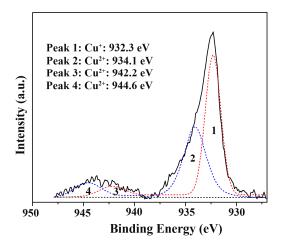
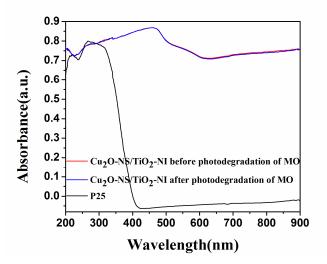
The Synthesis of Cu₂O Nano-spheres Decorated with TiO₂ Nano-islands, their Enhanced Photoactivity and Stability under Visible Light Illumination, and their Post-illumination Catalytic "Memory"


Lingmei Liu¹, Weiyi Yang¹, Qi Li^{1,*}, Shian Gao¹, and Jian Ku Shang^{1, 2}

¹Environment Functional Materials Division Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; ²Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

*Corresponding author: E-mail address: <u>qili@imr.ac.cn</u> (Q. Li)


Phone: +86-24-83978028, Fax: +86-24-23971215.

Postal address: 72 Wenhua Road, Shenyang, Liaoning Province, 110016, P. R. China.

Figure S1. The high resolution XPS scans over Cu $2p_{3/2}$ peak after the photocatalytic degradation of MO.

Figure S1 showed the high resolution XPS scans over Cu $2p_{3/2}$ peak of Cu₂O-NS/TiO₂-NI photocatalyst after its photocatalytic degradation of MO. It could be seen that the Cu $2p_{3/2}$ peak had similar shape before and after the photocatalytic degradation of MO (see Figure 3c of high resolution XPS scans over Cu $2p_{3/2}$ peak of Cu₂O-NS/TiO₂-NI photocatalyst before its photocatalytic degradation of MO in the main manuscript for comparison). The Cu⁺/Cu²⁺ ratio (determined by the ratio of the peak 1 area to peak 2 area) was ~ 1.4 and 1.2 before and after the photocatalytic degradation of MO, respectively. So the Cu⁺/Cu²⁺ ratio was also similar before and after the photocatalytic degradation of MO. Thus, this XPS analysis result provided a further evidence of our material's stability.

Figure S2. UV-vis light absorbance spectra of the Cu_2O -NS/TiO₂-NI photocatalyst before and after the photocatalytic degradation of MO, compared with that of Degussa P25 TiO₂ nanoparticles.

Figure S2 showed the UV-vis light absorbance spectra of the Cu₂O-NS/TiO₂-NI photocatalyst before and after the photocatalytic degradation of MO, compared with that of Degussa P25 TiO₂ nanoparticles. It is clear that the optical properties of the Cu₂O-NS/TiO₂-NI photocatalyst had no obvious changes before and after the photocatalytic degradation. Thus, it also supported our finding that the Cu₂O-NS/TiO₂-NI composite photocatalyst was stable during the photocatalytic reactions.