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Sample Cu In Ga Se
# (at%) (E1879] (at%) (E1879]

w/o H,
(0% H.) 22.6 24.6 2.8 50.0 0.83 0.10
w/ H,
(5% H,) 21.6 25.5 3.4 49.5 0.75 0.12

Figure S1 EDS quantitative results for CIGS thin films after the non-toxic hydrogen-assisted Se vapor
selenization process and the selenization in the N, ambeint. Both samples exhibit the identical

stoichiometric atomic composition ratio of bulk volume [Cu/(In+Ga)~0.8, Se~50 %].
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Figure S2 X-ray sspectra for CIGS thin films after the non-toxic hydrogen-assisted Se vapor selenization
process and the selenization in the N, ambeint. Btoth samples exhibit good crystallinity and

strong (112) and (220)/(204) preferred orientation from GIXRD results.
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(a) 0% H, (CIGS surface) (b) 5% H, (CIGS surface)
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(c) 15% H, (CIGS surface) (d) 25% H, (CIGS surface)
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Figure S3 Near surface SIMS depth profiles of CIGS surface for (a) pure N, ambient (0% Hy),

(b) 5 % Hy, (c) 15 % H,, and (d) 25% Ha, respectively.
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Figrue S4 CIGS solar cell panels (30 cmx 40 cm)

Emitting Mechanisms

Radiative processes of CIGS thin films may include band-impurity (BI) and donor-to-acceptor (DAP)
transitions. The emission spectra of these three peaks are fitted by BI (CB to A1), DAP1 (D1 to Al), and
DAP2 (D1 to A2) recombination models. The extracted donor level and acceptor level are consistent with
shallow A1l- mostly Cu vacancy (V,), shallow D1 — mostly Se vacancy (Vs.), and deep A2 — mostly O
occupied Se vacancy (Os.) at the energies of (E, +0.03 eV), (E. -0.08 eV) and (E, +0.12 eV),
respectivelyl’z. Ig; and Ipap; are relative intensities of BI and DAPI transitions where Ipap; / Ip; positively
relative to intensity of PL mapping. The ratios increase with H, ratios represent less existence of deep

level defects.
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Figure S5 Low temperature PL of Ipap; to I relative ratio corresponds to PL mapping intensity.
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Figure S6 XPS bonding characterization of samples with and without hydrogen-assisted Se vapor
selenization. The Cd-Se bonding intensity increases in hydrogen assisted selenization sample,

which is due to wider copper poor region lead to more cadmium ions diffuse into CIGS thin

films.
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Carrier density measurements of the CIGS film after the hydrogen-assisted selenization process by
DLCP

To certify the cell performance enhancement of surface sodium accumulation effect, DLCP is used
to verify carrier density in high frequency response range’. Drive level capacitance profiling (DLCP,
iHR550) is a useful technique for studying amorphous and polycrystalline semiconductors. This
technique directly yields the density of states within the band gap of the semiconductor, as a function of
both energy and of spatial position, requiring knowledge only of the semiconductor dielectric constant (g).
It also provides a much more accurate assessment of the free carrier density in the film than the C-V
method®. As figure S5 shown, in hydrogen enhanced selenized (15% H,) sample, the Np; (drive level
density) reaches as high as 3.0 x 10'° cm™, three times larger than reference sample (0% H,) with drive
level density about 1.0 x 10'® cm™. In previous results™®, carrier density enhancement can be thought as
the merit of Na effect in CIGS film, and hydrogen enhanced selenization treatment does has the same

effect.
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Figure S7 DLCP of carrier concentration measurement for (a) without and (b) with hydrogen-assisted Se
vapor selenization. Higher drive level density (3.0 x 10'® cm™) represents higher carrier

concentration, which is measured from the hydrogen assisted selenization sample
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Figure S8 J-V measurements of CulnSe, solar cells after the hydrogen-assisted Se vapor selenization

process.
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