Supporting Information

7-Hydroxyflavone Revisited: Spectral, Acid-base Properties and interplay of the Protolytic Forms in the Ground and Excited States.

Illia E. Serdiuk, a,b Andrii S. Varenikov a and Alexander D. Roshal a*

^a Institute of Chemistry, Kharkiv V.N. Karazin National University, Svoboda 4, 61077 Kharkiv, Ukraine

LIST OF CONTENTS:

Item	Page
H ₀ scale correction for the mixture methanol-water-sulphuric acid	2
Figure 1S	2
Table 1S	2
Regression analysis of solvatochromic and solvatofluorochromic effects	3
Table 2S	3
Structure of 7HF complexes in the ground and excited states	4
Figure 2S	4
Calculation of Gibbs energy of hydrogen bond formation ($\Delta G_{f,298}$)	5
Figure 3aS	5
Figure 3bS	6
Calculation Schemes	6

^b Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland

H_0 scale correction for the mixture methanol-water-sulphuric acid

Figure 1S. Correlation between H_0 scales in methanol-water-sulphuric acid and water-sulphuric acid.

Table 1S. Dissociation constants of flavones used as H₀ indicators.

Flavone	7-methoxy	4'-hydroxy	3,4'-dimethoxy	3-hydroxy- 4'-methoxy	3-hydroxy
pK_a	-0.72 ± 0.04; -0.75 [17]	-0.93 ± 0.03	-2.10 ± 0.03	-2.37 ± 0.04	-2.88 [6]

Regression analysis of solvatochromic and solvatofluorochromic effects

Table 2S. Statistical parameters of regression analysis equations.

\overline{N}	Equation	n	R	S
1a	$v_{abs} = -1791.2 \times \pi^* + 34045$	7	0.906	350.85
<i>1b</i>	$v_{abs} = -5208.0 \times Y + 35050$	7	0.880	393.10
2a	$v_{abs} = -3030.0 \times \pi^* + 2456.6 \times \beta + 34259$	14	0.806	672.92
<i>2b</i>	$v_{abs} = -6088.1 \times Y + 3.83 \times B + 35145$	14	0.747	643.04
<i>3a</i>	$v_{\rm fl} = -1023.4 \times \pi^* - 1159.5 \times \beta + 26085$	14	0.810	236.87
<i>3b</i>	$v_{\rm fl} = -3788.6 \times Y + 26330$	14	0.760	250.83
4	$\Delta v_{St} = -2950 \times \beta + 10500$	14	0.750	495.40
5a	$v_{\rm fl}(A_{\rm p}^*) = -1231.3 \times \pi^* + 19090$	9	0.883	156.87
<i>5b</i>	$v_{\rm fl}(A_{\rm p}^*) = -16159 \times Y + 25845$	9	0.947	107.33
6a	$\Delta v_{St}(A_p^*) = 2107.7 \times \pi^* + 13047$	9	0.943	178.69
<i>6b</i>	$\Delta v_{St}(A_p^*) = 13035 \times Y + 6.58 \times B + 6565$	9	0.949	182.20
7a	$v_{\rm fl}(A^*) = -1696.7 \times \pi^* + 19560$	9	0.954	128.07
7b	$v_{\rm fl}(A^*) = -13660 \times Y - 3.80 \times B + 25850$	9	0.937	161.27
8a	$\Delta v_{St}(A^*) = 1473.4 \times \pi^* + 7635$	7	0.917	56.91
8 b	$\Delta v_{St}(A^*) = 5795 \times Y + 5680$	7	0.718	99.53
9a	$\Delta v_{St}(A^*) = 1461 \times \pi^* + 7955$	7	0.901	299.06
9b	$\Delta v_{St}(A^*) = 4683 \times Y + 7025$	7	0.900	300.33
10a	$\Delta v_{St}(A^*) = 378 \times \pi^* + 9860$	7	0.700	85.90
10b	$\Delta v_{St}(A^*) = 1050 \times Y + 9670$	7	0.914	48.64
11	$\Delta v_{St}(A^*) = 2237 \times \pi^* + 7315$	7	0.890	101.90

N – number of the equation in the text of manuscript, n – quantity of solvents, R – correlation coefficient, S – standard error of estimate

Structure of 7HF complexes in the ground and excited states

Figure 2S.

Calculation of Gibbs energy of hydrogen bond formation ($\Delta G_{f,298}$).

7HF – diethyl ether complex

(geometry of complex and model molecules is optimized in the ground and excied states)

Figure 3aS.

7HF – methanol complex

(geometry of the complex and model molecules is optimized in the ground and excited states)

complex 7HF with three methanol molecules $(R = CH_3)$

Figure 3bS.

	-	calculations of $\Delta G_{f,298}$ of hydrogen bond b				
$\Delta G_{f,298}$ of hydrogen bond b in S_0 state	=	$\Delta G_{f,298}$ of complex with 3 methanol molecules in S_0 state	_	$\Delta G_{f,298}$ complex without hydrogen bond b in S_0 state	_	$\Delta G_{f,298}$ of methanol in S_0 state
$\Delta G_{f,298}$ of hydrogen bond b in S_1 state	=	$\Delta G_{f,298}$ of complex with 3 methanol molecules in S_1 state	_	$\Delta G_{f,298}$ complex without hydrogen bond b in S_1 state	_	$\Delta G_{f,298}$ of methanol in S_0 state
		calculations	s of 4	$\Delta G_{f,298}$ of hydrogen bo	ond c	
$\Delta G_{f,298}$ of hydrogen bond c in S_0 state] =	calculations $\Delta G_{f,298}$ of complex with 3 methanol molecules in S_0 state	s of 4	$\Delta G_{f,298}$ of hydrogen book $\Delta G_{f,298}$ complex without hydrogen bond c in S_0 state	ond c	$\Delta G_{f,298}$ of methanol in S_0 state