Supporting Information

Aerobic Oxidation of Formaldehyde Catalyzed by Polyvanadotungstates

Weiwei Guo, Zhen Luo, Hongjin Lv, Craig L. Hill*

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, United States

Table of Contents

Figure S1. Thermogravimetric analysis of (a) PW_9V_3 , (b) PW_8V_4 and (c) PW_6V_6

Figure S2. ³¹P NMR of (a) PW_9V_3 , (b) PW_8V_4 and (c) PW_6V_6 with respect to 85% H₃PO₄(0 ppm)

Table S1. Aerobic Oxidation of Formaldehyde Catalyzed by PW_8V_4 , as a Function of Substrate and Catalyst Concentration

Figure S3. Time profile of formaldehyde consumption catalyzed by PW_9V_3 under 1 atm oxygen(red squares) and under 1 atm of air (black diamonds) in DMA/H₂O (v/v = 20/1) at ambient temperature

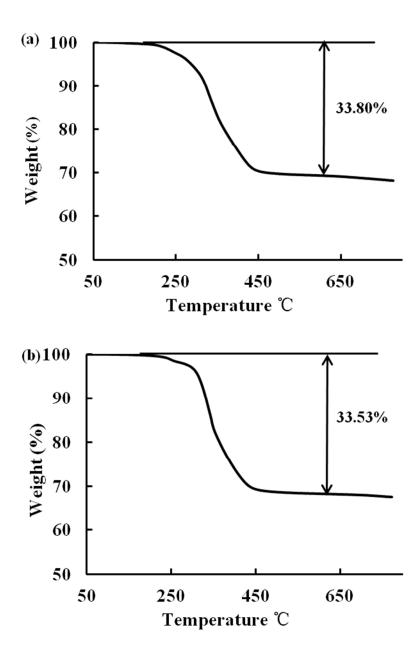

Figure S4. Time profile of formaldehyde consumption catalyzed by PW_9V_3 under 1 atm of air without additives (black diamonds), with addition of 0.6 mmol HCOOH (red squares) and with addition of 1.0 µmol 4-*t*-butylcatechol (green triangles); all reactions at ambient temperature

Figure S5. ¹H NMR spectrum of 400 μ L of reaction solution using PW₉V₃ as the catalyst under optimized conditions after 144 h followed by mixing with 400 μ L of deuterated chloroform

Figure S6. X-ray diffraction patterns of (a) TiO_2 , (b) reduced Pt/TiO₂, (c) oxidized Pt/TiO₂, (d) Au/TiO₂

Figure S7. FT-IR spectra of (a) PW_8V_4 , (b) PW_6V_6 and (c) PW_9V_3 before (red) and after (blue) catalytic reactions

*Email: chill@emory.edu

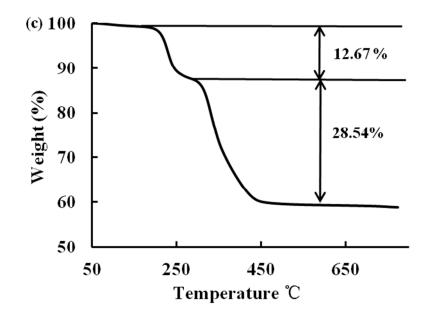
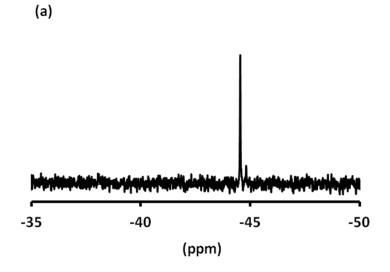
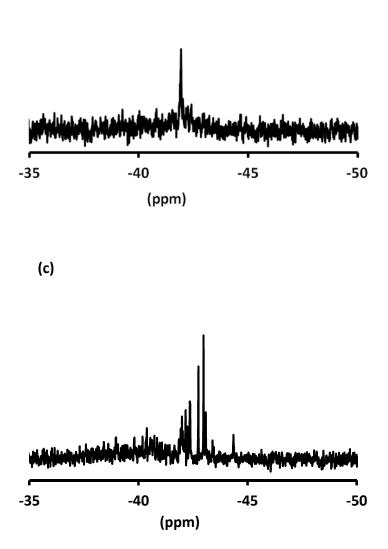




Figure S1. Thermogravimetric analysis of (a) PW_9V_3 , (b) PW_8V_4 and (c) PW_6V_6

(b)

Figure S2. ³¹P NMR of (a) PW_9V_3 , (b) PW_8V_4 and (c) PW_6V_6 with respect to 85% H₃PO₄(0 ppm)

Entry	[PW ₈ V ₄]	Initial [CH2O]	CH ₂ O conversion (%) ^b	TON ^c
1	3.8 mM	0.065 M	12	2
2	3.8 mM	0.130 M	21	7
3	3.8 mM	0.260 M	31	21
4	3.8 mM	0.520 M	35	47
5	7.6 mM	0.520 M	45	31
6	11.4 m M	0.520 M	48	22
7	15.3 mM	0.520 M	47	16
8	19.1 mM	0.520 M	45	12

Table S1. Aerobic Oxidation of Formaldehyde Catalyzed by PW_8V_4 , as a Function of Substrate and Catalyst Concentration^{*a*}

^{*a*} Reaction Conditions: concentration of formaldehyde $[CH_2O] = 0.065 \text{ M} - 0.52 \text{ M}$, concentration of catalyst $[PW_8V_4] = 3.8 \text{ mM} - 19.1 \text{ mM}$, 1 atm of air, 2 mL of solvent, ambient temperature, 144 h. ^{*b*} CH₂O conversion (%) = moles of CH₂O consumed/moles of initial CH₂O. ^{*c*} TON = moles of formaldehyde consumed/moles of catalyst.

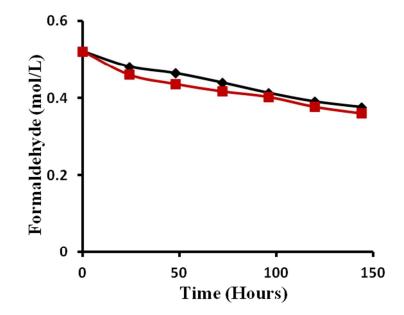
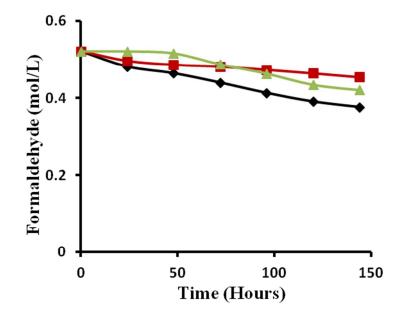



Figure S3. Time profile of formaldehyde consumption catalyzed by PW_9V_3 under 1 atm oxygen (red squares) and under 1 atm of air (black diamonds) in DMA/H₂O (v/v = 20/1) at ambient temperature

Figure S4. Time profile of formaldehyde consumption catalyzed by PW_9V_3 under 1 atm of air without additives (black diamonds), with addition of 0.6 mmol HCOOH (red squares) and with addition of 1.0 µmol 4-*t*-butylcatechol (green triangles); all reactions at ambient temperature

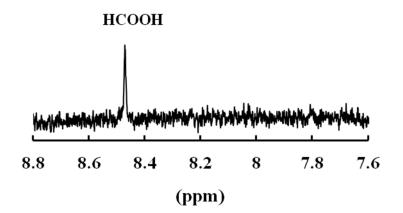


Figure S5. ¹H NMR spectrum of 100 μ L of reaction solution using PW₉V₃ as the catalyst under optimized conditions after 144 h followed by mixing with 100 μ L of deuterated chloroform

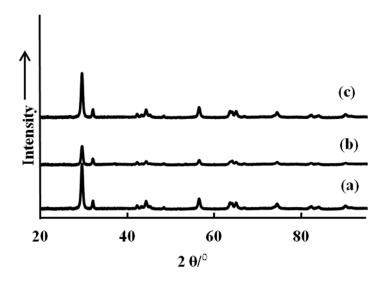
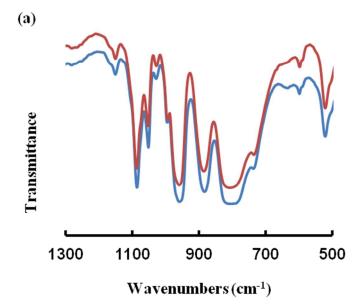



Figure S6. X-ray diffraction patterns of (a) TiO_2 , (b) reduced Pt/TiO₂, (c) Au/TiO₂

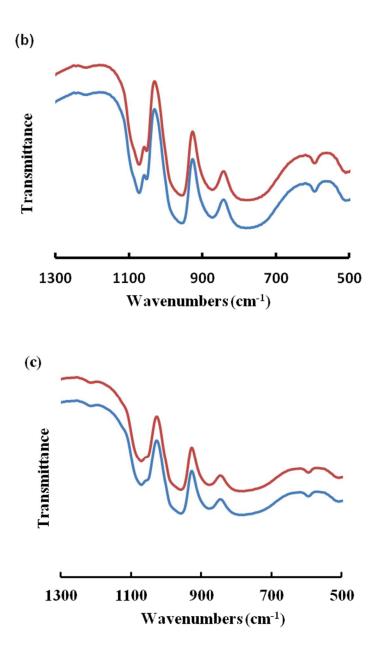


Figure S7. FT-IR spectra of (a) PW_9V_3 , (b) PW_8V_4 and (c) PW_6V_6 before (red) and after (blue) catalytic reactions