Supporting Information

Electron-Deficient Pt₂M₂Pt₂ Hexanuclear Metal Strings (M = Pt, Pd) Supported by Triphosphine Ligands

Eri Goto, Rowshan Ara Begum, Chiaki Ueno, Aya Hosokawa, Chie Yamamoto, Kanako Nakamae, Bunsho Kure, Takayuki Nakajima, Takashi Kajiwara, and Tomoaki Tanase*

Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan

- **Table S1.**Results of DFT calculations on $[Pt_2M_2Pt_2(\mu-dpmp)_2(XyINC)_2](PF_6)_4$ (M = Pt (7),
Pd (8)) and $[Pt_2M_2Pt_2(\mu-H)(\mu-dpmp)_2(XyINC)_2](PF_6)_3$ (M = Pt (2), Pd (3)) and
their model complexes M7, M8, and M2.
- **Table S2.** Crystallographic data of complexes $7 \cdot 3CH_2Cl_2$ and $8 \cdot 5CH_2Cl_2$.
- **Table S3.**Crystallographic data of complexes 14a·6CH₂Cl₂, 15·3.5CH₂Cl₂, and 16·3CH₂Cl₂.
- Figure S1. ${}^{31}P{}^{1}H$ NMR spectra (121 MHz) of (a) 7 (M = Pt) in acetone-d₆ and (b) 8 (M = Pd) in CD₂Cl₂ at room temperature and the assignments.
- Figure S2 ESI mass spectra of (a) 7 (M = Pt) and (b) 8 (M = Pd) in acetone at room temperature
- Figure S3. Perspective drawings for the cluster cation of (a) 8A and (b) 8B with atomic numbering schemes.
- Figure S4. (a) DFT optimized structure of the model complex $[Pt_6(C_2H_9P_3)_4(CH_3NC)_2]^{4+}$ (M7) and the results of natural population analyses. (b) Diagrams of the essential σ -MOs with B3LYP/LANL2DZ level.
- Figure S5. DFT optimized structure of the model complex $[Pt_2Pd_2Pt_2(C_2H_9P_3)_4(CH_3NC)_2]^{4+}$ (M8) and the results of natural population analyses. (b) Diagrams of the essential σ -MOs with B3LYP/LANL2DZ level.

- Figure S6. (a) Results of single point DFT calculation by B3LYP/LANL2DZ methods for the crystal structure of $[Pt_6(\mu-dpmp)_4(XyINC)_2]^{4+}$ (7), and (b) diagrams of the essential σ -MOs.
- Figure S7. (a) Results of single point DFT calculation by B3LYP/LANL2DZ methods for the crystal structure of [Pt₂Pd₂Pt₂(μ–dpmp)₄(XylNC)₂]⁴⁺ (8), and (b) diagrams of the essential σ–MOs.
- **Figure S8.** UV-vis spectral changes for the titrations of (a) 7 and (b) 8 with successive addition of 0.1 equiv. of XyINC in dichloromethane.
- Figure S9. UV-vis spectra of 10 and 11 in dichloromethane.
- Figure S10. ³¹P{¹H} NMR spectra (121 MHz) of (a) 10, (b) 11, and (c) 12a in CD_2Cl_2 at room temperature.
- Figure S11. ESI mass spectra of (a) 10, (b) 11, (c) 12a, and (d) 13a in CH₂Cl₂ at room temperature.
- Figure S12. (a) UV-vis spectral changes in dichloromethane for the titration of 7 by successive addition of dppe (portions of 0.2 equiv.) up to a total amount of 2.0 equivs. (b) The spectral changes with adding dppe from 0 to 1 equiv. amounts, and (c) those from 1 to 2 equiv. amounts.
- Figure S13. Perspective view for the complex cation of 14a with atomic numbering schemes.
- **Figure S14.** ${}^{31}P{}^{1}H$ NMR spectra for the Au-bound PPh₃ peaks of (a) **15** and (b) **16**.
- Figure S15. ESI mass spectra of (a) 15 and (b) 16 in CH_2Cl_2 at room temperature
- Figure S16. A perspective view for the complex cation of 16 with atomic numbering schemes.

Table S1. Results of DFT Calculations on $[Pt_2M_2Pt_2(\mu-dpmp)_2(XyINC)_2](PF_6)_4$ (M = Pt (7))	, Pd
---	------

(8)) and $[Pt_2M_2Pt_2(\mu-H)(\mu-dpmp)_2(XyINC)_2](PF_6)_3$ (M = Pt (2), Pd (3)) and Their Model Complexes M7, M8, and M2.^a

Compound	M2 ^b	2 ^b	3 ^b	M7 ^c	M8 ^c	7 °	8 °
Methods ^a	opt ^d	sp ^e	sp ^e	opt ^d	opt ^d	sp ^e	sp ^e
M _{cen}	Pt	Pt	Pd	Pt	Pd	Pt	Pd
Structural Parameters							
av. Ptout-Ptinn, Å	2.798	2.7156	2.7136	2.790	2.769	2.701	2.687
av. Pt _{inn} -M _{cen} , Å	2.858	2.7370	2.7562	2.979	3.023	2.800	2.787
M _{cent} -M _{cent} , Å	3.526	3.3093	3.2514	3.042	3.138	2.823	2.834
av. M _{cen} -H _b , Å	1.763	1.655	1.626	-	-	-	-
av. Pt _{out} -C, Å	2.036	1.968	1.953	2.010	2.004	1.953	1.922
M _{cen} -H _b -M _{cen} , °	178.92	180.00	180.00	-	-	-	-
Natural Charge							
Pt _{out}	-0.47	-0.36	-0.35	-0.32	-0.32	-0.22	-0.20
Pt _{inn}	-0.44	-0.47	-0.48	-0.31	-0.32	-0.46	-0.47
M _{cen}	-0.42	-0.40	-0.25	-0.40	-0.19	-0.57	-0.40
H _b	-0.11	-0.24	-0.25	-	-	-	-
С	+0.35	+0.25	+0.24	+0.35	+0.35	+0.26	+0.25
	<u>C</u> NMe	<u>C</u> NXyl	<u>C</u> NXyl	<u>C</u> NMe	<u>C</u> NMe	<u>C</u> NXyl	<u>C</u> NXyl
Wiberg Bond Indices							
av. Ptout-Ptinn	0.424	0.387	0.376	0.538	0.548	0.467	0.465
av. Pt _{inn} -M _{cen}	0.416	0.343	0.290	0.308	0.275	0.281	0.248
M_{cen} - M_{cen}	0.084	0.112	0.100	0.202	0.144	0.223	0.159
av. M _{cen} -H _b	0.365	0.261	0.240	-	-	-	-
av. Pt _{out} -C	0.781	0.617	0.627	0.778	0.786	0.584	0.624

^aDFT calculations were carried out by *Gaussian03* program package with B3LYP functionals and LANL2DZ basis set. ^b See ref. 10b. ^c This work. ^d Optimization of the structures. ^e Single point SCF calculations on the structure determined by X-ray crystallography.

E. Goto, T.Tanase *et al. Supporting Information*

Compound	$7 \cdot 3 CH_2 Cl_2$	8-5CH ₂ Cl ₂
formula	$C_{149}H_{140}N_2Cl_6-$	$C_{151}H_{144}N_2Cl_{10}$ -
	$F_{24}P_{16}Pt_{6}$	$F_{24}P_{16}Pt_4Pd_2$
formula wt	4293.56	4286.04
cryst. syst	orthorhombic	orthorhombic
space group	$C222_1$	C222 ₁
<i>a</i> , Å	26.364(7)	26.4070(9)
<i>b</i> , Å	40.635(11)	40.5880(13)
<i>c</i> , Å	41.437(10)	41.3526(13)
α , deg	90	90
β , deg	90	90
γ , deg	90	90
<i>V</i> , Å ³	44391(20)	44322(2)
Ζ	8	8
temp, °C	-120	-120
D_{calcd} , g cm ⁻¹	1.285	1.285
μ, mm ⁻¹ (Mo Kα)	3.995	2.956
2θ range, deg	6–55	6–55
R _{int}	0.081	0.058
no. of reflns collected	211560	209415
no. of unique reflns	50423	50468
no. of obsd reflns $(I > 2\sigma(I))$	36375	42759
no. of variables	1837	1866
$R1^a$	0.073	0.089
$wR2^b$	0.222	0.249
GOF	1.021	1.075

Table S2. Crystallographic Data of Complexes 7.3CH₂Cl₂ and 8.5CH₂Cl₂

^{*a*} $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ (for obsd. refs with $I > 2\sigma(I)$). ^{*b*} $wR2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}$ (for all refs).

Compound	$14a \cdot 6CH_2Cl_2$	$15 \cdot 3.5 CH_2 Cl_2$	$16 \cdot 3CH_2Cl_2$
formula	$C_{122}H_{114}Cl_{12}$ -	C _{94.5} H ₈₉ NCl ₈ -	C ₉₄ H ₈₈ NCl ₇ -
	$F_{12}P_{12}Pt_{3}$	$F_{12}P_9Pt_3Au$	$F_{12}P_9Pt_2PdAu$
formula wt	3190.61	2811.35	2680.20
cryst. syst	triclinic	monoclinic	monoclinic
space group	<i>P</i> -1	$P2_1/c$	$P2_1/c$
<i>a</i> , Å	13.203(4)	16.4325(11)	16.2983(17)
<i>b</i> , Å	13.902(5)	23.6825(15)	23.534(2)
<i>c</i> , Å	18.468(6)	27.6089(19)	27.456(3)
α , deg	85.707(9)		
β , deg	69.334(6)	96.145(3)	96.399(5)
γ , deg	85.233(9)		
<i>V</i> , Å ³	3156.9(17)	10682.6(12)	10465.5(18)
Ζ	1	4	4
temp, °C	-120	-120	-120
$D_{\text{calcd}}, \text{g cm}^{-1}$	1.678	1.748	1.701
μ , mm ⁻¹ (Mo K α)	3.773	5.673	4.606
2θ range, deg	6–55	6–55	6–55
R _{int}	0.056	0.065	0.060
no. of reflns collected	29041	55985	57415
no. of unique reflns	13744	23620	23401
no. of obsd reflns $(I > 2\sigma(I))$	9891	14493	14666
no. of variables	737	1253	1208
$R1^a$	0.085	0.081	0.097
$wR2^b$	0.209	0.239	0.265
GOF	1.074	1.093	1.030

 Table S3. Crystallographic Data of Complexes 14a·6CH₂Cl₂, 15·3.5CH₂Cl₂, and 16·3CH₂Cl₂

^{*a*} $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ (for obsd. refs with $I > 2\sigma(I)$). ^{*b*} $wR2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}$ (for all refs).

Figure S1. ³¹P{¹H} NMR spectra (121 MHz) of (a) 7 (M = Pt) in acetone-d₆ and (b) 8 (M = Pd) in CD₂Cl₂ at room temperature and the assignments.

Figure S2. ESI mass spectra of (a) 7 (M = Pt) and (b) 8 (M = Pd) in acetone at room temperature and the observed and simulated spectra for $[Pt_2M(dpmp)_2(XyINC)]^{2+}$ at m/z = 864.635 (7) and 820.107 (8).

Figure S3. Perspective drawings for the cluster cation of (a) **8A** and (b) **8B** with atomic numbering schemes. The Pt, Pd, and P atoms are illustrated with thermal ellipsoids at 40% probability level. The hydrogen atoms are omitted and the C and N atoms are drawn with arbitrary spherical model for clarity. Pt (yellow), Pd (green), P (pink), N (blue), and C (gray).

Figure S4. (a) DFT optimized structure of the model complex $[Pt_6(C_2H_9P_3)_4(CH_3NC)_2]^{4+}$ (**M7**) with B3LYP/LANL2DZ level and the results of natural population analyses. (b) Diagrams of the essential σ -MOs.

Figure S5. DFT optimized structure of the model complex $[Pt_2Pd_2Pt_2(C_2H_9P_3)_4(CH_3NC)_2]^{4+}$ (**M8**) with B3LYP/LANL2DZ level and the results of natural population analyses. (b) Diagrams of the essential σ -MOs.

Figure S6. (a) Results of single point DFT calculation by B3LYP/LANL2DZ methods for the crystal structure of $[Pt_6(\mu-dpmp)_4(XyINC)_2]^{4+}$ (7), and (b) diagrams of the essential σ -MOs.

Figure S7. (a) Results of single point DFT calculation by B3LYP/LANL2DZ methods for the crystal structure of $[Pt_2Pd_2Pt_2(\mu-dpmp)_4(XyINC)_2]^{4+}$ (8), and (b) diagrams of the essential σ -MOs.

Figure S9. UV-vis spectra of 10 and 11 in dichloromethane.

Figure S10. ${}^{31}P{}^{1}H$ NMR spectra (121 MHz) of (a) 10, (b) 11, and (c) 13a in CD₂Cl₂ at room temperature.

Figure S11. ESI mass spectra of (a) 10, (b) 11, (c) 12a, and (d) 13a in CH_2Cl_2 at room temperature.

E. Goto, T.Tanase *et al.* Supporting Information

Figure S12. (a) UV-vis spectral changes in dichloromethane for the titration of 7 by successive addition of dppe (portions of 0.2 equiv.) up to a total amount of 2.0 equivs. (b) The spectral changes with adding dppe from 0 to 1 equiv. amounts, and (c) those from 1 to 2 equiv. amounts.

Figure S13. Perspective view for the complex cation of **14a** with atomic numbering schemes. The Pt and P atoms are illustrated with thermal ellipsoids at 40% probability level. The hydrogen atoms are omitted and the C atoms are drawn with arbitrary spherical model for clarity. Pt (yellow), P (pink), and C (gray).

Figure S14. ³¹P{¹H} NMR spectra for the Au-bound PPh₃ peaks of (a) **15** and (b) **16**. The peaks with asterisk are impurity.

Figure S15. ESI mass spectra of (a) 15 and (b) 16 in CH₂Cl₂ at room temperature.

Figure S16. A perspective view for the complex cation of **16** with atomic numbering schemes. The Au, Pt, Pd, Cl, and P atoms are illustrated with thermal ellipsoids at 40% probability level. The hydrogen atoms are omitted and the C and N atoms are drawn with arbitrary spherical model for clarity. Au (violet), Pt (yellow), Pd (green), Cl (light green), P (pink), N (blue), and C (gray).

