Supporting Information

Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode

Edgar Sawatzky, ${ }^{\ddagger}$ Sarah Wehle, ${ }^{\ddagger}$ Beata Kling, ${ }^{,}$Jan Wendrich, ${ }^{\dagger}$ Gerhard Bringmann, ${ }^{\dagger}$ Christoph A. Sotriffer, ${ }^{\ddagger}$ Jörg Heilmann ${ }^{\dagger}$ and Michael Decker ${ }^{\ddagger}{ }^{*}$
${ }^{\ddagger}$ Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
${ }^{1}$ Lehrstuhl für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
${ }^{\dagger}$ Lehrstuhl für Organische Chemie I, Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Contents:

Experimental Section S3
General Reaction Procedures S3
Synthesis and Experimental Data S4
IC_{50}-Values with Confidence Intervals S32
Enantiomeric Separation of the Most Active Compound 2p S34
Comparison of Enantiomeric Forms in the Binding Model S37
Sequence Comparison S39
Binding Mode of $\mathbf{2 l}$ S41
Additional References S42

Experimental Section

General Reaction Procedures:

General Amide Formation Procedure (GP1):
6-Hydroxy-1-methyl-2H-benzo[$d][1,3]$ oxazine-2,4($1 H$)-dione 5 was dissolved in dry DMF $(30 \mathrm{~mL})$ and treated with the corresponding amine (5 equiv) or a mixture of the amine hydrochloride (5 equiv) and triethylamine (5 equiv). The mixture was heated to $40-120{ }^{\circ} \mathrm{C}$ (depending on the amine) for $4-5 \mathrm{~h}$. For workup, the mixture was poured into water (100 mL) and the product was extracted with ethyl acetate ($5 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was purified by column chromatography to obtain 5-hydroxy- N-methyl-2(alkylamino)benzamides 6a-d.

General Cyclization Procedure (GP2):

5-Hydroxy- N -methyl-2-(alkylamino)benzamides 6a-d were dissolved in glacial acetic acid $(20 \mathrm{~mL})$. The mixture was treated with the corresponding aldehyde (1.2 equiv) and heated to $70^{\circ} \mathrm{C}$ for 1-3 h . Then the mixture was poured onto ice water (20 mL), basified with a $\mathrm{NaOH}-$ solution (2 M) and the pH was adjusted to 9 with sat. $\mathrm{NH}_{4} \mathrm{Cl}$-solution. The product was extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$), the combined organic layers were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was either crystallized or purified by column chromatography to obtain dihydroquinazolinones 7a-u and 8a-c.

General Reduction Procedure (GP3):

Dihydroquinazolinone 7a-u and 8a-c were dissolved in dry THF (30 mL) at $0{ }^{\circ} \mathrm{C}$ and LiAlH_{4} (4 equiv) was added. The mixture was allowed to reach RT and was then heated to reflux temperature for $1-3 \mathrm{~h}$. After cooling to RT , the mixture was poured into ice water $\left(50 \mathrm{~mL}\right.$) followed by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$-solution until $\mathrm{pH}=9$. The aqueous phase was then extracted with ethyl acetate ($3 \times 80 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography to obtain the corresponding tetrahydroquinazolines $\mathbf{9 a - u}$ and 10a-c.

General Carbamate Formation Procedure (GP4):

A solution of tetrahydroquinazolines $\mathbf{9 a - n}, \mathbf{9 q - u}$ and 10a-c in dry THF (5 mL) were treated with NaH in paraffin oil ($60 \%, 1.2$ equiv). The mixture was stirred until the formation of gas stopped. Then, a solution of 4-nitrophenyl- n-heptylcarbamate (1.2 equiv) in dry THF (3 mL) was added at once. The mixture was stirred for 2 h . For workup, the mixture was diluted with ethyl acetate (30 mL), washed with water (10 mL) and washed with brine (10 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography to obtain the corresponding n heptylcarbamate 2a-n, 2q-u and 3a-c.

Synthesis and Spectral Data:

4-Nitrophenyl- \boldsymbol{n}-heptylcarbamate. 4-Nitrophenyl chloroformate ($2.1 \mathrm{~g}, 10 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was dissolved in DCM (30 mL) and treated with triethylamine ($1.44 \mathrm{~mL}, 10.4 \mathrm{mmol}, 1.2 \mathrm{eq}$.). Then heptylamine ($1.29 \mathrm{~mL}, 8.7 \mathrm{mmol}, 1 \mathrm{eq}$.) in DCM (10 mL) was added drop wise over 30 min and the reaction mixture is stirred for 4 h at rt . For workup, the mixture was diluted with DCM (50 mL), washed with 1 M HCl -solution (3 x 30 mL) and washed with brine $(30 \mathrm{~mL})$. Then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by the removal of the solvent under reduced pressure. The crude product was purified by column chromatography (petroleum ether: $\mathrm{DCM}=1: 1$) to yield 4-nitrophenyl- n-heptylcarbamate ($1.62 \mathrm{~g}, 67 \%$) as white solid; mp: $80-82{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.20-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}$, $2 \mathrm{H}), 5.07(\mathrm{~s}, \mathrm{NH}), 3.26-3.14(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.14(\mathrm{~m}, 8 \mathrm{H}), 0.82(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.03(\mathrm{CO}), 153.10$ (arom.), 144.70 (arom.), 125.10 (arom., 2C), 121.93 (arom., 2 C), $41.43\left(\mathrm{NCH}_{2}\right), 31.71\left(\mathrm{CH}_{2}\right), 29.70\left(\mathrm{CH}_{2}\right)$, $28.89\left(\mathrm{CH}_{2}\right), 26.67\left(\mathrm{CH}_{2}\right), 22.57\left(\mathrm{CH}_{2}\right), 14.04\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI-MS: m / z calcd: 280.14 , found: no mass found.

5-Hydroxy-N-iso-propyl-2-(methylamino)benzamide 6b. According to GP1, 6-hydroxy-1-methyl-1 H-benzo $[d][1,3]$ oxazine-2,4-dione 5 ($800 \mathrm{mg}, 4.15 \mathrm{mmol}, 1$ equiv) and isopropylamine ($1.77 \mathrm{~mL}, 20.73 \mathrm{mmol}, 5$ equiv) were used to obtain 5-hydroxy-N-iso-propyl-2(methylamino)benzamide 6b ($353 \mathrm{mg}, 41 \%$) as a yellow solid; mp $144-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta=8.56$ (s, OH), 8.01 (d, $J=7.8 \mathrm{~Hz}, \mathrm{NH}$), $6.95(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.79 (dd, $J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{q}, J=5.2 \mathrm{~Hz}, \mathrm{NH}), 6.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.95$
(m, 1H), $2.70(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=168.6,147.0,143.7,119.8,117.8,115.5,112.0,40.9,30.5,22.7$ (2C) ppm. ESI-MS: m / z calcd: 208.12, found: $209.20[\mathrm{M}+\mathrm{H}]^{+}$.

5-Hydroxy-2-(methylamino)- N -n-propylbenzamide 6c. According to GP1, 6-hydroxy-1-methyl-1 H-benzo $[d][1,3]$ oxazine-2,4-dione 5 ($800 \mathrm{mg}, 4.15 \mathrm{mmol}, 1$ equiv) and n propylamine ($1.70 \mathrm{~mL}, 20.73 \mathrm{mmol}, 5$ equiv) were used to obtain 5-hydroxy-2-(methylamino)- N-n-propylbenzamide $\mathbf{6 c}(524 \mathrm{mg}, 61 \%)$ after column chromatography (petroleum ether:EtOAc $=1: 1$) as a brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=8.58$ (s, $\mathrm{OH}), 8.21(\mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{NH}), 6.95(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.69(\mathrm{~m}, 1 \mathrm{H}+\mathrm{NH}), 6.48(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{sex}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}): $\delta=169.4,147.1,143.8$, $120.0,117.5,115.2,112.1,41.0,30.5,22.8,11.9 \mathrm{ppm}$. ESI-MS: m / z calcd: 208.12, found: $209.20[\mathrm{M}+\mathrm{H}]^{+}$.
N-Benzyl-5-hydroxy-2-(methylamino)benzamide 6d. According to GP1, 6-hydroxy-1-methyl-1 H-benzo $[d][1,3]$ oxazine-2,4-dione 5 ($800 \mathrm{mg}, 4.15 \mathrm{mmol}$, 1 equiv) and benzylamine ($2.26 \mathrm{~mL}, 20.73 \mathrm{mmol}, 5$ equiv) were used to obtain N-benzyl-5-hydroxy-2(methylamino)benzamide 6d ($477 \mathrm{mg}, 45 \%$) after column chromatography (petroleum ether:EtOAc $=2: 1$) as a white solid; mp $161-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=$ $8.80(\mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{NH}), 8.60(\mathrm{~s}, \mathrm{OH}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{q}, J=5.0 \mathrm{~Hz}, \mathrm{NH}), 6.83(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=$ 169.4, 147.0, 144.1, 140.4, 128.7 (2C), 127.6 (2C), 127.1, 120.5, 116.7, 115.2, 112.2, 42.7, 30.5 ppm . ESI-MS: m / z calcd: 256.12 , found: $257.15[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-Chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one

7b.
According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 4-chlorobenzaldehyde ($375 \mathrm{mg}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 2-(4-chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1 H)-one 7b ($538 \mathrm{mg}, 80 \%$) after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow solid; mp 196-202 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=9.03(\mathrm{~s}, \mathrm{OH}), 7.43-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}$, 1H), $2.90(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=161.6,149.8$,
139.1, 135.7, 133.3, 128.6 (2C), 128.1 (2C), 121.0, 117.6, 114.4, 113.4, 77.8, 35.8, 32.0 ppm . ESI-MS: m / z calcd: 302.08 , found: $303.1[\mathrm{M}+\mathrm{H}]^{+}$.

2-(3-Chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one 7c. According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide 6a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 3 -chlorobenzaldehyde ($375 \mathrm{mg}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 2-(3-chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1 H)-one 7c ($538 \mathrm{mg}, 80 \%$) after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=9.07(\mathrm{br}, \mathrm{OH}), 7.42-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dt}, J=$ $7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~s}$, 3 H), 2.75 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=162.1,150.4,139.9$, 139.6, 133.7, 131.1, 129.1, 126.7, 125.2, 121.6, 118.1, 115.1, 113.8, 78.3, 36.4, 32.6 ppm. ESI-MS: m / z calcd: 302.08 , found: $303.1[\mathrm{M}+\mathrm{H}]^{+}$.

2-(2-Chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one

7d.
According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 2 -chlorobenzaldehyde ($299 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 2-(2-chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1 H)-one 7d ($526 \mathrm{mg}, 78 \%$) after crystallization from petroleum ether/DCM as a yellow solid; mp 211-215 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta=9.13(\mathrm{~s}, \mathrm{OH}), 7.50(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6} : $\delta=162.1,150.9,139.6,135.4,132.6,130.9,130.5,128.3,127.2,121.6,118.8$, 116.9, 113.6, 75.6, 38.1, 32.2 ppm . ESI-MS: m / z calcd: 302.08 , found: $303.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-p-tolyl-2,3-dihydroquinazolin-4(1H)-one 7e. According to GP2, 5-hydroxy- N -methyl-2-(methylamino)benzamide 6a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}, 1$ equiv) and 4-methylbenzaldehyde ($314 \mu \mathrm{~L}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-p-tolyl-2,3-dihydroquinazolin-4(1 H)-one $\mathbf{7 e}(472 \mathrm{mg}, 75 \%)$ after crystallization from a mixture of petroleum ether/DCM as a yellow solid; mp 182-186 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta=8.97(\mathrm{~s}, \mathrm{OH}), 7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}$, 3H), $2.70(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=161.7,149.5$,
139.4, 138.0, 133.7, 129.1 (2C), 126.2 (2C), 120.8, 117.6, 114.0, 113.4, 78.5, 35.6, 32.0, 20.6 ppm. ESI-MS: m / z calcd: 282.14 , found: $283.2[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-m-tolyl-2,3-dihydroquinazolin-4(1H)-one 7f. According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}, 1$ equiv) and 3-methylbenzaldehyde ($314 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6 -hydroxy-1,3-dimethyl-2- m-tolyl-2,3-dihydroquinazolin-4($1 H$)-one $7 \mathbf{f}$ ($380 \mathrm{mg}, 61 \%$) after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta=8.98(\mathrm{~s}, \mathrm{OH}), 7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6} : $\delta=162.2,150.0,140.0,138.1,137.3,129.8,129.0,127.5,123.6,121.4,118.0$, 114.6, 113.8, 79.2, 36.2, 32.6, 21.6 ppm . ESI-MS: m / z calcd: 282.14 , found: $283.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-o-tolyl-2,3-dihydroquinazolin-4(1H)-one 7g. According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}, 1$ equiv) and 2-methylbenzaldehyde ($308 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-o-tolyl-2,3-dihydroquinazolin- $4(1 \mathrm{H}$)-one 7 g (283 $\mathrm{mg}, 45 \%$) after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 2$) as a yellow solid; mp 207-210 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta=9.12(\mathrm{~s}, \mathrm{OH}), 7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ $7.01(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=162.5,151.4,140.4,137.0,136.7,131.5,128.7,126.5,125.7,121.3,120.3,118.7$, 113.3, 76.4, 39.6, 32.4, 19.6 ppm. ESI-MS: m / z calcd: 282.14, found: $283.2[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-2-(4-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one
 $7 h$.

According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 4-methoxybenzaldehyde ($324 \mu \mathrm{~L}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-2-(4-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one 7h (490 mg, 74%) after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 2$) as a yellow solid; $\mathrm{mp} 180-$ $183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=8.97(\mathrm{~s}, \mathrm{OH}), 7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-$ $7.03(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}$): δ
$=161.7,159.4,149.5,139.5,128.7,127.5(2 \mathrm{C}), 120.8,117.5,114.0,113.9$ (2C), 113.4, 78.3, 55.0, 35.4, 31.9 ppm . ESI-MS: m / z calcd: 298.13, found: $299.15[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-2-(3-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one

According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide 6a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 3-methoxybenzaldehyde ($363 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-2-(3-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one 7i (375 mg, 57%) after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta=8.99(\mathrm{~s}, \mathrm{OH}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.81$ (dd, $J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}): $\delta=162.2$, 159.7, $150.1,140.0,138.9,130.3,121.4,118.8,118.0,114.5,113.8,113.8,113.1,79.0,55.4,36.2$, 32.6 ppm . ESI-MS: m / z calcd: 298.13, found: $299.2[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one 7j.

 According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 2-methoxybenzaldehyde ($363 \mathrm{mg}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin-4(1 H)-one $7 \mathbf{j}$ (631 mg , $95 \%)$ after crystallization from petroleum ether/DCM as a yellow solid; mp 216-219 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.95(\mathrm{~s}, \mathrm{OH}), 7.32-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6} : $\delta=162.5,157.2,149.9,140.0,130.5,126.5,125.5,121.3,121.0,117.9,114.5$, 113.7, 112.1, 72.9, 56.1, 36.3, 32.3 ppm . ESI-MS: m / z calcd: 298.13, found: $299.15[\mathrm{M}+\mathrm{H}]^{+}$.2-(4-Fluorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one
7k.
According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide 6a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 4-fluorobenzaldehyde ($286 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 2-(4-fluorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one 7 k ($415 \mathrm{mg}, 65 \%$) after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 2$) as a yellow solid; mp: 168$171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=9.01(\mathrm{~s}, \mathrm{OH}), 7.24-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{dd}, J=$ $8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=162.7(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 162.1,150.2,139.7,133.6(\mathrm{~d}, J=$
$3.1 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{C}), 121.5,118.1,115.9(\mathrm{~d}, J=21.4 \mathrm{~Hz}, 2 \mathrm{C}), 114.8,113.9$, 78.3, 36.2, 32.5 ppm . ESI-MS: m / z calcd: 286.11, found: $287.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-[4-(trifluoromethyl)phenyl]-2,3-dihydroquinazolin-4(1H)-

one 71. According to GP2, 5-hydroxy- N -methyl-2-(methylamino)benzamide 6a (400 mg , $2.22 \mathrm{mmol}, 1$ equiv) and 4-trifluormethylbenzaldehyde ($364 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-[4-(trifluoromethyl)phenyl]-2,3-dihydroquinazolin$4(1 \mathrm{H})$-one 71 ($606 \mathrm{mg}, 81 \%$) after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=9.09(\mathrm{~s}, \mathrm{OH}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ $=162.2,150.5,141.8,139.6,129.6(\mathrm{q}, J=32.0 \mathrm{~Hz}, 2 \mathrm{C}), 127.6$ (2C), 126.1 (q, $J=3.7 \mathrm{~Hz}$), $124.5(\mathrm{q}, J=272.4 \mathrm{~Hz}), 121.6,118.3,115.3,113.9,78.3,36.6,32.7 \mathrm{ppm}$. ESI-MS: m / z calcd: 336.11, found: $337.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-(pyridin-4-yl)-2,3-dihydroquinazolin-4(1H)-one

According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and isonicotinaldehyde ($251 \mu \mathrm{~L}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6 -hydroxy-1,3-dimethyl-2-(pyridin-4-yl)-2,3-dihydroquinazolin-4($1 H$)-one 7 m ($483 \mathrm{mg}, 81 \%$) after column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=9: 1$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6}) $\delta=9.08$ (s, OH), 8.52 (dd, $J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=4.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H})$, $2.95(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=162.2,150.7,150.5$ (2C), 145.6, 139.6, 121.7 (2C), 121.5, 118.5, 115.5, 113.8, 77.7, 36.9, 32.8 ppm . ESI-MS: m / z calcd: 269.12 , found: $270.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one

According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and nicotinaldehyde ($250 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one $7 \mathbf{n}$ (395 mg, 66\%) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=9.07(\mathrm{~s}, \mathrm{OH}), 8.51(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.43(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=7.9,4.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~s}$, 3H), 2.76 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=161.7$, 150.1, 150.0, 147.6,
139.1, 133.7, 132.1, 123.8, 121.0, 117.9, 114.8, 113.3, 76.5, 35.9, 32.1 ppm . ESI-MS: m/z calcd: 269.12 , found: $270.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-(thiophen-3-yl)-2,3-dihydroquinazolin-4(1H)-one

According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide 6a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and thiophene-3-carbaldehyde ($233 \mu \mathrm{~L}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-(thiophen-3-yl)-2,3-dihydroquinazolin-4(1 H)-one $7 \mathrm{7o}$ ($461 \mathrm{mg}, 76 \%$) after crystallization from petroleum ether/DCM as a yellow solid; mp 218-220 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta=9.00(\mathrm{~s}, \mathrm{OH}), 7.43(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=2.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=161.7$, 149.7, 139.8, 138.2, 127.1, 125.4, 123.6, 120.9, 117.7, 114.0, 113.4, $74.7,35.5,31.9 \mathrm{ppm}$. ESI-MS: m / z calcd: 274.08 , found: $571.15[2 \mathrm{M}+\mathrm{Na}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-(thiophen-2-yl)-2,3-dihydroquinazolin-4(1H)-one
7p.
According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and thiophene-2-carbaldehyde ($249 \mu \mathrm{~L}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-(thiophen-2-yl)-2,3-dihydroquinazolin-4(1 H)-one $7 \mathbf{7 p}(428 \mathrm{mg}, 70 \%$) after crystallization from ether as a yellow solid; mp 205-208 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta=9.04(\mathrm{OH}), 7.32(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J$ $=3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.97(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ $=161.5,150.0,139.4,138.7,127.1,126.2,125.9,121.0,117.8,114.6,113.3,75.0,35.4,31.8$ ppm. ESI-MS: m / z calcd: 274.08 , found: $571.15[2 \mathrm{M}+\mathrm{Na}]^{+}$.

2-(Furan-3-yl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one
According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and furan-3-carbaldehyde ($223 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 2-(furan-3-yl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one $7 \mathbf{7 q}$ ($323 \mathrm{mg}, 56 \%$) after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=9.00(\mathrm{~s}, \mathrm{OH}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=162.3$,
$150.3,144.3,141.3,140.45,121.5,121.3,118.3,114.6,113.8,109.0,72.3,35.8,32.2 \mathrm{ppm}$. ESI-MS: m / z calcd: 258.10 , found: $259.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-(1H-pyrrol-3-yl)-2,3-dihydroquinazolin-4(1H)-one
 7r.

According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide 6a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 1 H -pyrrole-3-carbaldehyde ($253 \mathrm{mg}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-(1H-pyrrol-3-yl)-2,3-dihydroquinazolin-4(1H)-one 7r (406 mg, 71%) after column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=95: 5$) as a yellow solid; $\mathrm{mp} 222-225{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=10.68$ (s, NH), $8.88(\mathrm{~s}, \mathrm{OH}), 7.19(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=4.2$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): δ $=162.6,149.7,141.0,120.9,118.7,118.6,118.3,116.7,114.1,113.8,106.2,74.7,35.7,32.3$ ppm. ESI-MS: m / z calcd: 257.12 , found: $258.1[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one
7s.
According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 1-naphthalenecarboxaldehyde ($362 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1,3-dimethyl-2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1 H)-one $7 \mathbf{s}$ ($428 \mathrm{mg}, 61 \%$) after crystallization from a mixture of $\mathrm{DCM} /$ petroleum ether as a yellow solid; mp 228-234 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=9.19(\mathrm{~s}, \mathrm{OH}), 8.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (ddd, $J=8.5,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}$, $J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=162.8,151.7,140.4,134.1,133.9,131.6,129.6,129.1$, 126.9, 126.4, 125.6, 124.3, 124.2, 121.3, 120.8, 119.2, 113.4, 76.3, 40.2, 32.6 ppm. ESI-MS: m / z calcd: 318.14 , found: $319.2[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1,3-dimethyl-2-(naphthalen-2-yl)-2,3-dihydroquinazolin-4(1H)-one
According to GP2, 5-hydroxy- N-methyl-2-(methylamino)benzamide 6a ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 2-naphthaldehyde ($417 \mathrm{mg}, 2.66 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6 -hydroxy-1,3-dimethyl-2-(naphthalen-2-yl)-2,3-dihydroquinazolin-4(1H)-one 7t (494 mg, 70%) after crystallization from DCM as a yellow solid; mp 202-203 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta=9.02(\mathrm{~s}, \mathrm{OH}), 7.89-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6} : $\delta=162.2,150.2,140.0,135.0,133.4,132.9,129.0,128.5,128.0,127.0,126.9$, 126.1, 124.2, 121.4, 118.1, 114.8, 113.9, 79.3, 36.4, 32.6 ppm. ESI-MS: m / z calcd: 318.14, found: $659.30[2 \mathrm{M}+\mathrm{Na}]^{+}$.

2-(2,6-Dichlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one 7u. According to GP2, 5-hydroxy- N -methyl-2-(methylamino)benzamide $\mathbf{6 a}$ ($400 \mathrm{mg}, 2.22 \mathrm{mmol}$, 1 equiv) and 2,6 -dichlorobenzaldehyde ($467 \mathrm{mg}, 2.67 \mathrm{mmol}, 1.2$ equiv) were used to obtain 2-(2,6-dichlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4($1 H$)-one $7 \mathbf{u}(577 \mathrm{mg}$, 77%) after crystallization from petroleum ether/DCM as a white solid; mp 258-261 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6} : $\delta=8.84(\mathrm{~s}, \mathrm{OH}), 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.7,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=161.3$, 148.9, $140.6,135.5,132.4,131.8,130.6$ (2C), 121.7, 114.6, 113.5, 111.9, 76.1, 34.4, 30.8 ppm. ESIMS: m / z calcd: 336.04 , found: $337.10[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-3-iso-propyl-1-methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one

8a.
According to GP2, 5-hydroxy-N-iso-propyl-2-(methylamino)benzamide 6b (340 mg, $1.96 \mathrm{mmol}, 1$ equiv) and benzaldehyde ($200 \mu \mathrm{~L}, 1.63 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-3-iso-propyl-1-methyl-2-phenyl-2,3-dihydroquinazolin-4($1 H$)-one $\mathbf{8 a}$ ($364 \mathrm{mg}, 75 \%$) after crystallization from a mixture of DCM and petroleum ether as a pale yellow solid; mp 243-246 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=9.01(\mathrm{~s}, \mathrm{OH}), 7.32-7.13(\mathrm{~m}, 6 \mathrm{H}), 6.75(\mathrm{dd}$, $J=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.70$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ $(\mathrm{s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=161.6,150.6,139.4,139.3,128.6$ (3C), 126.8 (2C), 121.0, 120.5, 115.9, 113.8, 73.1, 45.3, 37.0, 20.8, 20.4 ppm. ESI-MS: m / z calcd: 296.15, found: $297.15[\mathrm{M}+\mathrm{H}]^{+}$.

6-Hydroxy-1-methyl-2-phenyl-3-n-propyl-2,3-dihydroquinazolin-4(1H)-one

According to GP2, 5-hydroxy-2-(methylamino)-N-n-propylbenzamide 6c ($500 \mathrm{mg}, 2.46$ mmol, 1 equiv) and benzaldehyde ($291 \mu \mathrm{~L}, 2.88 \mathrm{mmol}, 1.2$ equiv) were used to obtain 6-hydroxy-1-methyl-2-phenyl-3-n-propyl-2,3-dihydroquinazolin-4(1H)-one 8b ($284 \mathrm{mg}, 40 \%$) after column chromatography (petroleum ether:EtOAc=1:1) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=9.00(\mathrm{~s}, \mathrm{OH}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{dd}, J=$ $8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{ddd}, J=13.5,8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H})$,
2.82-2.69 (m, 4H), 1.68-1.55 (m, 1H), 1.55-1.42 (m, 1H), $0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=162.0,150.4,139.8,138.0,129.0,128.9$ (2C), 126.9 (2C), 121.2, 119.0, 115.3, 113.8, 77.3, 46.6, 36.7, 21.2, 11.7 ppm. ESI-MS: m / z calcd: 296.15, found: $297.20[\mathrm{M}+\mathrm{H}]^{+}$.

3-Benzyl-6-hydroxy-1-methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one 8c. According to GP2, N-benzyl-5-hydroxy-2-(methylamino)benzamide $\mathbf{6 d}(450 \mathrm{mg}, 1.76 \mathrm{mmol}$, 1 equiv) and benzaldehyde ($214 \mu \mathrm{~L}, 2.11 \mathrm{mmol}, 1.2$ equiv) were used to obtain 3-benzyl-6-hydroxy-1-methyl-2-phenyl-2,3-dihydroquinazolin- $4(1 \mathrm{H})$-one $8 \mathrm{Cc}(332 \mathrm{mg}, 55 \%)$ after column chromatography (petroleum ether:EtOAc $=1: 1$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=9.07(\mathrm{~s}, \mathrm{OH}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H})$, $6.83(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta=162.2$, $150.5,139.9,137.8,137.3,129.1,129.97$ (2C), 128.96 (2C), 128.0 (2C), 127.7, 127.0 (2C), $121.6,118.5,115.4,114.0,77.3,47.6,36.7 \mathrm{ppm}$. ESI-MS: m / z calcd: 344.15 , found: 345.15 $[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-Chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9b. According to GP3, starting from 2-(4-chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1 H)one $\mathbf{7 b}$ ($500 \mathrm{mg}, 1.65 \mathrm{mmol}, 1$ equiv) the title compound 2-(4-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9b (415 mg, 87\%) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a purple foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta=8.45(\mathrm{~s}, \mathrm{OH}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.41$ $(\mathrm{m}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (s, 3H), $2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=148.0,140.1,136.3,131.8$, 128.8 (2C), 128.1 (2C), 119.0, 114.2, 113.9, 110.3, 80.0, 49.0, 41.6, 36.9 ppm . ESI-MS: m / z calcd: 288.10 , found: $289.1[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 95%.

2-(3-Chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9c. According to GP3, starting from 2-(3-chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1 H)one $7 \mathbf{c}$ ($470 \mathrm{mg}, 1.55 \mathrm{mmol}, 1$ equiv) the title compound 2-(3-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9c (379 mg, 85\%) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a red foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=8.57(\mathrm{br}, \mathrm{OH}), 7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{dd}$,
$J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J$ $=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=16.2,1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}) $\delta=148.5,144.4,136.7,133.3,130.6,127.8,127.3,126.1,119.4,114.7,114.4$, 110.8, 80.5, 49.5, 42.1, 37.5 ppm . ESI-MS: m / z calcd: 288.10, found: $289.1[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 99\%.

2-(2-Chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9d. According to GP3, starting from 2-(2-chlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)one $7 \mathbf{d}$ ($500 \mathrm{mg}, 1.66 \mathrm{mmol}, 1$ equiv) the title compound 2-(2-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9d (326 mg, 68\%) was obtained after column chromatography (petroleum ether:EtOAc $=2: 1$) as a yellow solid; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6} : $\delta=8.47(\mathrm{~s}, \mathrm{OH}), 7.46(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ $(\mathrm{m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=148.5,138.2$, $137.1,133.3,130.5,129.7,127.9,127.1,119.2,114.8,114.5,110.2,78.5,49.2,42.3,36.5$ ppm. ESI-MS: m / z calcd: 288.10 , found: $289.15[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 98%.

1,3-Dimethyl-2-p-tolyl-1,2,3,4-tetrahydroquinazolin-6-ol 9e. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-p-tolyl-2,3-dihydroquinazolin-4(1H)-one 7e (450 mg, $1.59 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-p-tolyl-1,2,3,4-tetrahydroquinazolin6 -ol $9 \mathrm{e}(308 \mathrm{mg}, 72 \%)$ was obtained after column chromatography (petroleum ether:EtOAc $=$ $1: 2$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta=8.41(\mathrm{~s}, \mathrm{OH}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}$, $3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}): $\delta=147.8,138.0$, 136.7, 136.4, 128.6 (2C), 126.9 (2C), 119.2, 114.1, 113.8, 110.1, 80.6, 49.3, 41.6, 36.8, 20.6. ESI-MS: m / z calcd: 268.16, found: $269.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 96%.

1,3-Dimethyl-2-m-tolyl-1,2,3,4-tetrahydroquinazolin-6-ol 9f. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-m-tolyl-2,3-dihydroquinazolin-4(1H)-one $\quad \mathbf{7 f} \quad(360 \mathrm{mg}$, 1.28 mmol , 1equiv) the title compound 1,3-dimethyl-2-m-tolyl-1,2,3,4-tetrahydroquinazolin6 -ol $9 \mathrm{f}(248 \mathrm{mg}, 73 \%)$ was obtained after column chromatography (petroleum ether: $\mathrm{EtOAc}=$ 1:2) as a white foam; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=8.41$ (s, OH), $7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6} : $\delta=148.3,141.7,137.7,137.2,128.5,128.4,128.2,124.4,119.6,114.6,114.4$, 110.6, $81.4,49.8,42.1,37.4,21.6 \mathrm{ppm}$. ESI-MS: m / z calcd: 268.16 , found: $269.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 97%.

1,3-Dimethyl-2-o-tolyl-1,2,3,4-tetrahydroquinazolin-6-ol 9g. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-o-tolyl-2,3-dihydroquinazolin-4(1H)-one $7 \mathbf{7 g} \quad(270 \mathrm{mg}$, $0.96 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-o-tolyl-1,2,3,4-tetrahydroquinazolin-$6-\mathrm{ol} 9 \mathrm{~g}(175 \mathrm{mg}, 68 \%)$ was obtained after column chromatography (petroleum ether:EtOAc $=$ 1:1) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.39(\mathrm{br}, \mathrm{OH}), 7.20-7.09(\mathrm{~m}$, $2 \mathrm{H}), 7.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.77(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ $=148.2,139.2,137.5,136.9,131.3,127.7,125.9,125.5,118.8,114.7,114.5,109.7,78.9$, 49.4, 42.1, 36.6, 18.9 ppm. ESI-MS: m / z calcd: 268.16, found: $269.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 99%.

2-(4-Methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9h. According to GP3, starting from 6-hydroxy-2-(4-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin$4(1 \mathrm{H})$-one 7 h ($460 \mathrm{mg}, 1.54 \mathrm{mmol}, 1$ equiv) the title compound 2-(4-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9h ($282 \mathrm{mg}, 64 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a purple foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=8.42(\mathrm{~s}, \mathrm{OH}), 7.10-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=8.6,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=158.5,147.8,136.7,133.0,128.1$ (2C), 119.2, 114.1, 113.8, 113.4 (2C), 110.1, 80.4, 55.0, 49.3, 41.5, 36.8 ppm. ESI-MS: m/z calcd: 284.15, found: 285.2 $[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 98%.

2-(3-Methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9i. According to GP3, starting from 6-hydroxy-2-(3-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin$4(1 \mathrm{H})$-one $7 \mathbf{i}$ ($350 \mathrm{mg}, 1.17 \mathrm{mmol}, 1$ equiv) the title compound 2-(3-methoxyphenyl)-1,3-
dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9i ($239 \mathrm{mg}, 72 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a purple foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}): $\delta=8.41(\mathrm{br}, \mathrm{OH}), 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=7.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}): $\delta=159.6$, 148.4, 143.3, 137.1, 129.6, 119.6 (2C), 114.6, 114.4, 113.3, 112.9, 110.6, 81.1, 55.4, 49.8, 42.1, 37.4 ppm. ESI-MS: m / z calcd: 284.1, found: $285.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 98%.

2-(2-Methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9j. According to GP3, starting from 6-hydroxy-2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydroquinazolin$4(1 \mathrm{H})$-one $7 \mathbf{j}$ ($600 \mathrm{mg}, 2.01 \mathrm{mmol}, 1$ equiv) the title compound 2-(2-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol $\mathbf{9 j}$ ($508 \mathrm{mg}, 89 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 5$) as a white foam; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6} : $\delta=8.42$ (s, OH), 7.29-7.19 (m, 1H), 7.02 (d, $\left.J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.86(\mathrm{dd}, J=7.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta=157.4,148.3$, 137.8, 129.2, 128.5, 126.9, 120.0, 119.6, 114.6, 114.4, 111.8, 110.2, 75.3, 56.0, 49.7, 42.3, 36.4 ppm. ESI-MS: m/z calcd: 284.15, found: $285.20[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 97%.

2-(4-Fluorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9k. According to GP3, starting from 2-(4-fluorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)one $7 \mathbf{k}$ ($400 \mathrm{mg}, 1.40 \mathrm{mmol}, 1$ equiv) the title compound 2-(4-fluorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol $\mathbf{9 k} \quad(294 \mathrm{mg}, \quad 77 \%)$ was obtained after column chromatography (petroleum ether:EtOAc $=2: 1$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta=8.44$ (br, OH), 7.22-7.06 (m, 4H), 6.57 (dd, $\left.J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.51$ (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=161.9$ (d, $J=$ 243.0 Hz), 148.5, 137.8 (d, $J=2.9 \mathrm{~Hz}$), 136.9, 129.4 ($\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{C}$), 119.5, 115.3 (d, $J=$ $21.3 \mathrm{~Hz}, 2 \mathrm{C}), 114.7,114.4,110.8,80.6,49.6,42.0,37.4 \mathrm{ppm}$. ESI-MS: m / z calcd: 272.13 , found: $273.1[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 98%.

According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(4-(trifluoromethyl)phenyl)-2,3-dihydroquinazolin- $4(1 \mathrm{H})$-one $71(600 \mathrm{mg}, 1.79 \mathrm{mmol}, 1$ equiv) the title compound $1,3-$ dimethyl-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinazolin-6-ol 91 ($274 \mathrm{mg}, 48 \%$) was obtained after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 1$) as a white foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=8.59$ (br, OH), 7.66 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.62-6.43(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) : δ $=148.4,146.3,136.7,128.5(\mathrm{q}, J=31.8 \mathrm{~Hz}), 128.3(2 \mathrm{C}), 125.6(\mathrm{q}, J=3.8 \mathrm{~Hz}, 2 \mathrm{C}) 124.7(\mathrm{q}, J$ $=272.0 \mathrm{~Hz}), 119.4,114.8,114.5,110.9,80.5,49.4,42.4,37.4 \mathrm{ppm}$. ESI-MS: m / z calcd: 322.13, found: $323.1[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 98%.

1,3-Dimethyl-2-(pyridin-4-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9m. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(pyridin-4-yl)-2,3-dihydroquinazolin-4(1H)-one 7m ($450 \mathrm{mg}, 1.67 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(pyridin-4-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9m ($226 \mathrm{mg}, 53 \%$) was obtained after column chromatography (DCM:MeOH $=9: 1$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.50(\mathrm{dd}, J=4.4$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{~s}, \mathrm{OH}), 7.12(\mathrm{dd}, J=4.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62-6.48(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.40$ ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=150.2,150.1$ (2C), 148.7, 136.6, 122.6 (2C), 119.3, 114.8, 114.4, 110.9, 80.0, 49.5, 42.2, 37.5 ppm . ESI-MS: m / z calcd: 255.14, found: $256.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 99%.

1,3-Dimethyl-2-(pyridin-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9n. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(pyridin-3-yl)-2,3-dihydroquinazolin-4(1H)-one 7n ($370 \mathrm{mg}, 1.38 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(pyridin-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9n (191 mg, 54\%) was obtained after column chromatography (DCM:MeOH $=9: 1$) as a brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta=8.48(\mathrm{~s}, \mathrm{OH}), 8.46$ (dd, $J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=$ $7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=148.7,148.6,148.1,136.3,136.2,134.6$, 123.3, 119.0, 114.3, 113.9, 110.6, 78.7, 48.9, 41.5, 36.9 ppm . ESI-MS: m / z calcd: 255.14, found: $256.15[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 95%.

1,3-Dimethyl-2-(thiophen-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 90. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(thiophen-3-yl)-2,3-dihydroquinazolin-4($1 H$)-one 7o ($430 \mathrm{mg}, 1.57 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(thiophen-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 90 ($358 \mathrm{mg}, 88 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a white foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.44$ (s , $\mathrm{OH}), 7.44(\mathrm{dd}, J=4.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=5.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}$, $1 \mathrm{H}), 3.56(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=148.1,142.2,136.5,126.8,126.0,122.3,119.4,114.0$, 113.7, 110.7, 77.4, 49.6, 41.2, 36.8 ppm . ESI-MS: m / z calcd: 260.10 , found: $261.1[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 96\%.

1,3-Dimethyl-2-(thiophen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9p. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(thiophen-2-yl)-2,3-dihydroquinazolin-4(1H)-one 7p ($400 \mathrm{mg}, 1.5 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(thiophen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9p ($249 \mathrm{mg}, 66 \%$) was obtained after crystallization from a mixture of EtOAc and $\mathrm{Et}_{2} \mathrm{O}$ as a yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.47(\mathrm{~s}, \mathrm{OH}), 7.40$ (dd, $J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dt}, J=3.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (dd, $J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.70$ (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6} : $\delta=148.6,144.3,135.8,126.2,125.6,125.2,119.4,114.1,113.6,111.2$, 77.2, 49.3, 41.0, 37.1 ppm. ESI-MS: m / z calcd: 260.10, found: $261.1[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 100%.

2-(Furan-3-yl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9q. According to GP3, starting from 2-(furan-3-yl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin-4(1H)-one $\mathbf{7 q}$ ($300 \mathrm{mg}, 1.16 \mathrm{mmol}, 1$ equiv) the title compound 2 -(furan-3-yl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9q ($221 \mathrm{mg}, 78 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=8.45$ (s, $\mathrm{OH}), 7.56(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}) $\delta=148.7,143.7,140.9,137.0,124.9,120.2,114.5,114.0,111.7,110.2,74.7$,
50.2, 41.5, 37.2 ppm. ESI-MS: m / z calcd: 244.12, found: 245.2 [M+H] ${ }^{+}$. HPLC (method A): 97\%.

1,3-Dimethyl-2-(1H-pyrrol-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9r. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(1H-pyrrol-3-yl)-2,3-dihydroquinazolin-4(1H)one $7 \mathbf{r}$ ($400 \mathrm{mg}, 1.56 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(1 H -pyrrol-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9r (151 mg, 40\%) was obtained after column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=9: 1$) as a white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=$ 10.53 (br, NH), 8.35 (s, OH), 6.61 (dd, $J=4.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=4.1$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$, 2.28 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=148.2,137.9,122.1,120.5,117.9$, 116.4, 114.2, 114.0, 111.1, 107.0, 76.8, 50.4, 41.6, 37.2 ppm. ESI-MS: m / z calcd: 243.14, found: $244.2[\mathrm{M}+\mathrm{H}]^{+}$. CHN-anal: calcd: $\left(\mathrm{M}+0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}: 68.10 ; \mathrm{H}: 7.10 ; \mathrm{N}: 17.02$; found: C: 68.14; H: 7.10; N: 16.89 .

1,3-Dimethyl-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9s. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(naphthalen-1-yl)-2,3-dihydroquinazolin$4(1 \mathrm{H})$-one 7 s ($400 \mathrm{mg}, 1.26 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9 s ($314 \mathrm{mg}, 82 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=2: 1$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$): $\delta=8.47(\mathrm{br}, \mathrm{OH}), 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.48(\mathrm{~m}$, $2 \mathrm{H}), 6.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=148.3$, 137.4, 136.0, 134.4, 131.2, 128.7, 128.6, 126.1, 126.0, 125.4, 125.2, 124.1, 118.6, 114.7, 114.7, 109.9, 79.2, 49.7, 41.9, 36.9 ppm . ESI-MS: m / z calcd: 304.16 , found: $305.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 100\%.

1,3-Dimethyl-2-(naphthalen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9t. According to GP3, starting from 6-hydroxy-1,3-dimethyl-2-(naphthalen-2-yl)-2,3-dihydroquinazolin$4(1 \mathrm{H})$-one 7 t ($494 \mathrm{mg}, 1.55 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(naphthalen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9 t ($410 \mathrm{mg}, 87 \%$) was obtained after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 1$) as a purple foam; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,

DMSO-d d_{6} : $\delta=8.44(\mathrm{br}, \mathrm{OH}), 7.91-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.51-$ $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}): $\delta=148.4,139.4,137.1,133.0,133.0,128.4,128.3$, $127.9,126.5,126.3,126.0,126.0,119.7,114.7,114.4,110.8,81.5,50.0,42.2,37.5 \mathrm{ppm}$. ESIMS: m / z calcd: 304.16 , found: $305.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 96%.

2-(2,6-Dichlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9u. According to GP3, starting from 2-(2,6-dichlorophenyl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin$4(1 \mathrm{H})$-one $7 \mathbf{u}$ ($520 \mathrm{mg}, 1.55 \mathrm{mmol}, 1$ equiv) the title 2-(2,6-dichlorophenyl)-1,3-dimethyl-$1,2,3,4$-tetrahydroquinazolin-6-ol $\quad \mathbf{9 u} \quad(437 \mathrm{mg}, \quad 88 \%)$ was obtained after column chromatography (petroleum ether:EtOAc $=1: 1$) as a pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6} : $\delta=8.45(\mathrm{br}, \mathrm{OH}), 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=8.6$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=148.4$, 137.7, 135.2, 130.4, 121.4, 114.6, 114.0, 111.1, 80.2, 53.3, 42.0, 35.5 ppm . ESI-MS: m / z calcd: 322.06, found: $323.05[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 99%.

3-iso-Propyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-ol 10a. According to GP3, starting from 6-hydroxy-3-iso-propyl-1-methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)one $\mathbf{8 a}$ ($340 \mathrm{mg}, 1.15 \mathrm{mmol}, 1$ equiv) the title compound 3-iso-propyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-ol 10a (163 mg, 50\%) was obtained after column chromatography (petroleum ether:EtOAc= 7:2) as a brown foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta=8.36(\mathrm{br}, \mathrm{OH}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), 6.54 (dd, $J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, $1 \mathrm{H}), 3.52(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 1 \mathrm{H})$, $1.14(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}$): $\delta=$ $148.1,142.9,138.0,128.5$ (2C), 127.5, 127.2 (2C), 120.8, 114.4, 113.9, 109.9, 76.9, 50.1, 44.5, 36.9, 22.0, 21.6 ppm. ESI-MS: m / z calcd: 282.17, found: $282.20[\mathrm{M}+\mathrm{H}]^{+}$. CHN-anal: calcd: C: 76.56; H: 7.85; N: 9.92, found: C: 76.21; H: 7.82; N: 10.13.

1-Methyl-2-phenyl-3-n-propyl-1,2,3,4-tetrahydroquinazolin-6-ol 10b. According to GP3, starting from 6-hydroxy-1-methyl-2-phenyl-3-n-propyl-2,3-dihydroquinazolin-4(1H)one $\mathbf{8 b}$ ($270 \mathrm{mg}, 0.91 \mathrm{mmol}, 1$ equiv) the title compound 1-methyl-2-phenyl-3-n-propyl-

1,2,3,4-tetrahydroquinazolin-6-ol 10b (129 mg, 50\%) was obtained after column chromatography (petroleum ether:EtOAc= 7:2) as a brown foam; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=8.37(\mathrm{~s}, \mathrm{OH}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.55(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 3.47(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H})$, $2.42(\mathrm{dt}, J=12.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{hex}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=148.1,142.2,137.4,128.6$ (2C), 127.6, 127.3 (2C), 119.6, $114.5,114.5,110.1,79.5,55.1,47.4,37.3,21.2,12.3 \mathrm{ppm}$. ESI-MS: m / z calcd: 282.17, found: $283.20[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 96%.

3-Benzyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-ol 10c. According to GP3, starting from 3-benzyl-6-hydroxy-1-methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one 8c ($320 \mathrm{mg}, 0.93 \mathrm{mmol}, 1$ equiv) the title compound 3-benzyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-ol 10c ($155 \mathrm{mg}, 50 \%$) was obtained after column chromatography (petroleum ether: $\mathrm{EtOAc}=7: 2$) as a yellow foam; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=8.41$ (br, OH), 7.43-7.35 (m, 4H), 7.32-7.20 (m, 4H), 7.15 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{dd}, J=8.6$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=148.3,142.0,139.6,137.1,129.2$ (2C), 128.8 (2C), 128.7 (2C), 127.7, 127.5, 127.1 (2C), 119.1, 114.8, 114.5, 110.4, 78.8, 57.3, 47.2, 37.4 ppm . ESI-MS: m / z calcd: 330.17 , found: $331.20[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 97%.

2-(4-Chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate

2b. According to GP4, starting from 2-(4-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9b ($150 \mathrm{mg}, 0.52 \mathrm{mmol}, 1$ equiv) the title compound 2-(4-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 b}$ (126 mg , 57%) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta=7.51(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}$), $7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (dd, $J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=155.1,141.1,140.3,140.0,132.0$, 128.7 (2C), 128.3 (2C), 120.7, 120.2, 117.9, 109.0, 79.8, 48.4, 41.5, 40.4, 36.7, 31.2, 29.2,
28.4, 26.2, 22.0, 13.9 ppm. ESI-MS: m / z calcd: 429.22 , found: $430.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 95%.

2-(3-Chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate

 2c. According to GP4, starting from 2-(3-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol $9 \mathbf{c}(150 \mathrm{mg}, 0.52 \mathrm{mmol}, 1$ equiv) the title compound 2-(3-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 c}$ (117 mg , 53%) was obtained after column chromatography (petroleum ether:EtOAc $=1: 1$) as a yellow solid; mp 107-109 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6} : $\delta=7.51(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NH}$), 7.39 $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dt}, J=3.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.49-$ $1.39(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, J=15.4 \mathrm{~Hz}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=155.6,144.2,141.7,140.7,133.5,130.7,128.0,127.2,125.8$, $121.2,120.7,118.3,109.6,80.3,48.9,42.0,40.9,37.3,31.7,29.7,28.8,26.7,22.5,14.4 \mathrm{ppm}$. ESI-MS: m / z calcd: 429.22 , found: $430.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 98%.2-(2-Chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate
2d. According to GP4, starting from 2-(2-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol 9d ($150 \mathrm{mg}, 0.52 \mathrm{mmol}, 1$ equiv) the title compound 2-(2-chlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate 2d (130 mg , 58%) was obtained after column chromatography (petroleum ether:EtOAc $=4: 1$) as a white solid; mp 140-143 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$): $\delta=7.53(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}$), $7.49(\mathrm{dd}$, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}$, $1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.59(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.40(\mathrm{~m}$, $2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=$ 155.6, 141.7, 141.1, 138.0, 133.2, 130.7, 129.9, 127.8, 127.2, 121.3, 120.7, 118.1, 109.1, 78.6, 48.5, 42.3, 40.9, 36.3, 31.7, 29.7, 28.8, 26.7, 22.5, 14.4 ppm. ESI-MS: m / z calcd: 429.22, found: $430.25[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 98%.

1,3-Dimethyl-2-p-tolyl-1,2,3,4-tetrahydroquinazolin-6-yl $\quad \boldsymbol{n}$-heptylcarbamate $\quad 2 \mathrm{e}$. According to GP4, starting from 1,3-dimethyl-2-p-tolyl-1,2,3,4-tetrahydroquinazolin-6-ol $9 \mathbf{e}$ ($150 \mathrm{mg}, \quad 0.56 \mathrm{mmol}, 1$ equiv) the title compound 1,3 -dimethyl-2-p-tolyl-1,2,3,4-
tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 e}$ ($192 \mathrm{mg}, 84 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 1$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO$\left.\mathrm{d}_{6}\right): \delta=7.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J$ $=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.53(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, $J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.90 (s, 3H), 2.37 (s, 3H), 2.27 (s, 3H), 1.49 $1.39(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=155.1,140.9,140.7,137.9,136.6,128.8$ (2C), 126.7 (2C), 120.4, 120.1, 118.1, 108.8, 80.4, 48.5, 41.5, 40.4, 36.6, 31.2, 29.2, 28.3, 26.2, 22.0, 20.6, 13.9 ppm. ESI-MS: m / z calcd: 409.27, found: $410.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 97%.

1,3-Dimethyl-2-m-tolyl-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate \quad 2f. According to GP4, starting from 1,3-dimethyl-2-m-tolyl-1,2,3,4-tetrahydroquinazolin-6-ol 9f $(150 \mathrm{mg}, \quad 0.49 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-m-tolyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 f}(51 \mathrm{mg}, 23 \%)$ was obtained after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 1$) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta=7.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.49(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H})$, $3.55(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=155.6,141.5,141.4,141.1,137.8,128.7,128.5,128.0$, 124.2, 121.1, 120.6, 118.5, 109.3, 81.1, 49.1, 42.1, 40.9, 37.2, 31.7, 29.7, 28.8, 26.6, 22.5, 21.6, 14.4 ppm. ESI-MS: m / z calcd: 409.27 , found: $410.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 97%.

1,3-Dimethyl-2-o-tolyl-1,2,3,4-tetrahydroquinazolin-6-yl $\quad n$-heptylcarbamate $\quad \mathbf{2 g}$.
According to GP4, starting from 1,3-dimethyl-2-o-tolyl-1,2,3,4-tetrahydroquinazolin-6-ol 9g ($150 \mathrm{mg}, \quad 0.56 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-o-tolyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 g}(135 \mathrm{mg}, 59 \%)$ was obtained after column chromatography (petroleum ether:EtOAc $=3: 1$) as a yellow solid; mp $130-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta=7.51(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 7.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=$ $7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=155.6,141.5,141.3,138.8,136.9,131.4,127.9,125.7$,
125.6, 121.1, 120.7, 117.9, 108.7, 78.9, 48.8, 42.0, 40.9, 36.5, 31.7, 29.8, 28.9, 26.7, 22.5, 18.9, 14.4 ppm . ESI-MS: m / z calcd: 409.27 , found: $410.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 95%.

2-(4-Methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl

\boldsymbol{n}-heptylcarbamate $\mathbf{2 h}$. According to GP4, starting from 2-(4-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin- $6-\mathrm{ol} 9 \mathrm{~h}(150 \mathrm{mg}, 0.53 \mathrm{mmol}, 1$ equiv) the title compound 2-(4-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 h}$ ($173 \mathrm{mg}, 77 \%$) was obtained after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 2$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=7.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.55(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=12.9,6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.81(\mathrm{~m}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=158.6,155.1,140.9,140.7,132.8,127.9$ (2C), $120.6,120.0,118.1,113.6$ (2C), 108.8, 80.2, 55.0, 48.6, 41.4, 40.4, 36.6, 31.2, 29.3, 28.4, 26.2, 22.0, 13.9 ppm. ESI-MS: m / z calcd: 425.27, found: $426.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 98\%.

2-(3-Methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl

\boldsymbol{n}-heptylcarbamate $\mathbf{2 i}$. According to GP4, starting from 2-(3-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin- 6 -ol $9 \mathbf{~}$ ($150 \mathrm{mg}, 0.52 \mathrm{mmol}, 1$ equiv) the title compound 2-(3-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 i}$ (93 mg , 41%) was obtained after column chromatography (petroleum ether:EtOAc $=1: 1$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=7.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.56$ (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.39-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=159.7$, 155.6, 143.1, 141.5, 141.1, 129.8, 121.1, 120.6, 119.4, 118.6, 113.2, 113.0, 109.3, 81.0, 55.4, 49.1, 42.1, 40.9, 37.2, 31.7, 29.7, 28.8, 26.7, 22.5, 14.4 ppm. ESI-MS: m / z calcd: 425.27, found: $426.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method B): 98%.

2-(2-Methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl

\boldsymbol{n}-heptylcarbamate $\mathbf{2 j}$. According to GP4, starting from 2-(2-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin- 6 -ol $9 \mathbf{j}$ ($150 \mathrm{mg}, 0.53 \mathrm{mmol}, 1$ equiv) the title compound 2-(2-methoxyphenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate
($159 \mathrm{mg}, 71 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 2$) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=7.51(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NH}), 7.30-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.77(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=$ $13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=157.4,155.6,141.8,141.4,129.5$, 128.3, 126.7, 121.1, 120.5, 120.1, 118.4, 111.9, 108.9, 75.6, 56.0, 48.9, 42.4, 40.9, 36.2, 31.7, 29.8, 28.9, 26.7, 22.5, 14.4 ppm . ESI-MS: m / z calcd: 425.27 , found: $426.30[\mathrm{M}+\mathrm{H}]^{+}$. HPLC $(\operatorname{method} A): 98 \%$.

2-(4-Fluorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate

 $\mathbf{2 k}$. According to GP4, starting from 2-(4-fluorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin- $6-\mathrm{ol} 9 \mathbf{k}(150 \mathrm{mg}, 0.55 \mathrm{mmol}, 1$ equiv) the title compound 2-(4-fluorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 k}$ (93 mg , 41%) was obtained after column chromatography (petroleum ether:EtOAc $=2: 1$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.51(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NH}$), 7.23-7.10 (m, 4H), 6.82 (dd, $J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.51$ (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $1.49-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$) $\delta=161.9(\mathrm{~d}, J=243.3 \mathrm{~Hz}), 155.6,141.5,140.9,137.6(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.2(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{C}), 121.1,120.6,118.4,115.5(\mathrm{~d}, J=21.3 \mathrm{~Hz}, 2 \mathrm{C}), 109.5,80.4,48.9,42.0,40.9$, 37.2, 31.7, 29.7, 28.8, 26.7, 22.5, 14.4 ppm. ESI-MS: m / z calcd: 413.25, found: 414.3 $[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 100%.
1,3-Dimethyl-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinazolin-6-yl

\boldsymbol{n}-heptylcarbamate 21. According to GP4, starting from 1,3-dimethyl-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinazolin-6-ol 91 ($150 \mathrm{mg}, 0.47 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 l}$ ($154 \mathrm{mg}, 72 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 1$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.70(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, $J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96 ($\mathrm{s}, 3 \mathrm{H}), 2.43$ ($\mathrm{s}, 3 \mathrm{H}), 1.50-1.39$ $(\mathrm{m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=$
155.6, 146.3, 141.7, 140.7, 128.6 (q, $J=31.8 \mathrm{~Hz}$), 128.2 (2C), 125.7 ($\mathrm{q}, ~ J=3.8 \mathrm{~Hz}$), 121.3, 120.7, 118.3, 109.6, 80.4, 48.9, 42.1, 40.9, 37.2, 31.7, 29.7, 28.8, 26.7, 22.5, 14.4 ppm. ESIMS: m / z calcd: 463.24 , found: $464.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method B): 99%.

1,3-Dimethyl-2-(pyridin-4-yl)-1,2,3,4-tetrahydroquinazolin-6-yl $\quad n$-heptylcarbamate

 2m. According to GP4, starting from 1,3-dimethyl-2-(pyridin-4-yl)-1,2,3,4-tetrahydroquinazolin- $6-\mathrm{ol} 9 \mathrm{~m}(150 \mathrm{mg}, 0.59 \mathrm{mmol}, 1$ equiv) the title compound 1,3 -dimethyl-2-(pyridin-4-yl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 m}$ ($123 \mathrm{mg}, 53 \%$) was obtained after column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=9: 1$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.53$ (dd, $J=4.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NH}), 7.16-7.11$ (m, $2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}$, $1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.97$ $(\mathrm{s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=155.5,150.3$ (2C), 150.1, 141.7, 140.6, 122.5 (2C), $121.3,120.7,118.2,109.7,79.9,49.0,42.1,40.9,37.3,31.7,29.7,28.8,26.7,22.5,14.4 \mathrm{ppm}$. ESI-MS: m / z calcd: 396.25 , found: $397.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 98%.
1,3-Dimethyl-2-(pyridin-3-yl)-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate 2n.

 According to GP4, starting from 1,3-dimethyl-2-(pyridin-3-yl)-1,2,3,4-tetrahydroquinazolin6 -ol 9 n ($150 \mathrm{mg}, 0.59 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(pyridin-3-yl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 n}$ ($134 \mathrm{mg}, 58 \%$) was obtained after column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=9: 1$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=8.48(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, \mathrm{NH}+1 \mathrm{H}), 7.35$ $(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=$ $13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=155.0,148.8,148.5,141.2,140.3$, $136.1,134.4,123.4,120.8,120.2,117.8,109.3,78.5,48.3,41.5,40.4,36.7,31.2,29.2,28.4$, 26.2, 22.0, 13.9 ppm . ESI-MS: m / z calcd: 396.25 , found: $396.9[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method B): 99\%.1,3-Dimethyl-2-(thiophen-3-yl)-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate
20. A solution of 1,3-dimethyl-2-(thiophen-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 90 ($150 \mathrm{mg}, 0.58 \mathrm{mmol}, 1$ equiv) in $\mathrm{DCM}(5 \mathrm{~mL})$ was treated with n-heptyl isocyanate ($101 \mu \mathrm{~L}$,
$0.63 \mathrm{mmol}, 1.1$ equiv) and triethylamine ($88 \mu \mathrm{~L}, 0.63 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred for 6 h . For workup, the mixture was diluted with ethyl acetate (30 mL), washed with water (10 mL) and washed with brine $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 1$) to yield 1,3-dimethyl-2-(thiophen-3-yl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 0}$ ($96 \mathrm{mg}, 42 \%$) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta=7.54-7.44(\mathrm{~m}, \mathrm{NH}+1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=$ $5.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.55(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.37(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.77(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6} : $\delta=155.6,143.0,141.6,140.9,127.0,126.9,122.9,121.0,120.5,118.6,109.8$, $77.9,49.4,41.6,40.9,37.1,31.7,29.7,28.8,26.7,22.5,14.4$ ppm. ESI-MS: m / z calcd: 401.21, found: $402.2[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 99%.

1,3-Dimethyl-2-(thiophen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate

 $\mathbf{2 p}$. A solution of 1,3-dimethyl-2-(thiophen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-ol 9p ($150 \mathrm{mg}, 0.58 \mathrm{mmol}, 1$ equiv) in $\mathrm{DCM}(5 \mathrm{~mL})$ was treated with n-heptyl isocyanate ($101 \mu \mathrm{~L}$, $0.63 \mathrm{mmol}, 1.1$ equiv) and triethylamine ($88 \mu \mathrm{~L}, 0.63 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred for 6 h . For workup, the mixture was diluted with ethyl acetate (30 mL), washed with water $(10 \mathrm{~mL})$ and washed with brine $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (petroleum ether:EtOAc $=1: 1$) to yield 1,3-dimethyl-2-(thiophen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 p}$ ($133 \mathrm{mg}, 58 \%$) as a white powder; mp $81{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=7.51(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}$), 7.44 (dd, J $=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 5 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) $\delta=155.0,144.8,141.4,139.9,126.4$, $125.9,125.0,120.5,120.0,118.2,109.6,77.1,48.7,40.9,40.4,36.9,31.2,29.2,28.4,26.2$, 22.0, 13.9 ppm . ESI-MS: m / z calcd: 401.21 , found: $402.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method B): 100%.2-(Furan-3-yl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate $\mathbf{2 q}$. According to GP4, starting from 2-(furan-3-yl)-6-hydroxy-1,3-dimethyl-2,3-dihydroquinazolin- $4(1 \mathrm{H})$-one $\mathbf{9 q}$ ($150 \mathrm{mg}, 0.49 \mathrm{mmol}, 1$ equiv) the title compound 2-(furan-

3-yl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 q}(71 \mathrm{mg}, 30 \%)$ was obtained after column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 2$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta=7.58$ (dd, $J=8.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}), 7.34(\mathrm{~s}$, $1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J$ $=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.15(\mathrm{~m}, 8 \mathrm{H}), 0.87$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$): $\delta=155.6,144.0,141.7,141.0$, $140.9,125.6,120.9,120.4,118.8,110.1,109.9,74.7,49.5,41.4,40.9,36.9,31.7,29.7,28.8$, 26.7, 22.5, 14.4 ppm. ESI-MS: m / z calcd: 385.24 , found: $386.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method B): 98\%.

1,3-Dimethyl-2-(1H-pyrrol-3-yl)-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate 2r. According to GP4, starting from 1,3-dimethyl-2-(1H-pyrrol-3-yl)-1,2,3,4-tetrahydroquinazolin-6-ol $9 \mathbf{r}(100 \mathrm{mg}, 0.49 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(1 H -pyrrol-3-yl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{2 r}$ ($38 \mathrm{mg}, 15 \%$) was obtained after column chromatography ($\mathrm{DCM}: \mathrm{MeOH}=9: 1$) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=10.60(\mathrm{~s}, \mathrm{NH}), 7.49(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{CONH}), 6.76(\mathrm{dd}, J=8.7,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=4.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.45-6.38 (m, 1H), $5.81(\mathrm{dd}, J=4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 2 \mathrm{H})$, $1.35-1.18(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta=$ 155.6, 141.6, 141.3, 122.4, 120.7, 120.2, 119.1, 118.2, 116.4, 109.6, 106.7, 76.8, 49.6, 41.40, $40.9,37.0,31.7,29.8,28.9,26.7,22.5,14.4 \mathrm{ppm}$. ESI-MS: m / z calcd: 384.25 , found: 385.30 $[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 95%.

1,3-Dimethyl-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinazolin-6-yl

n-heptylcarbamate 2s. According to GP4, starting from 1,3-dimethyl-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinazolin- 6 -ol 9 s ($150 \mathrm{mg}, 0.49 \mathrm{mmol}, 1$ equiv) the title compound 1,3-dimethyl-2-(naphthalen-1-yl)-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate 2 s ($131 \mathrm{mg}, 60 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=7: 2$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\left.-\mathrm{d}_{6}\right): ~} \delta=8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 2 \mathrm{H}+\mathrm{NH}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}$, $1 \mathrm{H}), 3.52(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H})$,
$2.56(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=155.6,141.5,141.4,135.8,134.4,131.1,128.7,128.7,126.2$, $126.1,125.4,125.2,123.9,121.2,120.8,117.7,108.9,79.1,49.1,41.9,40.9,36.8,31.7,29.7$, 28.8, 26.7, 22.5, 14.4 ppm. ESI-MS: m / z calcd: 445.27 , found: $446.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method B): 97%.

1,3-Dimethyl-2-(naphthalen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-yl

\boldsymbol{n}-heptylcarbamate $\mathbf{2 t}$. According to GP4, starting from 1,3-dimethyl-2-(naphthalen-2-yl)-$1,2,3,4$-tetrahydroquinazolin- 6 -ol $9 \mathrm{t}(150 \mathrm{mg}, 0.49 \mathrm{mmol}, 1$ equiv) the title compound 1,3 -dimethyl-2-(naphthalen-2-yl)-1,2,3,4-tetrahydroquinazolin-6-yl $\quad n$-heptylcarbamate $\quad \mathbf{2 t}$ ($155 \mathrm{mg}, 71 \%$) was obtained after column chromatography (petroleum ether:EtOAc $=1: 1$) as a clear oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.57$ (br, NH), 7.55-7.44 (m, 3H), 7.41 (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.91(\mathrm{~m}, 5 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}$, 8H), $0.90-0.82(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6} : $\delta=155.6,141.5,141.1$, $139.2,133.05,133.0,128.6,128.4,127.9,126.6,126.5,125.8,125.8,121.2,120.6,118.6$, $109.5,81.3,49.3,42.1,40.9,37.3,31.7,29.7,28.8,26.7,22.5,14.4$ ppm. ESI-MS: m / z calcd: 445.27, found: $446.3[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 96%.

2-(2,6-Dichlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl

\boldsymbol{n}-heptylcarbamate 2 u . According to GP4, starting from 2-(2,6-dichlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-ol $9 \mathbf{~ u}(150 \mathrm{mg}, 0.47 \mathrm{mmol}, 1$ equiv) the title compound $\quad 2$-(2,6-dichlorophenyl)-1,3-dimethyl-1,2,3,4-tetrahydroquinazolin-6-yl n heptylcarbamate $\mathbf{2 u}(64 \mathrm{mg}, 30 \%)$ was obtained after column chromatography (petroleum ether:EtOAc $=4: 1$) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left.(400 \mathrm{MHz}, \text { DMSO-d })_{6}\right): \delta=7.61-7.45(\mathrm{~m}$, $2 \mathrm{H}+\mathrm{NH}$), $7.46-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (dd, J $=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.92$ (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}): $\delta=155.6,141.8,141.5,134.9$, $130.5,121.1,120.3,120.1,109.8,79.8,52.5,42.0,40.9,35.2,31.7,29.8,28.9,26.7,22.5$, 14.4 ppm. ESI-MS: m / z calcd: 463.18 , found: $464.20[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method A): 96%.

3-iso-Propyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate 3a. According to GP4, starting from 3-iso-propyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-ol $\mathbf{1 0 a}$ ($100 \mathrm{mg}, 0.35 \mathrm{mmol}, 1$ equiv) the title compound 3-iso-propyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate 3a ($72 \mathrm{mg}, 48 \%$) was obtained after column chromatography (petroleum ether:EtOAc=5:1) as a white solid; mp 132-133 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta=7.48(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NH}), 7.36-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (d, $J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.01 (dd, $J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.38(\mathrm{~m}$, $2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 8 \mathrm{H}), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) $\delta=155.6,142.7,142.0,141.2,128.7$ (2C), 127.6, 127.1 (2C), 120.9, 119.9, 119.8, 108.8, 76.8, 50.1, 44.3, 40.9, 36.8, 31.7, 29.8, 28.8, 26.7, 22.5, 22.0, 21.7, 14.4 ppm . ESI-MS: m / z calcd: 423.29 , found: $424.30[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 99%.

1-Methyl-2-phenyl-3-n-propyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate 3b. According to GP4, starting from 1-methyl-2-phenyl-3-n-propyl-1,2,3,4-tetrahydroquinazolin- $6-\mathrm{ol} \mathbf{1 0 b}$ ($100 \mathrm{mg}, 0.35 \mathrm{mmol}, 1$ equiv) the title compound 1-methyl-2-phenyl-3-n-propyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate $\mathbf{3 b}$ ($58 \mathrm{mg}, 39 \%$) was obtained after column chromatography (petroleum ether:EtOAc=5:1) as a white solid; mp 106-108 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta=7.49$ (br, NH), $7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ 7.19 (m, 1H), $7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.51(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, $3.49(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.88(\mathrm{~m}, 5 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H})$, $1.57(\mathrm{dd}, J=13.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90-0.81(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6} : $\delta=155.6,142.0,141.4$, $141.3,128.7$ (2C), 127.8, 127.1 (2C), 121.0, 120.6, 118.6, 109.1, 79.5, 55.0, 47.0, 40.9, 37.2, 31.7, 29.7, 28.8, 26.7, 22.5, 21.2, 14.4, 12.2 ppm. ESI-MS: m / z calcd: 423.29 , found: 424.30 $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HPLC}(\operatorname{method} \mathrm{C}): 100 \%$.

3-Benzyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-yl \boldsymbol{n}-heptylcarbamate 3c.

According to GP4, starting from 3-benzyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6ol $\mathbf{1 0 c}$ ($100 \mathrm{mg}, 0.36 \mathrm{mmol}, 1$ equiv) the title compound 3-benzyl-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinazolin-6-yl n-heptylcarbamate 3 c ($79 \mathrm{mg}, 55 \%$) was obtained after column chromatography (petroleum ether:EtOAc=5:1) as a white solid; mp $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR
(400 MHz, DMSO-d ${ }_{6}$): $\delta=7.50(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NH}), 7.43-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85$ (dd, $J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 3.78(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J$ $=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.20$ $(\mathrm{m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$): $\delta=155.6$, 141.7, $141.5,141.2,139.4,129.2$ (2C), 128.8 (4C), 127.9, 127.6, 127.0 (2C), 121.3, 120.7, 118.2, $109.4,78.7,57.2,46.9,40.7,37.3,31.7,29.7,28.8,26.7,22.5,14.4 \mathrm{ppm}$. ESI-MS: m / z calcd: 471.29, found: $472.30[\mathrm{M}+\mathrm{H}]^{+}$. HPLC (method C): 97%.

IC 50 $_{50}$ Values with Confidence Intervals

Table S1. Cholinesterase inhibition of the synthesized test compounds. ${ }^{a}$ Phenols were incubated for 4.5 min and carbamates for 30 min .

Moiety	$\begin{gathered} \mathbf{X}= \\ \mathbf{H} \end{gathered}$	$\mathrm{IC}_{50}[\mu \mathrm{M}]$ or \% inhibition (95\% confidence interval)		$\begin{gathered} \mathrm{X}= \\ (\mathrm{C}=\mathrm{O}) \mathrm{NH} n- \\ \text { Hept } \\ \hline \end{gathered}$	$\mathrm{IC}_{50}[\mu \mathrm{M}]$ or \% inhibition (95\% confidence interval)	
		BChE	AChE		BChE	AChE
$\begin{aligned} & \mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}= \\ & \mathrm{H} \end{aligned}$	9a	$\begin{gathered} 39.9 \\ (31.5-50.5) \end{gathered}$	$\begin{gathered} 327.0 \\ (258.2-414.2) \end{gathered}$	2a	$\begin{gathered} 0.106 \\ (0.095-0.118) \end{gathered}$	$4 \%{ }^{\text {d }}$
4-Cl-Ph-	9b	$\begin{gathered} 13.8 \\ (12.3-15.4) \end{gathered}$	$\begin{gathered} 235.6 \\ (198.7-279.2) \end{gathered}$	2b	$\begin{gathered} 0.115 \\ (0.088-0.149) \end{gathered}$	$24 \%{ }^{\text {d }}$
3-Cl-Ph-	9c	$\begin{gathered} 2.1 \\ (1.9-2.3) \end{gathered}$	$\begin{gathered} 242.4 \\ (200.9-292.5) \end{gathered}$	2 c	$\begin{gathered} 0.096 \\ (0.090-0.103) \end{gathered}$	$39 \%{ }^{\text {d }}$
2-Cl-Ph-	9d	$\begin{gathered} 56.0 \\ (43.6-71.9) \end{gathered}$	$60 \%{ }^{\text {b }}$	2 d	$\begin{gathered} 0.474 \\ (0.406-0.555) \end{gathered}$	48\% ${ }^{\text {e }}$
4-Me-Ph-	9 e	$\begin{gathered} 22.6 \\ (19.4-26.3) \end{gathered}$	$\begin{gathered} 109.9 \\ (98.4-122.9) \end{gathered}$	2 e	$\begin{gathered} 0.231 \\ (0.217-0.247) \end{gathered}$	$9 \%{ }^{\text {d }}$
3-Me-Ph-	9 f	$\begin{gathered} 17.4 \\ (14.2-21.3) \end{gathered}$	$\begin{gathered} 437.0 \\ (376.6-507.1) \end{gathered}$	2 f	$\begin{gathered} 0.199 \\ (0.181-0.220) \end{gathered}$	$27 \%{ }^{\text {d }}$
2-Me-Ph-	9 g	$\begin{gathered} 92.4 \\ (79.9-106.8) \end{gathered}$	$\begin{gathered} 143.4 \\ (119.1-172.6) \end{gathered}$	2 g	$\begin{gathered} 0.251 \\ (0.211-0.298) \end{gathered}$	$18 \%{ }^{e}$
4-MeO-Ph-	9h	$\begin{gathered} 39.5 \\ (27.4-57.0) \end{gathered}$	$\begin{gathered} 103.8 \\ (68.4-157.5) \end{gathered}$	2 h	$\begin{gathered} 0.875 \\ (0.769-0.997) \end{gathered}$	$14 \%{ }^{\text {d }}$
3-MeO-Ph-	9 i	$\begin{gathered} 7.8 \\ (5.4-11.2) \end{gathered}$	$61 \%{ }^{\text {b }}$	2 i	$\begin{gathered} 0.208 \\ (0.185-0.233 \end{gathered}$	$10 \%{ }^{\text {d }}$
2-MeO-Ph-	9j	$\begin{gathered} 9.9 \\ (8.3-11.8) \end{gathered}$	$\begin{gathered} 192.8 \\ (167.7-221.6) \end{gathered}$	2 j	$\begin{gathered} 0.238 \\ (0.202-0.281) \end{gathered}$	$47 \%{ }^{e}$
4-F-Ph-	9k	$\begin{gathered} 58.9 \\ (49.6-69.9) \end{gathered}$	$\begin{gathered} 143.4 \\ (119.1-172.6) \end{gathered}$	2k	$\begin{gathered} 0.044 \\ (0.035-0.055) \end{gathered}$	$\begin{gathered} 1.61 \\ (0.94-2.77) \end{gathered}$
4- CF_{3} - $\mathrm{Ph}-$	91	$\begin{gathered} 64.6 \\ (56.5-73.9) \end{gathered}$	$n d^{c}$	21	$\begin{gathered} 2.7 \\ (1.7-4.3) \end{gathered}$	$59 \%{ }^{\text {d }}$
4-pyridyl-	9m	$\begin{gathered} 2.1 \\ (1.9-2.3) \end{gathered}$	$\begin{gathered} 242.4 \\ (200.9-292.5) \end{gathered}$	2 m	$\begin{gathered} 0.723 \\ (0.656-0.797) \end{gathered}$	$16 \%{ }^{\text {d }}$
3-pyridyl-	9 n	$\begin{gathered} 70.7 \\ (57.9-86.2) \end{gathered}$	$61 \%{ }^{\text {b }}$	2 n	$\begin{gathered} 0.565 \\ (0.478-0.666) \end{gathered}$	$18 \%{ }^{\text {d }}$
3-thiophenyl-	90	$\begin{gathered} 193.7 \\ (148.1-253.4) \end{gathered}$	$52 \%{ }^{\text {b }}$	20	$\begin{gathered} 0.022 \\ (0.021-0.023) \end{gathered}$	$13 \%{ }^{\text {d }}$
2-thiophenyl	9p	$\begin{gathered} 63.2 \\ (56.3-71.0) \end{gathered}$	$\begin{gathered} 225.8 \\ (189.1-269.6) \end{gathered}$	2p	$\begin{gathered} 0.014 \\ (0.012-0.016) \\ 0.013^{*} \end{gathered}$	$0 \%{ }^{\text {d }}$

3-furyl-	9 q			(0.009-0.019)*		
		$\begin{gathered} 196.1 \\ (176.1-218.3) \end{gathered}$	$\begin{gathered} 341.7 \\ (294.1-397.1) \end{gathered}$	$2 q$	$\begin{gathered} 0.083 \\ (0.072-0.095) \end{gathered}$	$12 \%{ }^{\text {d }}$
3 -pyrrolyl-	9r	$\begin{gathered} 15.3 \\ (13.2-17.8) \end{gathered}$	$\begin{gathered} 115.9 \\ (104.7-128.3) \end{gathered}$	2r	$\begin{gathered} 0.023 \\ (0.021-0.026) \end{gathered}$	$\begin{gathered} 0.852 \\ (0.75-0.98) \end{gathered}$
1-naphthyl-	9s	$\begin{gathered} 2.8 \\ (2.6-3.2) \end{gathered}$	$\begin{gathered} 341.7 \\ (294.1-397.1) \end{gathered}$	2s	$\begin{gathered} 36.2 \\ (25.2-52.1) \end{gathered}$	$8 \%{ }^{\text {e }}$
2-naphthyl-	9t	$\begin{gathered} 16.5 \\ (14.7-18.5) \end{gathered}$	$9 \%{ }^{\text {c }}$	2 t	$\begin{gathered} 0.374 \\ (0.315-0.444) \end{gathered}$	$5 \%^{e}$
2,6-dichloro-	9u	$\begin{gathered} 7.1 \\ (6.6-7.8) \end{gathered}$	$\begin{gathered} 13.5 \\ (11.2-16.4) \end{gathered}$	2u	$\begin{gathered} 0.531 \\ (0.464-0.608) \end{gathered}$	$33 \%{ }^{e}$
$\begin{aligned} & \mathrm{R}^{2}=\mathrm{Ph} ; \mathrm{R}^{1}= \\ & i \text {-Pr- } \end{aligned}$	10a	$\begin{gathered} 55.8 \\ (47.7-65.2) \end{gathered}$	$\begin{gathered} 253.0 \\ (249.2-256.8) \end{gathered}$	3a	$\begin{gathered} 0.021 \\ (0.019-0.024) \end{gathered}$	$33 \%{ }^{\text {d }}$
$n \mathrm{Pr}-$	10b	$\begin{gathered} 22.8 \\ (20.3-25.5) \end{gathered}$	$\begin{gathered} 279.3 \\ (261.9-297.8) \end{gathered}$	3b	$\begin{gathered} 0.040 \\ (0.035-0.045) \end{gathered}$	$46 \%{ }^{\text {d }}$
benzyl-	10c	$\begin{gathered} 14.8 \\ (13.2-16.7) \end{gathered}$	$16 \%{ }^{\text {c }}$	3c	$\begin{gathered} 0.034 \\ (0.030-0.038) \end{gathered}$	$17 \%{ }^{e}$
	15	$\begin{gathered} 98.1 \\ (82.4-116.8) \end{gathered}$	$20 \%{ }^{\text {b }}$	16	$\begin{gathered} 1.8 \\ (1.2-2.8) \end{gathered}$	$22 \%{ }^{\text {d }}$
				physostigmine	$\begin{gathered} 0.078 \\ (0.073-0.084) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.03-0.04) \end{gathered}$

${ }^{a}$ Experiments were performed in triplicate at AChE from human erythrocytes and BChE from equine serum. ${ }^{b-e} \%$ Inhibition at a concentration of ${ }^{b} 500 \mu \mathrm{M} ;{ }^{c} 50 \mu \mathrm{M} ;{ }^{d} 100 \mu \mathrm{M} ;{ }^{e} 10 \mu \mathrm{M}$.

[^0]
Enantiomeric Separation of Compound 2p

Enantiomeric resolution was performed on a Jasco HPLC system (pump PU-1580, gradient unit LG-980-02S, degasser DG-2080-53, autosampler AS-2055Plus, UV detector MD2010Plus; Jasco Deutschland, Gross-Umstadt) equipped with an analytical Chiralpak ${ }^{\circledR}$ IA (Chiral Technologies Europe, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$) column and coupled to a J-715 spectropolarimeter (Jasco Deutschland, Gross-Umstadt) for the online-CD measurements (scanning rate: $200 \mathrm{~nm} / \mathrm{min}$, bandwith: 5 nm , response time: 1 s). The enantiomeric resolutions were performed at room temperature with an isocratic solvent system of MTBE:MeOH (95:5 containing $0.1 \% \mathrm{HNEt}_{2}$) at $1 \mathrm{~mL} / \mathrm{min}$. Semi-preparative HPLC was performed on the same system with a semi-preparative Chiralpak ${ }^{\circledR}$ IA (Chiral Technologies Europe, $10 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$) column at $4.7 \mathrm{~mL} / \mathrm{min}$.

By HPLC on a chiral phase the racemic mixture (Figure S1) of compound $\mathbf{2 p}$ was clearly resolved into its two enantiomers and analyzed chiroptically online, by HPLC-CD coupling (Figures S2, S3 and S4). The two enantiomers proved to be configurationally unstable, undergoing rapid isomerization back to the racemic mixture during solvent evaporation.

Figure S1. (S1a) HPLC-UVchromatogram of a racemic mixture of compound $\mathbf{2 p}$ and (S1b) the corresponding LC-CD chromatogram.

Figure S2. (S2a) HPLC-UV chromatogram of pure separated enantiomer A of compound 2p and (S2b) its LC-CD chromatogram.

Figure S3. (S3a) HPLC-UV chromatogram of pure separated enantiomer B of compound 2p and (S3b) its LC-CD chromatogram.

Figure S4. Overlay of the whole CD-spectra of the two separated enantiomers of compound $2 p$.

Comparison of the Respective Enantiomeric Forms in the Binding Model

To investigate a possible common enantiomeric preference for binding to BChE by the compounds in the postulated binding mode, the intermolecular interaction scores (obtained from the scoring function DSX $^{[1]}$) and the conformational strain energies were evaluated and compared. The strain energy $\Delta \mathrm{E}$ was obtained as the difference between the force field energy of the binding conformation of the ligand and its minimum conformation in the unbound state. As the n-heptyl chain was irrelevant in the context of this analysis, it was replaced by a methyl group to restrict the number of conformers and simplify the conformational search. To obtain the global energy minimum of the free ligand, a stochastic search was performed in MOE ${ }^{[2]}$ with the MMFF94s force field ${ }^{[3]}$ and a dielectric constant of 4 , using 10,000 iterations and optimization to an rms gradient of $0.01 \mathrm{kcal} /(\mathrm{mol} \cdot \AA)$. A local 10 -step minimization of the binding poses was performed with the Truncated Newton method in MOE using the same force field (MMFF94s). In Table $\mathbf{S} \mathbf{2}$ the obtained $\Delta \mathrm{E}$ values are shown for both enantiomers along with their DSX scores.

Table S2. Comparison of DSX scores and strain energies for the investigated compounds in the postulated BChE binding mode.

R	R-Enantiomer Me "equatorial"		S-Enantiomer Me "axial"	
	DSX Score	$\Delta E[\mathrm{kcal} / \mathrm{mol}]$	DSX Score	$\Delta \mathrm{E}[\mathrm{kcal} / \mathrm{mol}]$
Phe (2a)	-125	4.38	-120	2.37
Thiophenyl (2p)	-110	4.34	-108	3.30
4-F-Ph- (2k)	-125	6.56	-121	2.91
3-Cl-Ph (2c)	-118	7.60	-101	1.78
4-OMe-Ph (2h)	-121	10.70	-127	1.42
3-OMe-Ph (2i)	-127	8.16	-100	3.60
$4-\mathrm{CF}_{3}-\mathrm{Ph}(\mathbf{2 l})$	-113	13.13	-111	2.84
1-Naphthyl (2s)	-129	9.42	-110	6.34
Mean	-121	8.04	-112	3.07

On average, the strain energy of the R-enantiomers is $5 \mathrm{kcal} / \mathrm{mol}$ higher compared to the S enantiomers. In general, this less favorable conformational energy is not counterbalanced by a sufficiently more favorable DSX score. Although a better score is shown by most of the R -
enantiomers, the average difference of 9 score units is not significant enough to assume a compensation by improved intermolecular interactions. In fact, as seen in redocking studies, docking poses of the ligands populating the same cluster (i.e., differing by less than $1.5 \AA$ rmsd) show DSX scores varying over a range of 10 units. Accordingly, based on this model and the more favorable conformational energies, the S-enantiomers appear as the preferred forms for binding to BChE . However, contributions to activity from the R-enantiomers cannot be ruled out, in particular for those compounds where a small difference in the strain energy and a much more favorable (above average) DSX score is observed (i.e., compounds $\mathbf{2 i}$ and 2s).

Sequence Comparison

The pairwise sequence comparison was carried out using the progam Needle with the EBLOSUM62 matrix of EMBOSS v.6.3.1. ${ }^{[4]}$ For comparison, the BChE and AChE sequences with the numbers D3DNN4 and P22303, respectively, were taken from the UniProt databank. ${ }^{[5]}$

```
#=========================================
# Aligned sequences: 2
# 1:P22303_HUMAN
# 2:D3DNN4_HUMAN
# Matrix: EBLOSUM62
# Gap penalty: 10.0
# Extend_penalty: 0.5
#
# Length: 650
# Identity: 316/650 (48.6%)
# Similarity: 428/650 (65.8%)
# Gaps: 43/650 ( 6.6%)
#=========================================
P22303_HUMAN 1 ----------------MRPPQCLLHTP--------------SLASPLLLL- 20
D3DNN4_HUMAN 1 MSVQSNLQAGAAAASCISPKYYMIFTPCKLCHLCCRESEINMHSKVTIIC 50
P22303_HUMAN 21 ---LLW--LLGGGVGAEGREDAELLVTVRGGRLRGIRLKTPGGPVSAFLG 65
    |.| ||...:|....|| ::::..:.|::||:.|...||.|:||||
D3DNN4_HUMAN 51 IRFLFWFLLLCMLIGKSHTED-DIIIATKNGKVRGMNLTVFGGTVTAFLG }9
P22303_HUMAN 66 IPFAEPPMGPRRFLPPEPKQPWSGVVDATTFQSVCYQYVDTLYPGFEGTE 115
    ||:|:||:| . .|| . | : . . || . : : || . : . . | .| .: | . :||| .|:|
D3DNN4_HUMAN 100 IPYAQPPLGRLRFKKPQSLTKWSDIWNATKYANSCCQNIDQSFPGFHGSE 149
P22303_HUMAN 116 MWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWIYGGGFYSGASSLDVYD 165
    |||||.:|||||||||||.|.|:|.:.| ||:|||||||.:|.|||.|||
D3DNN4_HUMAN 150 MWNPNTDLSEDCLYLNVWIPAPKPKNAT-VLIWIYGGGFQTGTSSLHVYD 198
P22303_HUMAN 166 GRFLVQAERTVLVSMNYRVGAFGFLALPGSREAPGNVGLLDQRLALQWVQ 215
    |:||.:.||.::|||||||||.|||||||:.|||||:||.||:|||||||
D3DNN4_HUMAN 199 GKFLARVERVIVVSMNYRVGALGFLALPGNPEAPGNMGLFDQQLALQWVQ 248
P22303_HUMAN 216 ENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQSGAPNG 265
    :|:|||||:|.||||||||||||||.:|||||.|..||.||:||||:.|.
D3DNN4_HUMAN 249 KNIAAFGGNPKSVTLFGESAGAASVSLHLLSPGSHSLFTRAILQSGSFNA 298
P22303_HUMAN 266 PWATVGMGEARRRATQLAHLVGCPPGGTGGNDTELVACLRTRPAQVLVNH 315
    |||...:.|||.|...||.|.|| :..|:||::.||| .:..|.::. :
D3DNN4 HUMAN 299 PWAVTSLYEARNRTLNLAKLTGC----SRENETEIIKCLRNKDPQEILLN }34
P22303_HUMAN 316 EWHVLPQESVFRFSFVPVVDGDFLSDTPEALINAGDFHGLQVLVGVVKDE 365
    |..|:|..:....:|.|.||||||:|.|:.|:..|.|...|:||||.|||
D3DNN4_HUMAN 345 EAFVVPYGTPLSVNFGPTVDGDFLTDMPDILLELGQFKKTQILVGVNKDE 394
P22303_HUMAN 366 GSYFLVYGAPGFSKDNESLISRAEFLAGVRVGVPQVSDLAAEAVVLHYTD 415
    |:.|||||||||||||.|:|:| .|| ..|::: ..|.||:...|:::.||||
D3DNN4_HUMAN 395 GTAFLVYGAPGFSKDNNSIITRKEFQEGLKIFFPGVSEFGKESILFHYTD 444
P22303_HUMAN 416 WLHPEDPARLREALSDVVGDHNVVCPVAQLAGRLAAQGARVYAYVFEHRA 465
```

 |:..:.|...||||.|||||:|.:||..:...:.:..|...:.|.||||:
 D3DNN4 HUMAN 445 WVDDQRPENYREALGDVVGDYNFICPALEFTKKFSEWGNNAFFYYFEHRS 494
P22303_HUMAN 466 STLSWPLWMGVPHGYEIEFIFGIPLDPSRNYTAEEKIFAQRLMRYWANFA 515
|.|.||.||||.|||||||:||:||:...|||..|:|.: .: :: .|||||
D3DNN4 HUMAN 495 SKLPWPEWMGVMHGYEIEFVFGLPLERRDNYTKAEEILSRSIVKRWANFA 544
P22303_HUMAN 516 RTGDPNEPRDPKAPQWPPYTAGAQQYVSLDLRPLEVRRGLRAQACAFWNR 565
:.|:|||.:: .:..||.:.:..|:|::|:.....:...||||.|.||..
D3DNN4_HUMAN 545 KYGNPNETQN-NSTSWPVFKSTEQKYLTLNTESTRIMTKLRAQQCRFWTS 593
P22303_HUMAN 566 FLPKLLSATDTLDEAERQWKAEFHRWSSYMVHWKNQFDHY-SKQDRCSDL 614
|.||:|..|..:||||.:|||.||||::||:.|||||:.| ||: .|..|
D3DNN4_HUMAN 594 FFPKVLEMTGNIDEAEWEWKAGFHRWNNYMMDWKNQFNDYTSKKESCVGL 643

Binding Mode of 21

Figure S5. (S5a) Representation of the binding mode of 21 (dark brown)in the R-enantiomeric form when forced to an analogous binding mode as the most active compound $\mathbf{2 p}$. (S 5 b) Representation of the binding mode for the S-enantiomer of 21 (light brown). More clashes with distances below $3 \AA$ are seen between the CF_{3} group and the protein of the R-enantiomer in this rigid binding mode model. This implies that the actual binding mode especially for the R-enantiomer of $\mathbf{2 l}$ is likely to differ from the common binding mode suggested for the other compounds. The contribution of the R-enantiomer of $\mathbf{2 l}$ to the binding might be very low, whereas for the other compounds the R-enantiomeric form of the ligand might have a higher contribution to the activity due to suitable distances from ligand atoms to the protein. Residues of the acyl pocket are shown in green, the oxyanion hole in yellow, the CAS in orange, the choline binding site in turquoise, and parts of the side cavity in pink. Distances (black lines) are shown in italic numbers and are given in \AA.

Additional References

[1] Neudert, G.; Klebe G. DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes. J. Chem. Inf. Model. 2011, 51, 2731-2745.
[2] Molecular Operating Environment (MOE), 2013.0801 and 2014.0901; Chemical Computing Group, 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2011.
[3] Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comp. Chem. 1996, 17, 490-510.
[4] Rice, P.; Longden, I.; Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276-277.
[5] The UniProtConsortium. Activities at the Universal Protein Resource (UniProt).Nucleic Acids Res. 2014, 42, D191-D198.

[^0]: * Values determined at human BChE.

