Supporting Information

Efficient synthesis of 1,5-disubstituted carbohydrazones using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as carbonyl donor

Jun Wen, Chu-Ting Yang, Tao Jiang, Sheng Hu, Tong-Zai Yang, Xiao-Lin Wang*
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, China

Table of contents for supporting information:
General information--1
General procedure for the sulfonylhydrazones--s1
General procedure for the carbonylation of various tosylhydrazone derivatives --------------------s1

Powder X-ray diffraction patterns of the single crystal and gel (red line) of 3a-----------------------s8

General information:

All reagents were purchased from commercial suppliers and used without fuether purification. Solvents were freshly distilled prior to use. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were measured on a Bruker AM400 NMR spectrometer (400 MHz or 100 MHz , respectively) with $d 6-\mathrm{DMSO}$ as solvent. ESI-MS spectral data were recorded on a Finnigan LCQDECA mass spectrometer.

General procedure for the sulfonylhydrazones.

To a rapidly stirred suspension of sulfonylhydrazide (2.5 mmol) in methanol (10 mL) was added aldehyde or ketone (2 mmol) dropwise (added as a methanol solution). When ketone was used, concentrated hydrochloric acid $(0.1 \mathrm{ml})$ was added to reaction medium. After reflux for 1 hour, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. The crystalline precipitate was collected by filtration, washed with a small quantity of methanol, dried in vacuo.

General procedure for the carbonylation of various tosylhydrazone derivatives

A reflux tube equipped with a magnetic stir bar charged with tosylhydrazone (0.5 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.75 mmol), diethyl phosphite (0.5 mmol), DMSO (2 mL), and the reaction vessel was placed in a $60^{\circ} \mathrm{C}$ oil bath. After stirring at this temperature for 10 h , the reaction mixture was then allowed to cool to ambient temperature, and diluted with 20 mL of ethyl acetate, and washed with brine (15
mL), water (15 mL), and then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentrated in vacuo, the crude product was purified by column chromatography (column-layer chromatographic silica gel, $37-54 \mu \mathrm{~m}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=5 / 1$). The identity and purity of the known product was confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and ESI-MS.

General procedure for one-pot carbonylation reactions

A reflux tube equipped with a magnetic stir bar charged with aldehyde (0.5 mmol), tosyl hydrazide (0.6 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.75 \mathrm{mmol})$, diethyl phosphite (0.5 mmol), DMSO (2 mL), and the reaction vessel was placed in a $60^{\circ} \mathrm{C}$ oil bath. After stirring at this temperature for 10 h , the reaction mixture was then allowed to cool to ambient temperature, and diluted with 20 mL of ethyl acetate, and washed with brine (15 mL), water (15 mL), and then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentrated in vacuo, the crude product was purified by column chromatography (column-layer chromatographic silica gel, $37-54 \mu \mathrm{~m}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=5 / 1$). The identity and purity of the known product was confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and ESI-MS.

Investigation of carbonylation reaction using $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{-13} \mathrm{C}$ as the base

A reflux tube equipped with a magnetic stir bar charged with tosylhydrazone 1a $(0.5 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{13} \mathrm{C}(0.75 \mathrm{mmol})$, diethyl phosphite $(0.5 \mathrm{mmol})$, DMSO $(2 \mathrm{~mL})$, and the reaction vessel was placed in a $60^{\circ} \mathrm{C}$ oil bath. After stirring at this temperature for 10 h , the reaction mixture was then allowed to cool to ambient temperature, and diluted with 20 mL of ethyl acetate, and washed with brine (15 mL), water (15 mL), and then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentrated in vacuo, the crude product was purified by column chromatography (column-layer chromatographic silica gel, $37-54 \mu \mathrm{~m}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=5 / 1$). The isolated product was monitored by ${ }^{13} \mathrm{C}-\mathrm{NMR}$.

Figure S1: The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum contrast of carbonylation product using different $\mathrm{K}_{2} \mathrm{CO}_{3}$

Spectroscopic data of products

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6$-DMSO) $\delta=10.72(\mathrm{~s}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 2 \mathrm{H}), 7.75-7.77(\mathrm{~d}, \mathrm{~J}=7.2$, $4 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.5,135.1,129.8,129.1,127.2$. HRMS (ESI): m/z = $289.1055[\mathrm{M}+\mathrm{Na}]^{+}$.

3b
White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.79(\mathrm{~s}, 2 \mathrm{H}), 8.17(\mathrm{~s}, 2 \mathrm{H}), 7.77-7.79(\mathrm{~d}, \mathrm{~J}=8.4$, $4 \mathrm{H}), 7.49-7.51(\mathrm{~d}, \mathrm{~J}=8.4,4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.3,134.2,134.0,130.4$, 129.2, 128.8. HRMS (ESI): m/z $=357.0253[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.80(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~s}, 2 \mathrm{H}), 7.70-7.72(\mathrm{~d}, \mathrm{~J}=8.4$, $4 \mathrm{H}), 7.62-7.64(\mathrm{~d}, \mathrm{~J}=8.4,4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.3,134.3,132.1,129.1$, 123.0. HRMS (ESI): $\mathrm{m} / \mathrm{z}=444.9262[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=10.70(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 2 \mathrm{H}), 7.79-7.83(\mathrm{~m}, 4 \mathrm{H})$, 7.25-7.30 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=164.4,161.9,152.5,131.7,131.6,129.4$, 129.3, 116.2, 116.0. HRMS (ESI): $\mathrm{m} / \mathrm{z}=325.0845[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=11.06(\mathrm{~s}, 2 \mathrm{H}), 8.59(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 2 \mathrm{H})$
7.41-7.53 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=157.1,144.2,137.8,137.0,136.0,134.9$, 132.5, 132.3. HRMS (ESI): $\mathrm{m} / \mathrm{z}=357.0257[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.58(\mathrm{~s}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 2 \mathrm{H}), 7.63-7.65(\mathrm{~d}, \mathrm{~J}=8.0$, $4 \mathrm{H}), 7.24-7.26(\mathrm{~d}, \mathrm{~J}=8.0,4 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.5,139.5$, 132.4, 129.7, 127.2, 21.4. HRMS (ESI): $\mathrm{m} / \mathrm{z}=317.1330[\mathrm{M}+\mathrm{Na}]^{+}$.

colorless oil, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=10.63(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 2 \mathrm{H}), 7.67-7.69(\mathrm{~d}, \mathrm{~J}=8.4$, $4 \mathrm{H}), 7.43-7.45(\mathrm{~d}, \mathrm{~J}=8.4,4 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.5,143.3$, 132.4, 127.0, 125.8, 34.9, 31.4. HRMS (ESI): $\mathrm{m} / \mathrm{z}=401.2282[\mathrm{M}+\mathrm{Na}]^{+}$.

3h
White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.48(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H}), 7.67-7.69(\mathrm{~d}, \mathrm{~J}=8.4$, $4 \mathrm{H}), 6.98-7.01(\mathrm{~d}, \mathrm{~J}=8.8,4 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=160.7,152.5$, 128.7, 127.7, 114.6, 55.7. HRMS (ESI): $\mathrm{m} / \mathrm{z}=349.1243[\mathrm{M}+\mathrm{Na}]^{+}$.

Yellow solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.23(\mathrm{~s}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 2 \mathrm{H}), 7.53-7.55(\mathrm{~d}, \mathrm{~J}=8.8$, $4 \mathrm{H})$, 6.73-6.75 (d, J=8.8, 4H), $2.96(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.6,151.5$, 128.4, 122.7, 112.2, 40.3. HRMS (ESI): $\mathrm{m} / \mathrm{z}=375.1868[\mathrm{M}+\mathrm{Na}]^{+}$.

3j
Yellow solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6$-DMSO) $\delta=11.21(\mathrm{~s}, 2 \mathrm{H}), 8.60(\mathrm{~s}, 2 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H})$, 8.04-8.06 (m, 2H), 7.79-7.83 (m, 2H), 7.62-7.67 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO})$, $\delta=152.1,148.4,138.8,133.9,130.6,129.2,128.4,124.9$. HRMS (ESI): $\mathrm{m} / \mathrm{z}=379.0725[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=11.09(\mathrm{~s}, 2 \mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H}), 7.89-7.93(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6$-DMSO), $\delta=152.1,139.5,133.0,127.8,119.2,111.7 . \operatorname{HRMS}$ (ESI): $\mathrm{m} / \mathrm{z}=$ $339.0971[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=10.36(\mathrm{~s}, 2 \mathrm{H}), 9.80(\mathrm{~s}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 2 \mathrm{H})$, $7.55-7.57(\mathrm{~d}, \mathrm{~J}=8.4,4 \mathrm{H}), 6.80-6.82(\mathrm{~d}, \mathrm{~J}=8.4,4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=159.2$, 152.6, 128.8, 126.2, 115.9. HRMS (ESI): $\mathrm{m} / \mathrm{z}=321.0933[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.88(\mathrm{~s}, 2 \mathrm{H}), 9.01(\mathrm{~s}, 2 \mathrm{H}), 8.59(\mathrm{~s}, 2 \mathrm{H}), 8.14(\mathrm{~s}$, $2 \mathrm{H}), 8.00-8.02(\mathrm{~d}, \mathrm{~J}=8.0,4 \mathrm{H}), 7.58-7.69(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.5$, $133.9,130.8,130.3,130.2,129.2,127.5,126.6,126.1,126.0,123.9 . \operatorname{HRMS}(E S I): \mathrm{m} / \mathrm{z}=$ $389.1340[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=10.87(\mathrm{~s}, 2 \mathrm{H}), 8.38(\mathrm{~s}, 2 \mathrm{H}), 8.11-8.13(\mathrm{~d}, \mathrm{~J}=10.0$, $4 \mathrm{H}), 7.94-8.00(\mathrm{~m}, 6 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.5,133.9$, 133.4, 132.9, 128.7, 128.6, 128.3, 128.2, 127.7, 127.2, 127.1, 123.4. HRMS (ESI): m/z = $389.1348[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=9.86(\mathrm{~s}, 2 \mathrm{H}), 7.80-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.45(\mathrm{~m}$, $6 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.6,138.6,129.3,128.8,126.4,13.8$. HRMS (ESI): m/z=317.1346[M+Na].

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.57(\mathrm{~s}, 2 \mathrm{H}), 7.95-7.96(\mathrm{~d}, \mathrm{~J}=5.6,2 \mathrm{H})$, 7.56-7.58 (d, J=7.6, 4H), 7.37-7.41 (m, 4H), 7.30-7.33 (m, 2H), 6.94-6.96 (d, J=6.8, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.2,137.4,136.5,129.3,129.0,127.2,126.1$. HRMS (ESI): $\mathrm{m} / \mathrm{z}=341.1344[\mathrm{M}+\mathrm{Na}]^{+}$.

Red solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.20(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 4 \mathrm{H}), 4.40(\mathrm{~s}$, $4 \mathrm{H}), 4.22(\mathrm{~s}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6$-DMSO), $\delta=152.2,80.3,70.0,69.5,69.3,67.6,60.2$. HRMS (ESI): $\mathrm{m} / \mathrm{z}=505.0345[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.61(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=1.2,2 \mathrm{H})$, 6.83-6.84 (d, J=3.2, 2H), 6.61 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6$-DMSO), $\delta=152.2,150.2,144.8$, 133.8, 112.5, 112.1. HRMS (ESI): $\mathrm{m} / \mathrm{z}=269.0643[\mathrm{M}+\mathrm{Na}]^{+}$.

5e
White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=10.48(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~s}$, $2 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6$-DMSO), $\delta=152.4,144.9,144.6,123.3,107.9$. HRMS (ESI): $\mathrm{m} / \mathrm{z}=269.0635[\mathrm{M}+\mathrm{Na}]^{+}$.

White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta=10.46(\mathrm{~s}, 2 \mathrm{H}), 7.98(\mathrm{~s}, 2 \mathrm{H}), 6.69-7.70(\mathrm{~d}, \mathrm{~J}=3.2$, $2 \mathrm{H}), 6.22-6.23(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=154.1,152.3,148.6$, 113.9, 108.8, 13.9. HRMS (ESI): $\mathrm{m} / \mathrm{z}=297.0947[\mathrm{M}+\mathrm{Na}]^{+}$.

$5 g$
White solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=10.62(\mathrm{~s}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 6.78-6.79(\mathrm{~d}, \mathrm{~J}=3.2$, $2 \mathrm{H}), 6.54-6.50(\mathrm{~d}, \mathrm{~J}=3.6,2 \mathrm{H}), 4.42(\mathrm{~s}, 4 \mathrm{H}), 3.45-3.50(\mathrm{~m}, 4 \mathrm{H}), 1.11-1.14(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, d 6$-DMSO), $\delta=153.8,152.2,150.0,113.1,111.8,65.3,64.1,15.4 . H R M S$ (ESI): $\mathrm{m} / \mathrm{z}=$ $385.1463[\mathrm{M}+\mathrm{Na}]^{+}$.

Yellow solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6-\mathrm{DMSO}) ~ \delta=10.56(\mathrm{~s}, 2 \mathrm{H}), 8.36(\mathrm{~s}, 2 \mathrm{H}), 7.61-7.63(\mathrm{~d}, \mathrm{~J}=5.2$, $2 \mathrm{H}), 7.37-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.1,139.7$, 138.9, 130.0, 128.4, 128.1. HRMS (ESI): $\mathrm{m} / \mathrm{z}=301.0155[\mathrm{M}+\mathrm{Na}]^{+}$.

$5 i$
Yellow solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6$-DMSO) $\delta=10.53(\mathrm{~s}, 2 \mathrm{H}), 8.20(\mathrm{~s}, 2 \mathrm{H}), 7.81-7.82(\mathrm{~m}, 2 \mathrm{H})$, 7.60-7.63 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=152.5,138.3,127.6,127.0,125.5$. HRMS
(ESI): $\mathrm{m} / \mathrm{z}=301.0187[\mathrm{M}+\mathrm{Na}]^{+}$.

Yellow solid, ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, d 6$-DMSO) $\delta=11.36(\mathrm{~s}, 2 \mathrm{H}), 10.29(\mathrm{~s}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 6.94$ (s, 2H), 6.38 (s, 2H), 6.11-6.12 (d, J=2.8, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, d 6-\mathrm{DMSO}), \delta=179.6,152.6$, 128.0, 121.8, 112.2, 109.4. HRMS (ESI): $\mathrm{m} / \mathrm{z}=267.0938[\mathrm{M}+\mathrm{Na}]^{+}$.

Crystallographic Data of 3a

Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$
formula weight	266.30
temperature/K	296
crystal system	monoclinic
space group	$\mathrm{P} 2 / \mathrm{c}$
$\mathrm{a}(\AA)$	$14.3095(6)$
$\mathrm{b}(\AA)$	$8.5597(4)$
$\mathrm{c}(\AA)$	$17.1468(8)$
$\alpha(\mathrm{deg})$	90
$\beta(\mathrm{deg})$	$97.135(3)$
$\gamma(\mathrm{deg})$	90
$\mathrm{~V}, \AA^{3}$	$2083.96(16)$
Z	6
$\rho, \mathrm{~g} / \mathrm{cm}^{3}$	1.273

SEM image of the xerogel obtained from the gel of 3a in $\mathbf{C H C l}_{3}$

Powder X-ray diffraction patterns of the single crystal and gel (red line) of 3a

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra

$$
\begin{aligned}
& 0^{4 \pi} \min _{\substack{4}}^{4}
\end{aligned}
$$

Ontino

$$
\begin{aligned}
& \text { aro }{ }^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\substack{\infty \\
\sim \\
\sim \\
\sim}}{\sim}
\end{aligned}
$$

 orna

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- |

$$
\begin{aligned}
& \operatorname{can}^{4} \mathrm{C}
\end{aligned}
$$

$\begin{array}{lllllllllllllllllllllllllllll}175 & 170 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & p p m\end{array}$

$$
\begin{aligned}
& \text { wontirna }
\end{aligned}
$$

$$
\operatorname{cog}_{a^{4} y^{14}}^{n_{0}}
$$

$$
\underset{\sim}{\text { y }}
$$

Quny

$$
\operatorname{com}_{5}
$$

