Supporting Information

Role of Metal Catons in Graphene Doping Mechnisms

Ki Chang Kwon, Kyoung Soon Choi, Cheolmin Kim

School of Chemical Engineering and Materials Science, Chung-Ang University

221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea

Soo Young Kim*

School of Chemical Engineering and Materials Science, Chung-Ang University

221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea

Figure SI1 shows the SRPES Cl 2p spectra of each different metal chloride doped graphene sheets.

[Figure SI1] The SRPES Cl 2*p* spectra of each different metal chloride doped graphene sheet were displayed with separated Cl $2p_{3/2}$ and Cl $2p_{1/2}$ peaks. (a) AuCl₃, (b) NaCl, (c) KCl, (d) CaCl₂, and (e) MgCl₂ doped graphene sheets.

Figure SI2 and SI3 show the work function changes in 0.5 M (10 mM for AuCl₃) and 1.0 M (20 mM for AuCl₃) alkali metal and gold chloride doped graphene sheets.

[Figure SI2] Work function of graphene doped with 0.5 M (10 mM for AuCl₃) displayed as a function of dopant metal. In alkali metal chlorides, the work function value significantly decreased after doping, but that of AuCl₃ doped graphene increased from 4.3 eV to about 4.8 eV.

[Figure SI3] Work function of graphene doped with 1.0 M (20 mM for AuCl₃) displayed as a function of dopant metal. In alkali metal chlorides, the work function value significantly decreased after doping compared to its pristine state, but that of AuCl₃ doped graphene increased from 4.3 eV to about 4.95 eV.