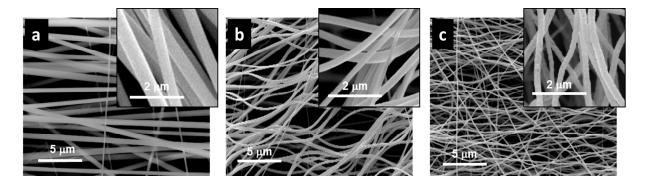
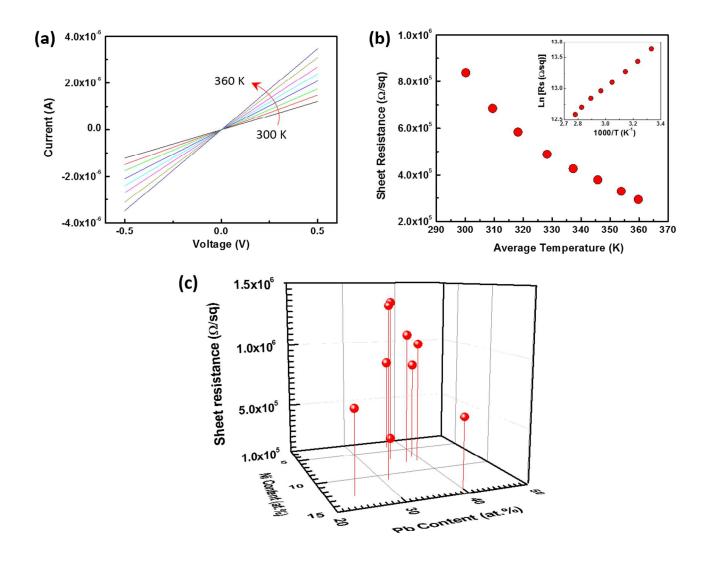
Supplementary Information

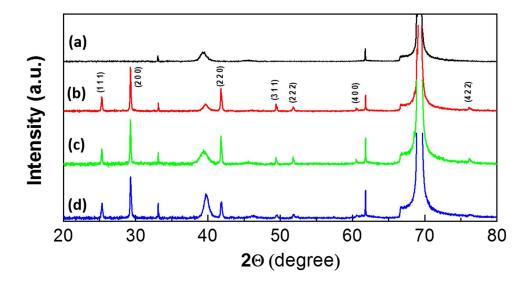
Galvanic Displaced Ultra-long Pb_xSe_yNi_z Hollow Nanofibers with High Thermopower

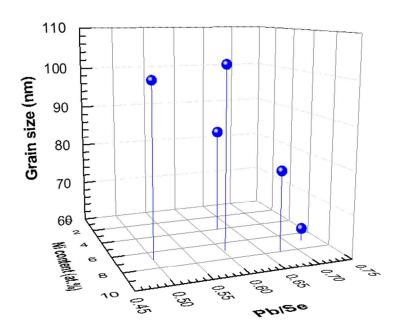

Miluo Zhang¹, Jiwon Kim¹, Seil Kim², Hosik Park¹, Hyunsung Jung³, N.George Ndifor-Angwafor¹, Jaehong Lim⁴, Yongho Choa²,* and Nosang V. Myung¹,*

¹Department of Chemical and Environmental Engineering and Center for Nanoscale Science and Engineering, University of California-Riverside, Riverside, California 92521


²Department of Fine Chemical Engineering/Bionano Technology, Hanyang University, Ansan 426-791, Korea

³Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology, Seoul 153-801, Republic of Korea


⁴Materials Processing Division, Korea Institute of Materials Science, 66 Sangnam-dong, Changwon, 641-010 Korea


Figure S1. SEM images of (a) electrospun PVP/Ni acetate nanofibers, (b) NiO nanofibers, (c) Ni nanofibers.

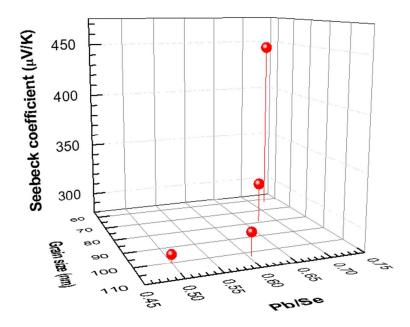

Figure S2. Temperature dependent (a) I-V characterization and (b) sheet resistance of $Pb_{37}Se_{59}Ni_4$ NF mat. (c) 3D plot of Seebeck coefficient of $Pb_xSe_yNi_z$ nanofiber mat at 300 K as a function of Ni and Pb content.

Figure S3. XRD pattern of (a) substrate, (b) Pb₃₁Se₆₂Ni₇, (c) Pb₃₅Se₅₈Ni₇, (d) Pb₃₇Se₅₉Ni₄ hollow nanofiber mats. Substrate peaks are contributed from Si, Pt electrode and sample holder.

Figure S4. 3D plot of Pb_xSe_yNi_z nanofiber mats' grain size as a function of Ni content and the ratio of Pb to Se content.

Figure S5. 3D plot of Pb_xSe_yNi_z nanofiber mats' Seebeck coefficient at 300 K as a function of Ni content and the ratio of Pb to Se content.

Reference:

- 1. Jung, H.; Park, D. Y.; Xiao, F.; Lee, K. H.; Choa, Y. H.; Yoo, B.; Myung, N. V., Electrodeposited Single Crystalline PbTe Nanowires and Their Transport Properties. *J Phys Chem C* **2011**, *115* (7), 2993-2998.
- 2. Wang, H.; Pei, Y. Z.; LaLonde, A. D.; Snyder, G. J., Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe. *Advanced Materials* **2011**, *23* (11), 1366-1370.
- 3. Kishimoto, K.; Koyanagi, T., Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties. *J Appl Phys* **2002**, *92* (5), 2544-2549.