Carbon Nanotube-Templated Synthesis of Covalent Porphyrin Network for Oxygen Reduction Reaction.

Ismail Hijazi,[†] Tiphaine Bourgeteau,[†] Renaud Cornut,[†] Adina Morozan,[†] Arianna Filoramo,[†] Jocelyne Leroy,[†] Vincent Derycke,[†] Bruno Jousselme[†] and Stéphane Campidelli^{*,†}

[†]CEA Saclay, IRAMIS, NIMBE, Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN), F-91191 Gif sur Yvette, France.

Synthesis and representation of the physisorbed MWNT/CoP hybrid.

MWNT/CoP hybrid. A suspension of 15 mg of porphyrin **3** (5,10,15,20-Tetrakis[(trimethylsilyl)ethynyl]porphyrinato Co(II)) and MWNTs (10 mg) in THF (15 ml) were sonicated with sonic bath 160 W max for 35 min (100% for 5 min and then 60% for 30 min). The THF was evaporated with nitrogen stream and the resulting solid was used to prepare the ink as described in the experimental section "*ORR experiments. Sample preparation*"

Estimation of the number of carbon atoms in a 1 nm section of nanotube.

First, we determined by molecular modeling using HyperChem 8.0 software that a tetraethynylporphyrin has an area of 1 nm^2 . So for the estimation of the number of carbon atoms, we assume that one porphyrin occupies an arc of 1 nm of the outer shell on a length of 1 nm of nanotube. The outer diameter is 9.5 nm (average diameter from Nanocyl); by TEM, we estimated that the average number of walls in the nanotubes is 8 (each walls being separated of 0.34 nm). In graphene, 1 nm² contains 40 carbon atoms.

diameter r_n (nm)	Area ^{a} (nm ²)	Nb of carbon
9.50	1	40
9.16	0.96	38
8.82	0.93	37
8.48	0.89	36
8.14	0.85	34
7.80	0.82	33
7.46	0.78	31
7.12	0.75	30

^{*a*}Area = Arc_n·length; with length = 1 nm and Arc_n = $r_n \cdot \theta$. $\theta = 1/9.5 = 0.105$ rad (~6°)

The total carbon represents 280 atoms for 1 porphyrin.

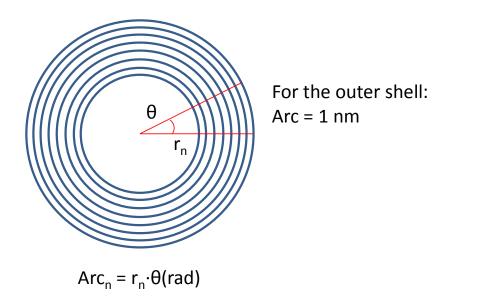
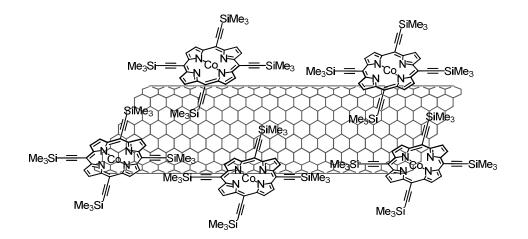
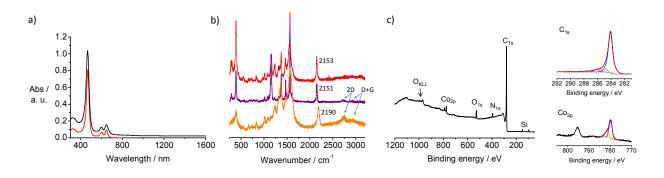
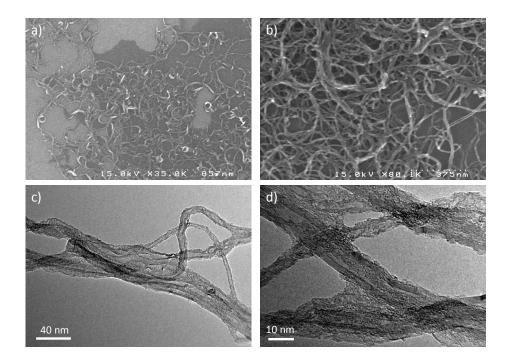
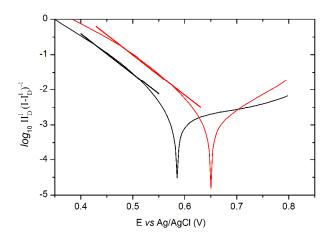


Figure S1. Representation of the geometry of a 9.5 nm diameter MWNT containing 8 walls.


Figure S2. Representation of the physisorbed MWNT/CoP hybrid.

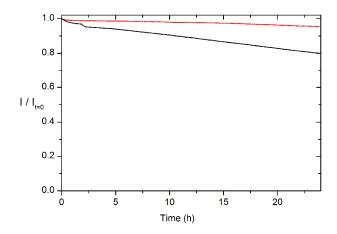

Figure S3. a) Absorption spectra of the physisorbed MWNT/CoP hybrid (in black) and of *meso*-tetra(trimethylsilylethynyl)-porphyrinato cobalt (II) 3 (in red) in NMP. b) Raman spectra of MWNT/CoP hybrid (purple) and of MWNT-CoP **1** (orange) and CoP monomer **3** (red), for comparison. The position of the bands corresponding to the stretching mode of the triple bonds is given in cm⁻¹. c) XPS spectrum of the physisorbed MWNT/CoP hybrid and deconvoluted XPS core level spectra of carbon C_{1s} , and Co_{2p} .

Figure S4. SEM (a-b) and TEM (c-d) micrographs of the physisorbed MWNT/CoP hybrid. SEM images show that upon drying the porphyrins form a puddle on the surface around the nanotubes. Conversely to MWNT-CoP **1**, in the physisorbed hybrid, the porphyrins are not bound to each other around the nanotubes. The TEM images show the presence of a thin and discontinuous layer of porphyrins around the nanotubes.

Figure S5. Mass transfer corrected Tafel plots Log_{10} ($I_DII^{-1}I_D^{-1}$) *vs* potential for predeposited MWNT-CoP **1** (red) and physisorbed MWNT/CoP (black) catalysts on GC. The polarization curves have been recorded at 400 rpm in O₂-saturated 0.5 M H₂SO₄ solution (scan rate = 5 mV.s⁻¹, 25°C). The loading is 155 µg.cm⁻², which corresponds to the same amount (17 nmol) of porphyrins in both samples. I_D^1 = experimental diffusion limited current. The fittings of the linear parts in figure S5 lead to a ratio of 3.6 between the exchange currents of the MWNT-CoP **1** and the MWNT/CoP.

Figure S6. Normalized chronoamperometry recorded for ORR in O₂-saturated 0.5 M H₂SO₄ solution (rotating speed 60rpm, 25°C) on GC with predeposited MWNT-CoP 1 (red line) and physisorbed MWNT/CoP (black line). The loading is 155 μ g.cm⁻². Ew=0.2 V *vs* Ag/AgCl. The recording started after stabilization at 0.2 V *vs* Ag/AgCl for 10 min.

Compound	Binding energy eV	Number of porphyrin ^{<i>a</i>}
	(area CPS·eV)	
MWNT-CoP 1	C ₁ 284.0 (8735)	
	C ₂ 284.8 (3546)	
	C ₃ 286.0 (1991)	
	C ₄ 287.6 (1796)	
	C _{tot} (16068)	
	N _{1s} 398.4 (1312)	1 CoP for 90 C
	Co _{2p3/2} 780.5 (1528)	1 CoP for 130 C
MWNT/CoP	C ₁ 284.1 (13064)	
physisorbed	C ₂ 284.9 (1537)	
	C ₃ 286.0 (960)	
	C ₄ 287.5 (601)	
	C _{tot} (16162)	
40 <u>6 11 6 4</u>	$Co_{2p3/2 \text{ tot}} (1509)$	1 CoP for 135 C

Table S1 Summary of the XPS data for $C_{1s},\,N_{1s}$ and $Co_{2p}.$

^{*a*}Scofield factor used for the calculation: $C_{1s}=1$; $N_{1s}=1.8$; $Co_{2p3/2}=12.62$; for Al K α X-rays; estimated with the ratio (corrected by the Scofield factor) $C_{tot}/0.25N_{1s}$ and $C_{tot}/Co_{2p3/2}$.