Supporting Information

(Experimental Procedure and NMR Spectral Data)

Practical Total Syntheses of Acromelic Acids A and B

School of Pharmaceutical Sciences, University of Shizuoka

52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
Fax: (+81) 54-264-5745
E-mail: kant@u-shizuoka-ken.ac.jp
hamashima@u-shizuoka-ken.ac.jp

acromelic acid $A(1)$

Analysis instruments

Nuclear magnetic resonance [${ }^{1} \mathrm{H}$ NMR (500 MHz), ${ }^{13} \mathrm{C}$ NMR (125 MHz)] spectra were determined on JEOL ECA-500 instrument. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR were reported in parts per million downfields from tetramethylsilane (δ) as the internal standard and coupling constants were in hertz (Hz). The following abbreviations are used for spin multiplicity: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR were reported in ppm relative to the centerline of a triplet at 77.0 ppm for deuteriochloroform.

Melting points (Mp), determined on a Yanaco Micro Melting Point Apparatus MP-S3, are uncorrected.
High-resolution mass spectra (HRMS) were obtained on a BRUKER DALTONICS micrOTOF (ESI).
Infrared (IR) spectra were recorded on a SHIMADZU IRPrestige-21.
Optical rotations were measured on a JASCO P-1030 Polarimeter at RT using the sodium D line.
Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25 mm thick, silica gel 60 F254.

Column chromatography separations were performed on KANTO CHEMICAL Silica Gel 60 (spherical) 40 - $50 \mu \mathrm{~m}$, Silica Gel 60 (spherical) 63-210 $\mu \mathrm{m}$ or Silica Gel 60 N (spherical, neutral) $63-210 \mu \mathrm{~m}$.

Chiral HPLC was performed on SPD-M20A, CTO-20A and LC-20AD using $0.46 \mathrm{~cm} \phi \times 25 \mathrm{~cm}$ ChiralPak AD-H, ChiralCel OD-H from Daicel.

Reagents and solvents were commercial grades and were used as supplied with the following exceptions.

1) Dichloromethane, diethyl ether, n-hexane, tetrahydrofuran and toluene: dried over molecular sieves 4A.
2) Methanol and acetonitrile: dried over molecular sieves 3 A .

2-Chloro-6-methoxypyridine (9)

8

9

To a stirred solution of 2,6-dichloropyridine (8) ($68.9 \mathrm{~g}, 466 \mathrm{mmol}$) in $\mathrm{MeOH}(500 \mathrm{~mL})$ was added NaOMe ($100 \mathrm{~g}, 1.86 \mathrm{~mol}, 4.0$ equiv) and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the mixture was quenched with 2 M aqueous HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to afford $9(66.9 \mathrm{~g}$, quant) as a colorless oil.

IR (film, cm^{-1}) 1599, 1585, 1560, 1468, 1410, 1302, 1265, 1152, 1024, 876, 789.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.51(\mathrm{t}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 163.9,148.4,140.5,116.2,109.1,54.0$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClNO}(\mathrm{M}+\mathrm{H})^{+}$144.0211, found 144.0211.

Methyl 5-formyl-6-methoxypicolinate (11)

To a stirred solution of $\mathbf{9}(20.8 \mathrm{~g}, 145 \mathrm{mmol})$ in THF $(400 \mathrm{~mL})$ was added t-BuLi in heptane (ca.1.6 M, 100 $\mathrm{mL}, 160 \mathrm{mmol}, 1.1$ equiv) at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring at the same temperature for $1 \mathrm{~h}, \mathrm{DMF}$ ($33.8 \mathrm{~mL}, 435 \mathrm{mmol}, 3.0$ equiv) was added dropwise. After being stirred at the same temperature for 30 min , the reaction mixture was warmed to room temperature over 30 min . After stirring, the reaction was quenched with 2 M aqueous HCl , and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was used in the next step without further purification.

To a suspention of $\mathbf{1 0}$ (crude, 145 mmol) and $\mathrm{NaOAc}(17.8 \mathrm{~g}, 218 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{MeOH} /$ toluene ($300 \mathrm{~mL} / 150 \mathrm{~mL}$) were added $\operatorname{Pd}(\mathrm{OAc})_{2}(651 \mathrm{mg}, 2.90 \mathrm{mmol}, 0.02$ equiv) and DPPF ($2.41 \mathrm{~g}, 4.35 \mathrm{mmol}, 0.03$ equiv) under Ar atmosphere. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under CO atmosphere for 23 h . After stirring, the reaction was quenched with 1 M aqueous HCl , and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane / AcOEt $=2: 1$) to afford $11(27.5 \mathrm{~g}, 97 \%)$ as a colorless solid.

Mp. $87-88^{\circ} \mathrm{C}$.
IR (film, cm^{-1}) 1726, 1694, 1591, 1456, 1381, 1254, 1134.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 10.4(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.94 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H})$, 4.00 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 188.6,164.7,164.0,149.8,138.6,121.2,118.5,54.3,53.0$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 218.0424$, found 218.0428.

(E)-Methyl 6-methoxy-5-(2-nitrovinyl)picolinate (15)

To a stirred solution of $\mathbf{1 1}(616 \mathrm{mg}, 3.16 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(319 \mathrm{mg}, 3.16 \mathrm{mmol}$, 1.0 equiv) at room temperature. After stirring for 1.5 h , the solvent was removed under reduced pressure to afford crude $\mathbf{S 1}$ as a yellow solid.

To the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(319 \mathrm{mg}, 3.16 \mathrm{mmol}, 1.0$ equiv) and MsCl ($996 \mathrm{mg}, 4.74 \mathrm{mmol}, 2.0$ equiv) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 3 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} /\right.$ $\mathrm{AcOEt}=9: 1)$ to afford $\mathbf{1 5}(750 \mathrm{mg}$, quant) as a pale yellow solid.

IR (film, $\left.\mathrm{cm}^{-1}\right) 1726,1632,1516,1342,1271$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.02(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (d, $J=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (s, 3H), 3.99 (s, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 164.8,161.9,147.3,141.9,140.9,132.7,118.8,117.6,54.6,53.0$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$261.0482, found 261.0494 .

Benzhydryl 3-bromopropanoate (S3)

To a stirred solution of $\mathbf{S} \mathbf{2}(818 \mathrm{mg}, 5.35 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added diphenyldiazomethane in $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 21 h . The solvent was removed under reduced pressure. The residue was purified by column chromatography (n-Hexane / $\mathrm{AcOEt}=8: 1$) to afford $\mathbf{S 3}$ $(1.38 \mathrm{~g}, 85 \%)$ as a colorless oil.

IR (film, cm^{-1}) 1742, 1497, 1450, 1366, 1287, 1267, 1233, 1132.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.25-7.36(\mathrm{~m}, 10 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.15 \mathrm{~Hz}$, $2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 169.6,139.7,128.5,128.0,127.1,77.6,38.0,25.6$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$341.0148, found 341.0162.

5-Benzhydryl 1-tert-butyl 2-oxopentanedioate (17)

To a stirred solution of $\mathbf{S 3}(18.2 \mathrm{~g}, 57.0 \mathrm{mmol})$ in acetone $(60 \mathrm{~mL})$ was added $\mathrm{NaI}(10.26 \mathrm{~g}, 68.4 \mathrm{mmol}, 1.2$ equiv), and the mixture was stirred at room temperature for 11 h . Then, the reaction mixture was filtered, and the solvent was removed under reduced pressure. The residue was diluted with CHCl_{3} and washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was used in the next step without further purification.

To a solution of crude $\mathbf{S 4}$ in AcOEt (120 mL) was added tert-butyl 2-(triphenylphosphoranylidene)acetate $\left(48.3 \mathrm{~g}, 128 \mathrm{mmol}, 2.5\right.$ equiv) and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . Then, the reaction mixture was filtered and the organic solvent was concentrated under reduced pressure. The crude residue was used in the next step without further purification.

To a stirred solution of $\mathbf{S 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ was introduced ozone gas at $-78{ }^{\circ} \mathrm{C}$. The reaction was checked by TLC, and Ar gas was introduced to purge of remained ozone gas as soon as $\mathbf{S 5}$ disappeared. The reaction mixture was treated with $\mathrm{PPh}_{3}(11.5 \mathrm{~g}, 43.9 \mathrm{mmol}, 1.2$ equiv) and warmed to room temperature. After being stirred for 1.5 h , the mixture was concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane / AcOEt $=4: 1$) to afford $\mathbf{1 7}(9.71 \mathrm{~g}, 46 \%$ from $\mathbf{S 3}$) as a colorless oil.

IR (film, cm^{-1}) 1738, 1722, 1371, 1163, 1080, 1030, 853, 835, 745, 700.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.20-7.35(\mathrm{~m}, 10 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=6.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.85 \mathrm{~Hz}$, $2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 193.3,171.1,159.7,139.8$, 128.4, 127.9, 127.0, 84.0, 77.3, 77.2, 33.9, 27.7.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$391.1516, found 391.1535.

(S)-5-Benzhydryl 1-tert-butyl

3-((S)-1-(2-methoxy-6-(methoxycarbonyl)pyridin-3-yl)-2-nitroethyl)-2-oxopentanedioate (19)

19

To a stirred solution of $\mathbf{1 5}(5.40 \mathrm{~g}, 22.7 \mathrm{mmol})$ in DME $(230 \mathrm{~mL})$ were added α-ketoester $\mathbf{1 7}(8.77 \mathrm{~g}, 23.8$ mmol, 1.05 equiv) and Ni-diamine complex 18 ($576 \mathrm{mg}, 1.14 \mathrm{mmol}, 0.05$ equiv) at $-10^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 48 h . The mixture was diluted with n-Hexane and filtered through SiO_{2} pad. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography (n-Hexane / AcOEt $=2: 1$) to afford $19(12.1 \mathrm{~g}, 88 \%)$ as a colorless oil. The ee was determined by chiral HPLC analysis.
$[\alpha]^{25}{ }_{\mathrm{D}}+4.4\left(c 1.0, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$.
IR (film, cm^{-1}) 1724, 1584, 1555, 1460, 1371, 1267, 1167, 1022, 982, 760, 702.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.61(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.38(\mathrm{~m}, 10 \mathrm{H}), 6.82(\mathrm{~s}$, 1 H), 4.92 (dd, $J=13.0,9.07 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (dd, $J=13.0,4.53 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$, 4.01-3.95 (m, 1H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=17.0,9.64 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.0,4.53 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 193.8,170.0,165.0,161.0,159.3,145.3,140.0,139.4,139.3,128.5,128.4,128.1$, $128.0,127.2,126.9,122.5,118.7,84.4,77.9,75.1,53.8,52.6,42.9,41.6,35.0,27.5$.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{10}(\mathrm{M}+\mathrm{H})^{+}$607.2286, found 607.2312.
HPLC (DAICEL CHIRALCEL OD-H, n-Hexane $/$ IPA $=9: 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\text {major }} 25.1 \mathrm{~min}$, $\tau_{\text {minor }} 29.2$ min).

Methyl

5-((3S,4S,5R)-5-(tert-butoxycarbonyl)-4-(2-methoxy-2-oxoethyl)pyrrolidin-3-yl)-6-methoxypicolinate (22)

Compound 19 ($2.33 \mathrm{~g}, 3.84 \mathrm{mmol}$) was hydrogenated by Raney nickel (6.0 g , purchased from Aldrich, washed with water and MeOH) in $\mathrm{MeOH}(80 \mathrm{~mL})$ under hydrogen atmosphere (900 psi) at $75^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature and filtered through a pad of celite. The catalyst and the celite were washed with AcOEt. The combined organic solvent was concentrated under reduced pressure to afford yellow oil. The residue was used in the next step without further purification.

The residue was hydrogenated by $\mathrm{Pd} / \mathrm{C}(10 \%$ dry, 1.0 g$)$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ under hydrogen atmosphere (balloon) for 1.5 h . The mixture was filtered through a pad of celite and the organic solvent was concentrated under reduced pressure. The residue was used in the next step without further purification.

To the residue dissolved in $\mathrm{MeOH}(40 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(0.28 \mathrm{~mL}, 3.84 \mathrm{mmol}, 1.0$ equiv $)$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 20 h . The reaction mixture was diluted with toluene and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH}=96: 4)$ to afford $22(1.07 \mathrm{~g}, 68 \%$ from 19$)$ as a yellow oil.
$[\alpha]^{25}{ }_{\mathrm{D}}-89.5\left(c 0.97, \mathrm{CHCl}_{3}\right)$.
IR (film, cm^{-1}) 1740, 1462, 1263, 1211, 1159.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.68(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, 3.89-3.82 (m, 1H), 3.74-3.66 (m, 1H), $3.34(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{dd}, J=8.00,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=5.75,17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.8,165.8,165.3,161.6,144.7,137.3,122.3,118.4,85.6,63.3,54.1,52.7$, 51.7, 46.1, 40.6, 38.9, 30.5, 27.9 .

HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 409.1969$, found 409.1968.

To a stirred solution of $\mathbf{2 2}(540 \mathrm{mg}, 1.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.51 \mathrm{~mL}, 3.66 \mathrm{mmol}$, 3.0 equiv) and $\mathrm{CbzCl}\left(0.26 \mathrm{~mL}, 1.83 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 5 h . After stirring, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane $/ \mathrm{AcOEt}=2: 1$) to afford $\mathbf{S 6}(589 \mathrm{mg}, 89 \%$) as a colorless amorphous solid.

This compound exists as a mixture of rotamers in CDCl_{3} at $25^{\circ} \mathrm{C}$.
$[\alpha]^{25}{ }_{\mathrm{D}}-63.2\left(c 0.90, \mathrm{CHCl}_{3}\right)$.
IR (film, cm^{-1}) $1742,1721,1709,1460,1412,1368,1287,1265,1213,1155$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.86(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 0.55 \mathrm{H}), 7.79(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 0.45 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.26-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 0.45 \mathrm{H}), 4.51(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H})$, 3.97-3.86 (m, 3H), $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 1.65 \mathrm{H}), 3.52(\mathrm{~s}, 1.35 \mathrm{H}), 3.59-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=18.0,6.24 \mathrm{~Hz}$, $0.55 \mathrm{H}), 2.24(\mathrm{dd}, J=17.6,6.80 \mathrm{~Hz}, 0.45 \mathrm{H}), 2.18(\mathrm{dd}, J=17.6,8.50 \mathrm{~Hz}, 0.45 \mathrm{H}), 2.09(\mathrm{dd}, J=18.0,8.50 \mathrm{~Hz}$, 0.55 H), $1.37(\mathrm{~s}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 117.6,171.5,169.1,168.9,165.4,161.4,154.5,154.4,143.7,143.6,138.5,138.1$, $136.3,136.1,128.4,128.3,127.9,127.8,125.8,125.5,118.5,118.4,82.1,82.0,67.2,67.1,62.3,61.5,53.7,52.5$, $51.4,50.5,49.5,40.5,39.2,39.0,37.8,31.2,31.1,27.7,27.5$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{9}(\mathrm{M}+\mathrm{H})^{+} 543.2337$, found 543.2350.
(2S,3S,4S)-1-((Benzyloxy)carbonyl)-3-(2-methoxy-2-oxoethyl)-4-(2-methoxy-6-(methoxycarbonyl)pyridin-
3-yl)pyrrolidine-2-carboxylic acid (24)

To a stirred solution of $\mathbf{S 6}(589 \mathrm{mg}, 1.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$ was added TFA (2.5 mL). After stirring at room temperature for 19 h , the mixture was concentrated under reduced pressure. The residue was used in the next step without further purification.

To a suspension of crude 23 and $\mathrm{AcONa}\left(894 \mathrm{mg}, 10.9 \mathrm{mmol}, 10\right.$ equiv) in $\mathrm{Ac}_{2} \mathrm{O}(5.5 \mathrm{~mL})$ was stirred at $110^{\circ} \mathrm{C}$ for 25 h . After completion of the reaction, the mixture was concentrated under reduced pressure and the residue was diluted with water. After being stirred for 1 h , the mixture was extracted with CHCl_{3}. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=98: 2\right)$ to afford $24(370 \mathrm{mg}, 70 \%$ from $\mathbf{S 6})$ as a colorless amorphous solid.

This compound exists as a mixture of rotamers in CDCl_{3} at $25^{\circ} \mathrm{C}$.
$[\alpha]^{25}{ }_{\mathrm{D}}-55.3\left(c 0.87, \mathrm{CHCl}_{3}\right)$.
IR (film, cm^{-1}) 1738, 1591, 1462, 1433, 1362, 1267, 1207, 1171, 1132.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 10.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 0.45 \mathrm{H}), 7.64(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 0.55 \mathrm{H})$, 7.45-7.25 (m, 6H), 5.28-5.13 (m, 2H), 4.26 (d, $J=5.10 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.22(\mathrm{~d}, J=5.10 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.80-4.05(\mathrm{~m}$, $3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 1.35 \mathrm{H}), 3.58(\mathrm{~s}, 1.65 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95$ (m, 1H).
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 176.0,175.1,171.6,171.5,165.4,161.4,155.1,154.3,144.1,136.6,135.9,128.5$, $128.4,128.2,128.0,127.7,125.1,125.0,118.8,118.6,67.7,67.6,63.5,63.0,53.9,52.6,51.8,49.0,48.9,42.8$, 41.6, 39.2, 38.4, 33.1.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{9}(\mathrm{M}-\mathrm{H})^{-} 485.1555$, found 485.1554.

Acromelic acid A (1)

To a stirred solution of $\mathbf{2 4}(271 \mathrm{mg}, 557 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added HBr in $\mathrm{AcOH}(5 \mathrm{M}, 6.0 \mathrm{~mL})$ and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . The mixture was concentrated under reduced pressure. Purification of $\mathbf{1}$ was carried out according to the reported procedure. ${ }^{1}$ The residue was charged onto a column containing Dowex-50 WX8 hydrogen form (200-400 mesh). After elution with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and 3% aqueous $\mathrm{NH}_{3}(25 \mathrm{~mL})$, the collected fractions were concentrated under reduced pressure. The resulting ammonium was charged onto a column containing Amberlite IRC-50 hydrogen form. After elution with $\mathrm{H}_{2} \mathrm{O}$, the collected fractions were concentrated under reduced pressure to give free amino acid $\mathbf{1}(172 \mathrm{mg}$, quant) as a colorless solid.
$\mathrm{Mp} .>310^{\circ} \mathrm{C}$ (decomp.).
$[\alpha]^{25} 30.0\left(c 1.11, \mathrm{H}_{2} \mathrm{O}\right)\left(\right.$ lit. $\left.{ }^{1}[\alpha]_{\mathrm{D}} 27.8\left(c 0.35, \mathrm{H}_{2} \mathrm{O}\right)\right)$.
IR (film, cm^{-1}) 3422, 1618, 1381, 787.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 7.52(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H})$, 3.84-3.68 (m, 3H), 3.20-3.12 (m, 1H), 2.61 (dd, $J=16.7,5.10 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=16.7,10.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 176.7,173.6,166.3,163.1,142.7,139.5,129.8,108.9,65.8,47.5,42.5,42.4,35.7$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}-\mathrm{H})^{-}$309.0717, found 309.0715.

[^0]
3-Bromo-2-chloro-6-methoxypyridine (S7)

To a stirred solution of $9(7.00 \mathrm{~g}, 48.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ was added NBS $(13.0 \mathrm{~g}, 73.1 \mathrm{mmol}, 1.5$ equiv) and the mixture was refluxed for 24 h . After cooling to room temperature, the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane $/ \mathrm{AcOEt}=98: 2)$ to afford $\mathbf{S 7}(6.83 \mathrm{~g}, 63 \%)$ as a colorless solid.

Mp. 64-65 ${ }^{\circ} \mathrm{C}$.
IR (film, cm^{-1}) 1584, 1551, 1466, 1408, 1344, 1306, 1256, 1155, 1121, 1022, 1009.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 162.4,147.3,143.8,110.9,110.1,54.3$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BrClNO}(\mathrm{M}+\mathrm{H})^{+}$221.9316, found 221.9314.

Butyl 3-formyl-6-methoxypicolinate (13)

To a stirred solution of $\mathbf{S 7}(6.83 \mathrm{~g}, 30.7 \mathrm{mmol})$ in THF $(120 \mathrm{~mL})$ was added $i \mathrm{PrMgCl} \cdot \mathrm{LiCl}$ in THF solution (ca.1.0 M, $32.2 \mathrm{~mL}, 32.2 \mathrm{mmol}, 1.05$ equiv) at $-20^{\circ} \mathrm{C}$ under Ar atmosphere. After stirring at the same temperature for 2 h , DMF ($7.2 \mathrm{~mL}, 92.1 \mathrm{mmol}, 3.0$ equiv) was added dropwise. After being stirred at the same temperature for 30 min , the reaction mixture was warmed to room temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was used in the next step without further purification.

To a suspention of the crude 12 and $\mathrm{AcONa}(3.78 \mathrm{~g}, 46.1 \mathrm{mmol}$, 1.5 equiv) in $n \mathrm{BuOH} /$ toluene ($60 \mathrm{~mL} / 60$ $\mathrm{mL})$ was added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(1.12 \mathrm{~g}, 1.54 \mathrm{mmol}, 0.05$ equiv) under Ar atmosphere. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ under CO atmosphere for 18 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was filtered through a pad of celite. The filtrate was extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane / $\mathrm{AcOEt}=2: 1$) to afford $13(4.75 \mathrm{~g}, 65 \%$ from $\mathbf{S} 7$) as a yellow oil.

IR (film, cm^{-1}) 2963, 2876, 1721, 1692, 1595, 1481, 1337, 1277, 1261, 1219, 1138, 1072, 1022.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 10.39(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=$ $6.80 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.37 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 189.1,166.1,165.2,150.7,138.6,125.9,114.1,66.3,54.5,30.5,19.2,13.7$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$260.0893, found 260.0891 .

Methyl 3-(dimethoxymethyl)-6-methoxypicolinate (S8)

To a stirred solution of $\mathbf{1 3}(4.75 \mathrm{~g}, 20.0 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ were added $\mathrm{CH}(\mathrm{OMe})_{3}(11 \mathrm{~mL}, 100$ mmol, 5 equiv) and CSA ($465 \mathrm{mg}, 2.00 \mathrm{mmol}, 0.1$ equiv), and the resulting mixture was refluxed for 24 h . After cooling to room temperature, the organic solvent was removed under reduced pressure. The residue was diluted with saturated aqueous NaHCO_{3} and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane $/ \mathrm{AcOEt}=9: 1)$ to afford $\mathbf{S 8}(3.40 \mathrm{~g}, 70 \%)$ as a yellow oil.

IR (ATR, cm^{-1}) 2951, 2832, 1730, 1597, 1479, 1321, 1250, 1217, 1109, 1070, 1051, 1026, 974, 831.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.90(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 166.9,163.3,145.5,138.3,127.1,113.0,100.0,53.8,53.6,52.6$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$264.0842, found 264.0842.

tert-Butyl 3-formyl-6-methoxypicolinate (14)

S8

$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

S9

14

To a stirred solution of $\mathbf{S 8}(500 \mathrm{mg}, 2.07 \mathrm{mmol})$ in THF (4 mL) was added aqueous $\mathrm{KOH}(1 \mathrm{M}, 4.15 \mathrm{~mL}$, $4.15 \mathrm{mmol}, 2.0$ equiv). After stirring at $40^{\circ} \mathrm{C}$ for 3 h , the mixture was concentrated under reduced pressure. The residue was used in the next step without further purification.

To a stirred suspension of crude residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added $\mathrm{NH}_{4} \mathrm{Cl}(277 \mathrm{mg}, 5.18 \mathrm{mmol}, 2.5$ equiv) and N, N '-diisopropyl-O-tert-butylisourea ($1.63 \mathrm{~mL}, 7.25 \mathrm{mmol}, 3.5$ equiv), and the mixture was stirred at room temperature for 15 h . The reaction mixture was filtered and the organic solvent was removed under reduced pressure. The residue was used in the next step without further purification.

To a stirred solution of the crude $\mathbf{S 9}$ in THF (2 mL) was added aqueous $\mathrm{HCl}(1 \mathrm{M}, 2 \mathrm{~mL})$. After stirring for 1.5 h , the reaction mixture was diluted with water and extracted with AcOEt. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane / $\mathrm{AcOEt}=4: 1$) to afford $\mathbf{1 4}(391 \mathrm{mg}, 80 \%$ from $\mathbf{S 8})$ as a colorless oil.

IR (film, cm^{-1}) 2982, 1736, 1595, 1481, 1335, 1279, 1223, 1167, 1138, 1072, 1020, 845.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 10.35(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, 1.65 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 189.1, 166.1, 164.2, 152.3, 138.5, 125.1, 113.6, 83.9, 54.4, 28.1.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 260.0893$, found 260.0881.

(E)-tert-Butyl 6-methoxy-3-(2-nitrovinyl)picolinate (16)

To a stirred solution of $\mathbf{1 4}(1.48 \mathrm{~g}, 6.22 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(30 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.72 \mathrm{~mL}, 12.4 \mathrm{mmol}$, 2.0 equiv) at room temperature. After stirring for 20 h , the solvent was removed under reduced pressure to afford crude $\mathbf{S 1 0}$ as a yellow solid.

To the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(1.29 \mathrm{~mL}, 9.33 \mathrm{mmol}, 1.5$ equiv) and MsCl ($963 \mu \mathrm{~L}, 12.4 \mathrm{mmol}, 2.0$ equiv) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 3 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} /\right.$ $\mathrm{AcOEt}=9: 1)$ to afford $\mathbf{1 6}(1.12 \mathrm{~g}, 64 \%$ from 14$)$ as a pale yellow solid.

IR (film, cm^{-1}) $3115,2978,2943,1734,1630,1595,1560,1508,1481,1425,1395,1370,1331,1275,1260$, 1171, 1144, 1074, 1020, 966, 957, 833, 596.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.59(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 165.2,164.1,149.1,137.7,137.4,135.5,118.9,114.2,84.0,54.2,28.1$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$303.0954, found 303.0958.

tert-Butyl 5-((4-methoxybenzyl)oxy)-2-oxopentanoate (25)

To a stirred solution of $\mathbf{S 1 1}{ }^{2}(18.3 \mathrm{~g}, 70.5 \mathrm{mmol})$ in acetone (70 mL) was added $\mathrm{NaI}(12.7 \mathrm{~g}, 84.6 \mathrm{mmol}$, 1.2 equiv). After stirring at room temperature for 6 h , the reaction mixture was quenched with water and extracted with CHCl_{3}. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was used in the next step without further purification.

To a stirred solution of the residue in $\mathrm{AcOEt}(200 \mathrm{~mL})$ was added tert-butyl 2-(triphenylphosphoranylidene) acetate ($53.0 \mathrm{~g}, 141 \mathrm{mmol}, 2.0$ equiv) and stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered and the organic layer was concentrated under reduced pressure. The residue was used in the next step without further purification.

To a stirred solution of the crude $\mathbf{S 1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$ was added Davis reagent ${ }^{3}$ ($36.8 \mathrm{~g}, 141 \mathrm{mmol}$, 2.0 equiv) at $-78^{\circ} \mathrm{C}$. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 8 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography $(n$-Hexane $/ \mathrm{AcOEt}=9: 1)$ to afford $\mathbf{2 5}(15.3 \mathrm{~g}, 71 \%$ from S11) as a colorless oil.

IR (film, cm^{-1}) 2981, 2937, 2864, 1744, 1713, 1614, 1511, 1372, 1302, 1242, 1173, 1105, 1034, 833, 756, 579. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.23(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=7.09 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 195.2,160.5,159.1,130.3,129.2,113.7,83.7,72.4,68.5,55.2,36.1,27.7,23.6$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$331.1516, found 331.1506.

[^1]
tert-Butyl 3-((2S,3S)-5-(tert-butoxy)-3-(2-((4-methoxybenzyl)oxy)ethyl)-

1-nitro-4,5-dioxopentan-2-yl)-6-methoxypicolinate (26)

To a stirred solution of $\mathbf{1 6}(400 \mathrm{mg}, 1.43 \mathrm{mmol})$ in IPA $(0.4 \mathrm{~mL})$ were added Ni-diamine complex $\mathbf{1 8}$ (36.2 $\mathrm{mg}, 71.4 \mu \mathrm{~mol}, 0.05$ equiv), α-ketoester $25\left(880 \mathrm{mg}, 2.85 \mathrm{mmol}, 2.0\right.$ equiv) in $\mathrm{IPA}(1.1 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(49 \mu \mathrm{~L}$, $357 \mu \mathrm{~mol}, 0.25$ equiv) at $-10^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 14 h . The solvent was removed under reduced pressure. The residue was purified by column chromatography (n-Hexane $/ \mathrm{AcOEt}=$ 7:3) to afford 26 (887 mg , quant) as a colorless oil. The ee was determined by chiral HPLC analysis.
$[\alpha]^{25}{ }_{\mathrm{D}}-33.0\left(c 1.01, \mathrm{CHCl}_{3}, 91 \% \mathrm{ee}\right)$.
IR (film, cm^{-1}) 2980, 2938, 2868, 1719, 1601, 1555, 1512, 1481, 1370, 1329, 1283, 1250, 1171, 1148, 1098, 1030, 847, 826.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.57(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H})$, $6.74(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=13.0,5.10 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=13.0,6.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.38(\mathrm{~m}, 1 \mathrm{H})$, $4.30(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 3.49-3.41 (m, 2H), 2.18-2.00 (m, 2H), $1.64(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 195.0,165.3,162.4,159.8,159.2,147.3,139.2,129.7,129.3,125.3,113.7,113.0$, 83.7, 82.7, 77.6, 72.3, 67.3, 55.3, 53.5, 46.0, 39.9, 31.1, 28.1, 27.6.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 611.2575$, found 611.2570 .
HPLC (DAICEL CHIRALPAK AD-H, n-Hexane / IPA $=19: 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\text {minor }} 14.1 \mathrm{~min}$, $\tau_{\text {major }} 15.8$ min).

1-Benzyl 2-(tert-butyl) (3S,4S)-4-(2-(tert-butoxycarbonyl)-6-methoxypyridin-3-yl)

-3-(2-((4-methoxybenzyl)oxy)ethyl)pyrrolidine-1,2-dicarboxylate (27b)

26

27b (47\%)

27a (26\%)

Compound 26 ($7.77 \mathrm{~g}, 13.2 \mathrm{mmol}$) was hydrogenated using Raney nickel (23 g , purchased from Aldrich, washed with water and MeOH) in $\mathrm{MeOH}(65 \mathrm{~mL})$ under hydrogen atmosphere (700 psi) for 1.5 h . The mixture was filtered through a pad of celite. The separated solid was washed with MeOH. The combined organic solvent was concentrated under reduced pressure to afford pale yellow oil. The residue was used in the next step without further purification.

To a solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(3.66 \mathrm{~mL}, 26.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{CbzCl}\left(2.81 \mathrm{~mL}, 19.8 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 30 min , the mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane / AcOEt $=3: 1$) to afford 27 a $(2.30 \mathrm{~g}, 26 \%$ from 26) as a colorless oil and 27b (4.19 g, 47% from 26) as a colorless oil.

This compound exists as a mixture of rotamers in CDCl_{3} at $25^{\circ} \mathrm{C}$.
$[\alpha]^{20}{ }_{\mathrm{D}}-31.0\left(c 1.18, \mathrm{CHCl}_{3}\right)$.
IR (film, cm^{-1}) 3002, 2977, 2941, 2904, 1740, 1721, 1709, 1698, 1601, 1513, 1480, 1412, 1368, 1329, 1281, 1248, 1169, 1144, 1032, 847, 824, 755, 698.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.89(\mathrm{t}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.72(\mathrm{~m}$, $3 \mathrm{H}), 5.22-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 0.45 \mathrm{H}), 4.44(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.14-3.89$ $(\mathrm{m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.00(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 11 \mathrm{H}), 1.44(\mathrm{~s}, 4 \mathrm{H}), 1.29$ ($\mathrm{s}, 5 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.5,170.4,166.2,162.0,159.1,154.8,154.4,148.1,147.9,140.2,140.1,137.9$, $136.5,136.3,130.5,129.2,128.9,128.5,128.4,128.0,127.9,126.4,126.1,113.7,113.6,112.6,112.5,82.6,82.5$, $82.2,82.1,72.5,72.4,68.3,68.2,67.2,67.1,63.4,62.9,55.2,53.5,52.4,51.8,41.9,40.9,40.8,39.9,28.2,28.0$, 27.8, 27.7, 27.6.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$699.3252, found 699.3246.
1-Benzyl 2-(tert-butyl) (2S,3S,4S)-4-(2-(tert-butoxycarbonyl)-6-methoxypyridin-3-yl)
-3-(2-((4-methoxybenzyl)oxy)ethyl)pyrrolidine-1,2-dicarboxylate (27a)

To a stirred solution of $\mathbf{2 7 b}(60 \mathrm{mg}, 88.4 \mu \mathrm{~mol})$ in $t \mathrm{BuOH} /$ benzene $(810 \mu \mathrm{~L} / 90 \mu \mathrm{~L})$ was added $t \mathrm{BuOK}$ ($14.9 \mathrm{mg}, 133 \mu \mathrm{~mol}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 6 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane $/ \mathrm{AcOEt}=3: 1$) to afford $27 \mathrm{a}(37 \mathrm{mg}, 62 \%)$ as a colorless oil.

This compound exists as a mixture of rotamers in CDCl_{3} at $25^{\circ} \mathrm{C}$.
$[\alpha]^{20}{ }_{\mathrm{D}}-17.2\left(c 1.03, \mathrm{CHCl}_{3}\right)$.
IR (film, cm^{-1}) 2978, 2938, 2870, 1736, 1709, 1599, 1512, 1481, 1414, 1368, 1356, 1331, 1281, 1248, 1157, 1032, 824, 698.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.44-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.22-5.07(\mathrm{~m}, 2 \mathrm{H})$, 4.36-4.33 (m, 2H), 4.26-4.21 (m, 1H), 4.11-4.04 (m, 1H), 3.96-3.85 (m, 4H), 3.80-3.62 (m, 4H), 3.48-3.19 (m, $2 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.33(\mathrm{~m}, 20 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.2,165.9,162.0,159.1,154.8,154.5,148.2,148.1,138.5,136.6,136.4,130.3$, 129.2, 129.1, 128.5, 128.4, 128.0, 127.9, 127.8, 127.7, 124.9, 113.7, 112.4, 82.5, 82.4, 81.7, 81.6, 72.7, 68.3, $68.0,67.1,64.8,64.4,55.2,53.5,50.0,45.0,43.6,40.4,39.5,29.1,29.0,28.1,28.0,27.8$.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 699.3252$, found 699.3263 .

1-Benzyl 2-(tert-butyl) (2S,3S,4S)-4-(2-(tert-butoxycarbonyl)-6-methoxypyridin-3-yl)

-3-(2-hydroxyethyl)pyrrolidine-1,2-dicarboxylate (S13)

To a stirred solution of $\mathbf{2 7 a}(100 \mathrm{mg}, 147 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(700 \mu \mathrm{~L} / 35 \mu \mathrm{~L})$ was added DDQ (50 mg , $221 \mu \mathrm{~mol}, 1.5$ equiv). After stirring at room temperature for 1 h , the mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane $/ \mathrm{AcOEt}=$ 1:1 and n-Hexane $/ \mathrm{Et}_{2} \mathrm{O}=1: 2$) to afford $\mathbf{S 1 3}(89.9 \mathrm{mg}, 99 \%)$ as a colorless oil.

This compound exists as a mixture of rotamers in CDCl_{3} at $25^{\circ} \mathrm{C}$.
$[\alpha]^{25}{ }_{\mathrm{D}}-34.0\left(c 1.45, \mathrm{CHCl}_{3}\right)$.
IR (film, cm^{-1}) 2978, 2936, 1740, 1719, 1701, 1690, 1655, 1597, 1560, 1481, 1458, 1420, 1368, 1331, 1283, 1157, 1028, 847, 698.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.43-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 0.55 \mathrm{H}), 6.74(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 0.45 \mathrm{H})$, 5.21-5.11 (m, 2H), $4.18(\mathrm{~d}, \mathrm{~J}=5.10 \mathrm{~Hz}, 0.45 \mathrm{H}), 4.16(\mathrm{~d}, J=5.10 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, 3.92-3.86 (m, 1H), 3.80-3.67 (m, 1H), 3.64-3.54 (m, 2H), 2.81-2.72 (m, 1H), 1.70-1.35 (m, 2H), $1.59(\mathrm{~s}, 9 \mathrm{H})$, 1.49 ($\mathrm{s}, 4 \mathrm{H}$), 1.39 ($\mathrm{s}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.5,171.4,166.2,162.1,154.7,154.4,148.1,148.0,138.3,136.5,136.3,128.5$, $128.4,128.0,127.9,125.5,125.4,112.7,82.8,82.7,82.0,67.3,67.2,64.8,64.4,60.9,60.8,53.5,50.6,44.9,43.8$, 40.5, 39.6, 32.1, 28.1, 27.9, 27.8.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+}$557.2857, found 557.2858.

2-((2R,3S,4S)-1-((Benzyloxy)carbonyl)-2-(tert-butoxycarbonyl)-4-(2-(tert-butoxycarbonyl)

-6-methoxypyridin-3-yl)pyrrolidin-3-yl)acetic acid (28)

To a stirred solution of $\mathbf{S 1 3}(250 \mathrm{mg}, 449 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate buffer $(\mathrm{pH} 7.6)(1.35 \mathrm{~mL} / 1.35 \mathrm{~mL})$ were added AZADO ($13.7 \mathrm{mg}, 89.8 \mu \mathrm{~mol}, 0.2$ equiv) and $\mathrm{PhI}(\mathrm{OAc})_{2}\left(434 \mathrm{mg}, 1.34 \mathrm{mmol}, 3.0\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 8 h , the mixture was added to saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 1 h , the mixture was extracted with AcOEt. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (n-Hexane / $\mathrm{AcOEt}=1: 1$) to afford $28(222 \mathrm{mg}, 87 \%)$ as a colorless amorphous solid.

This compound exists as a mixture of rotamers in CDCl_{3} at $25^{\circ} \mathrm{C}$.
$[\alpha]^{25}{ }_{\mathrm{D}}-39.6\left(c 1.05, \mathrm{CHCl}_{3}\right)$.
IR (film, cm^{-1}) 2980, 2941, 2906, 1710, 1599, 1560, 1481, 1413, 1367, 1332, 1282, 1253, 1228, 1161, 1093, 1030, 844, 736, 698.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.42-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 0.55 \mathrm{H}), 6.74(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 0.45 \mathrm{H})$, 5.22-5.08 (m, 2H), 4.20-4.11 (m, 2H), 3.96-3.89 (m, 1H), 3.92(s, 3H), 3.80-3.67 (m, 1H), 3.21-3.11 (m, 1H), 2.27-2.16(m, 2H), $1.57(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 176.4,176.3,170.4,165.6,162.2,154.6,154.4,148.1,138.0,136.4,136.2,128.4$, $128.3,128.0,127.9,127.8,124.6,124.5,112.8,82.7,82.6,82.0,81.9,67.3,64.9,64.6,53.5,50.1,49.9,43.6$, 42.6, 39.9, 39.0, 33.8, 28.0, 27.9, 27.7.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 593.2470$, found 593.2486.

Acromelic acid B (2)

To a stirred solution of $28(195 \mathrm{mg}, 342 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(1.7 \mathrm{~mL})$ was added $30 \% \mathrm{HBr}$ in $\mathrm{AcOH}(3.4 \mathrm{~mL})$ and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 36 h . The solvent was removed under reduced pressure. The residue was charged onto a column containing Dowex-50 WX8 hydrogen form (200-400 mesh). After elution with $\mathrm{H}_{2} \mathrm{O}$ and 3% aqueous NH_{3}, the collected fractions were concentrated under reduced pressure. The resulting ammonium salt was charged onto a column containing Amberlite IRC-50 hydrogen form. After elution with $\mathrm{H}_{2} \mathrm{O}$, the collected fractions were concentrated under reduced pressure to give free amino acid $2(105 \mathrm{mg}, 99 \%)$ as a colorless amorphous solid.
$[\alpha]^{20}{ }_{\mathrm{D}}-68.8\left(c 0.98, \mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{lit.}^{4}[\alpha]_{\mathrm{D}}^{27}-74.0\left(c 0.1, \mathrm{H}_{2} \mathrm{O}\right)\right)$.
IR (film, cm^{-1}) 3300-2700, 1655, 1597, 1419, 1363, 1251, 1167, 1060, 842, 801, 673.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 7.68(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J$ $=16.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=16.6,8.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 175.7,173.0,166.5,163.1,143.3,141.2,120.4,115.3,65.5,47.3,42.3,38.6,34.7$.
HRMS (ESI-TOF) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 311.0874$, found 311.0877 .

[^2]Table S-1. Optimization of the asymmetric reaction for Acromelic acid A (1).

entry	R	temp. $\left({ }^{\circ} \mathrm{C}\right)$	yield (\%)	dr^{b}	ee $(\%)^{\mathrm{c}}$
1	Me-	rt	71	$2: 1$	93
2	Bn-	rt	72	$6: 1$	not determined
3	t-Bu-	rt	quant	$10: 1$	79
4	t-Bu-	0	75	$27: 1$	94
5	Dpm-	0	93	$10: 1$	92
6	Dpm-	-10	88	$25: 1$	95
7	Dpm-	-20	N.R.	-	-

aYields as a mixture of diastereomers. ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\text {c }}$ Determined by HPLC.
Table S-2. Optimization of the asymmetric reaction for Acromelic acid B (2).

entry	R	solvent	$\mathbf{1 8}(\mathrm{mol} \%)$	$\mathrm{Et}_{3} \mathrm{~N}(\mathrm{~mol} \%)$	temp. $\left({ }^{\circ} \mathrm{C}\right)$	dr^{a}
1	$-\mathrm{CO}_{2} \mathrm{Dpm}$	DME	20	25	$0{ }^{\circ} \mathrm{C}$	$1: 1$
2	$-\mathrm{CO}_{2} \mathrm{Dpm}$	DME	20	25	$-10{ }^{\circ} \mathrm{C}$	$1.3: 1$
3	$-\mathrm{CO}_{2} \mathrm{Dpm}$	DME	100	0	$0{ }^{\circ} \mathrm{C}$	$1.2: 1$
4	$-\mathrm{CO}_{2} \mathrm{Dpm}$	IPA	20	25	$0{ }^{\circ} \mathrm{C}$	$1.3: 1$
5	$-\mathrm{CH}_{2} \mathrm{OBn}$	IPA	20	25	rt	$3: 1$
6	$-\mathrm{CH}_{2} \mathrm{OBn}$	IPA	20	25	$0{ }^{\circ} \mathrm{C}$	$4: 1$
7	$-\mathrm{CH}_{2} \mathrm{OPMB}$	IPA	20	25	$0{ }^{\circ} \mathrm{C}$	$12: 1$
8	$-\mathrm{CH}_{2} \mathrm{OPMB}$	IPA	5	25	$-10{ }^{\circ} \mathrm{C}$	$20: 1$

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR.

NMR Spectral Data

[^0]: ${ }^{1}$ K. Konno, K. Hashimoto, Y. Ohfune, H. Shirahama, T. Matsumoto, J. Am. Chem. Soc. 1988, 110, 4807-4815.

[^1]: ${ }_{2}^{2}$ A. Dahan, M. Portnoy, J. Org. Chem., 2001, 66, 6480-6482.
 ${ }^{3}$ In the case of ozone gas, PMB ether was decomposed.

[^2]: ${ }^{4}$ S. Takano, S. Tomita, Y. Iwabuchi, K. Ogasawara, Heterocycles 1989, 29, 1473-1476.

