	12181.0	45.94
3	124.14	12489.9	43.74
4	135.89	13672.4	44.26
5	149.09	15000.2	41.04
6	161.00	16198.2	21.74

