Stereoselectivity of the Honda-Reformatsky reaction in reactions with ethyl bromodifluoroacetate with α-oxygenated sulfinylimines

Clément Q. Fontenelle,[†] Matthew Conroy,[†] Mark Light,[†] Thomas Poisson, *,[‡] Xavier Pannecoucke[‡] and Bruno Linclau*[†]

[†] Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United

Kingdom, and [‡] Normandie University, COBRA, UMR 6014 and FR 3038; University of

Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France.

bruno.linclau@soton.ac.uk; thomas.poisson@insa-rouen.fr

Table of Contents

1.	General	conditions4
2.	Copies	of spectra5
2.1 Synthesis of tert-butyl sulfinyl imines		
	2.1.1	(<i>S</i> _S ,E)- <i>N</i> -(propylidene)-2-methyl-2-propanesulfinamide (3S)
	2.1.2	(<i>S</i> _S ,E)- <i>N</i> -[dodecylidene]-2-methyl-2-propanesulfinamide (4S)6
	2.1.3 (6S)	$(S_{\rm S}, E)$ - N -[2-(Benzyloxy)-2-methylpropylidene]-2-methyl-2-propanesulfinamide 8
	2.1.4 7S)	$(R_{\rm S}, E)$ - N - $[(2S)$ -2-(Benzyloxy)propylidene]-2-methyl-2-propanesulfinamide (<i>ent</i> -9)
	2.1.5 7R)	$(S_{\rm S}, E)$ - N -[(2S)-2-(Benzyloxy)propylidene]-2-methyl-2-propanesulfinamide (<i>ent</i> -10)
	2.1.6 propar	(<i>R</i> _S ,E)- <i>N</i> -[(2 <i>S</i>)-2,3-(isopropylidenedioxy)propylidene]-2-methyl-2- nesulfinamide (8R)
	2.1.7 propar	(<i>S</i> _S ,E)- <i>N</i> -[(2 <i>S</i>)-2,3-(isopropylidenedioxy)propylidene]-2-methyl-2- nesulfinamide (8S)
	2.1.8 propar	$(R_{\rm S}, E)$ - N - $[(2S)$ -2,3-(cyclohexylidenedioxy)propylidene]-2-methyl-2- nesulfinamide (9R)
	2.1.9 propar	(<i>S</i> _S ,E)- <i>N</i> -[(2 <i>S</i>)-2,3-(cyclohexylidenedioxy)propylidene]-2-methyl-2- nesulfinamide (9S)
	2.1.10 methy	(<i>R</i> _S ,E)- <i>N</i> -[(2 <i>R</i> ,3 <i>R</i>)-4-(benzyloxy)-2,3-(cyclohexylidenedioxy)butylidene]-2- l-2-propanesulfinamide (<i>ent</i> -10S)
	2.1.11 methy	(<i>S</i> _S ,E)- <i>N</i> -[(2 <i>R</i> ,3 <i>R</i>)-4-(benzyloxy)-2,3-(cyclohexylidenedioxy)butylidene]-2- l-2-propanesulfinamide (<i>ent</i> -10R)
2	2.2 Refe	ormatsky reaction
	2.2.1	Reaction with 3S : spectra of crude NMR and of the diastereomers 11S 17
	2.2.2	Reaction with 4S : spectra of crude NMR and of the diastereomers 12S
	2.2.3	Reaction with 5S : spectra of crude NMR and of the diastereomers 13S
	2.2.4	Reaction with <i>ent-</i> 7S : spectra of crude NMR and of the diastereomers 15S 28
	2.2.5	Reaction with <i>ent-</i> 7R : spectra of crude NMR and of the diastereomers 15R 32
	2.2.6	Reaction with 8S: spectra of crude NMR and of the diastereomers 16S
	2.2.7	Reaction with 8R: spectra of crude NMR and of the diastereomers 16R
	2.2.8	Reaction with 9S : spectra of crude NMR and of the diastereomers 17S
	2.2.9	Reaction with 9R : spectra of crude NMR and of the diastereomers 17R
	2.2.10	Reaction with <i>ent-10S</i> : spectra of crude NMR and of the diastereomers 18S 51
	2.2.11	Reaction with <i>ent</i> -10R: spectra of crude NMR and of the diastereomers 18R 54
	2.2.12	$(3R,S_S)$ -3- $(t$ -butylsulfinylamino)-2,2-difluoropentanoic acid (19)
3.	X-ray ar	nalysis:60
3	3.1 Crvs	tal data for <i>ul</i> -16S:

3.2	Crystal data for ul-16R:	61
3.3	Crystal data for ul-11S (derivatized as the acid 19):	62

<u>1. General conditions</u>

All air/ moisture sensitive reactions were carried out under an inert atmosphere (Ar), in oven dried glassware. CH₂Cl₂ (from CaH₂), THF (from Na and benzophenone) and MeCN (from CaH₂) were distilled prior to use, and where appropriate, other reagents and solvents were purified by standard techniques. TLC was performed on aluminium-precoated plates coated with silica gel 60 with an F_{254} merck indicator; visualised under UV light (254 nm) and/or by staining with KMnO₄ (10% aq.). Flash column chromatography was performed with Sigma Aldrich 60 silica gel (40-63 nm).

Chemical shifts are reported in δ units using CHCl₃ as an internal standard. The following abbreviations for the multiplicity of the peaks are s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublets of doublets), ddd (doublet of doublets of doublets), ddd (doublet of doublets), t (triplet), q (quartet), qd (quartet of doublets), qt (quartet of triplets), br. s (broad singlet), and m (multiplet).

Fourier-transform infrared (FT-IR) spectra were collected using an ATR accessory using neat samples (solids and liquids). The abbreviations s (strong), m (medium), w (weak) and br (followed by either s, m or w to indicate the strength of a broad peak) are used when reporting the spectra.

Electrospray mass spectra were ran in HPLC methanol or MeCN, labelled m/z (abundance percentage) $[M+X]^{-/+}$. HRMS samples were run on a ESI-TOF MS or a ESI FT-ICR MS spectrometer.

Optical rotations were collected at 589 nm.

2.1.3 (*S*_S,E)-*N*-[2-(Benzyloxy)-2-methylpropylidene]-2-methyl-2-propanesulfinamide (6**S**)

2.1.4 (*R*_S,E)-*N*-[(2*S*)-2-(Benzyloxy)propylidene]-2-methyl-2-propanesulfinamide (*ent*-7S)

2.1.5 (*S*_S,E)-*N*-[(2*S*)-2-(Benzyloxy)propylidene]-2-methyl-2-propanesulfinamide (*ent*-7R)

2.1.6 (R_S ,E)-N-[(2S)-2,3-(isopropylidenedioxy)propylidene]-2-methyl-2-propanesulfinamide (**8R**)

2.1.7 (S_S ,E)-N-[(2S)-2,3-(isopropylidenedioxy)propylidene]-2-methyl-2-propanesulfinamide (8S)

2.1.9 (S_S ,E)-N-[(2S)-2,3-(cyclohexylidenedioxy)propylidene]-2-methyl-2-propanesulfinamide (9S)

OC1112CQF2

2.1.10 (*R*_S,E)-*N*-[(2*R*,3*R*)-4-(benzyloxy)-2,3-(cyclohexylidenedioxy)butylidene]-2-methyl-2-propanesulfinamide (*ent*-10S)

2.1.11 (S_{s} ,E)-N-[(2R,3R)-4-(benzyloxy)-2,3-(cyclohexylidenedioxy)butylidene]-2-methyl-2-propanesulfinamide (*ent*-10R)

2.2 Reformatsky reaction

2.2.1 Reaction with 3S: spectra of crude NMR and of the diastereomers 11S

-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 Chemical Shift (ppm)

Major diastereoisomer: (3*R*,*S*_S)-ethyl-3-(*t*-butylsulfinamino)-2,2-difluoropentanoate (*ul*-11S)

 $\underset{\tiny DC0213CQF1,HESP}{\text{Minor diastereoisomer: (3S,S_S)-ethyl-3-(t-butylsulfinamino)-2,2-diffuoropentanoate (l-11S)}$

2.2.2 Reaction with 4S: spectra of crude NMR and of the diastereomers 12S

Minor diastereoisomer: $(3S,S_S)$ -ethyl-3-(t-butylsulfinamino)-2,2-difluorotetradecanoate (l-12S)

2.2.3 Reaction with 5S: spectra of crude NMR and of the diastereomers 13S

The peaks for both the major and the minor diastereoisomers are shifting comparing the crude mixture (2) and the respective pure diastereoisomers (1 and 5). To ensure that the highlighted peaks in the crude mixture (2) are the right ones, a small amount of the minor diastereoisomer was added to the crude mixture to give spectrum 4. In a second time, a small amount of the major diastereoisomer was added to the previously obtained mixture to give spectrum 3. In both cases, one can see that the peaks whose intensity increases are indeed the highlighted peaks in the crude mixture (2).

Minor diastereoisomer (3*R*,4*S*,*R*_S)-ethyl-4-(benzyloxy)-3-(*t*-butyl difluoropentanoate (*ent-l*-15S)

Major diastereoisomer: (3R,4S,Ss)-ethyl-4-(benzyloxy)-3-(t-butylsulfinamino)-2,2-

Major diastereoisomer: $(3R, 4S, S_S)$ -ethyl-4,5-isopropylidenedioxy-3-(*t*-butylsulfinylamino)-2,2-difluoropentanoate (*ul*-16S)

2.2.7 Reaction with 8R: spectra of crude NMR and of the diastereomers 16R

Major diastereoisomer: $(3S, 4S, R_S)$ -ethyl-4,5-isopropylidenedioxy-3-(*t*-butylsulfinylamino)-2,2-difluoropentanoate (*ul*-16R)

Minor diastereoisomer: (3*R*,4*S*,*R*_S)-ethyl-4,5-isopropylidenedioxy-3-(*t*-butylsulfinylamino)-2,2-difluoropentanoate (*l*-16**R**) *t*-Bu

2.2.8 Reaction with 9S: spectra of crude NMR and of the diastereomers 17S

(3*R*,4*S*,*S*_S)-ethyl-4,5-cyclohexylidenedioxy-3-(*t*-butylsulfinylamino)-2,2-difluoropentanoate (*ul*-17S)

2.2.9 Reaction with 9R: spectra of crude NMR and of the diastereomers 17R

Major diastereoisomer: $(3S,4S,R_S)$ -ethyl-4,5-cyclohexylidenedioxy-3-(*t*-butylsulfinylamino)-2,2-difluoropentanoate (*ul*-17R)

Minor diastereoisomer: $(3R,4S,R_S)$ -ethyl-4,5-cyclohexylidenedioxy-3-(*t*-butylsulfinylamino)-2,2-difluoropentanoate (*l*-17**R**)

2.2.10 Reaction with ent-10S: spectra of crude NMR and of the diastereomers 18S

 $(3S,4R,5R,R_S)$ -Ethyl-[6-(benzyloxy)-3-(*t*-butylsulfinylamino)-4,5-(cyclohexylidenedioxy)-2,2-difluorohexanoate (*ent-ul-18S*)

2.2.11 Reaction with ent-10R: spectra of crude NMR and of the diastereomers 18R

Copies of spectra for 19:

3. X-ray analysis:

3.1 Crystal data for ul-16S:

Formula [C₁₄H₂₅F₂NO₅S].H₂O, colorless, Monoclinic, space group *P*2₁ (n°4), a = 12.221(2) Å, b = 6.0654(11) Å, c = 13.752(2) Å, α = 90.00 °, β = 96.378(3) °, γ = 90.00 °, V = 1013.1(3) Å³, Z = 2, ρ_{calc} = 1.231 g.cm⁻³, F(000) = 400, μ (MoK α) = 0.203 mm⁻¹. 3726 reflections collected, 3486 independent reflections with I > 2 σ (I) (2 θ_{max} = 27.57 °), and 229 parameters were used for the solution of structure. The non-hydrogen atoms were refined anisotropically. R₁ = 0.0497 and wR₂ = 0.1360. GOF = 1.078. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-987550. Copies of data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].

Formula $C_{14}H_{25}F_2NO_5S$, colorless, crystal dimensions $0.210 \times 0.190 \times 0.150 \text{ mm}^3$, Orthorhombic, space group $P2_12_12_1$, a = 8.329(6) Å, b = 9.292(7) Å, c = 23.430(16) Å, $\alpha = \beta = \gamma = 90.00^\circ$, V = 1813(2) Å³, Z = 4, $\rho_{calc} = 1.309 \text{ g cm}^{-3}$, F(000) = 760, $\mu(MoK\alpha) = 0.219 \text{ mm}^{-1}$, T= 100 K. 11848 reflections collected, 4090 independent reflections with I > 2 σ (I), and 219 parameters were used for the solution of structure. The non-hydrogen atoms were refined anisotropically. R₁ = 0.0555 and wR₂ = 0.1230. GOF = 1.096. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-987643. Copies of data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].

3.3 Crystal data for *ul*-11S (derivatized as the acid 19):

ul-11S was hydrolysed to the corresponding carboxylic acid (*3R*,*S*s)-3-(*t*-butylsulfinylamido)-2,2-difluoropentanoic acid (19):

To a round-bottomed flask containing *ul*-11S (36 mg, 0.126 mmol, 1 equiv) $\downarrow_{\text{CF}_2\text{COOH}}^{\text{rBu}}$ in THF/H₂O (1:2, 3 mL) was added LiOH (15.1 mg, 0.63 mmol, 5 equiv) at 0 °C. The resulting solution was stirred at 0 °C for 1 h then acidified with 2M aq. HCl to pH = 2 and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give **19** (31 mg, 0.121 mmol, 96%) as a white solid. Recrystallisation from CHCl₃ afforded crystals suitable for X-ray analysis.

Mp: 126-128 °C. $[\alpha]_D$ +50.8 (c 0.90, CH₃OH). IR (neat) 3275 (w, br), 2969 (w), 1748 (m), 1096 (m), 1002 (s). ¹H NMR (400 MHz, CD₃OD) δ 3.70–3.56 (m, 1H), 1.83 (dqd, ²*J*_{HH}=14.4 Hz, ³*J*_{HH}=7.4, ³*J*_{HH}=3.5 Hz, 1H), 1.65 (ddq, ²*J*_{HH}=14.4 Hz, ³*J*_{HH}=10.2, ³*J*_{HH}=7.4 Hz, 1H), 1.22 (s, 9H), 1.10 (t, ³*J*_{HH}=7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CD₃OD) δ 166.4 (t, ²*J*_{CF}=33.0 Hz), 119.7–113.7 (m), 63.6 (dd, ²*J*_{CF}=26.4, 23.5 Hz), 58.1, 23.4, 22.6 (3C), 11.1 ppm. ¹⁹F NMR (376 MHz, CD₃OD) δ –112.1 (dd, ²*J*_{FF}=258.4 Hz, ³*J*_{HF}=6.1 Hz, 1F), –119.8 (dd, ²*J*_{FF}=258.4 Hz, ³*J*_{HF}=16.5 Hz, 1F) ppm. MS (ESI+) (*m*/*z*) 258 (M+H)⁺. HRMS (MS+) for C₉H₁₇F₂NNaO₃S (M+Na)⁺ calcd 280.0789, found 280.0789.

Crystal structure:

Formula C₉H₁₇F₂NO₃S, colorless, crystal dimensions $0.120 \times 0.070 \times 0.020 \text{ mm}^3$, Monoclinic, space group *P*2₁, a = 5.742(4) Å, b = 17.689(11) Å, c = 6.193(4) Å, a = 90.00 °, β = 100.655(14) °, γ = 90.00 °, V = 618.1(7) Å³, Z = 2, ρ_{calc} = 1.382 g cm⁻³, F(000) = 272, μ (MoKa) = 0.280 mm⁻¹, T= 100 K. 5534 reflections collected, 2056 independent reflections with I > 2 σ (I), and 155 parameters were used for the solution of structure. The non-hydrogen atoms were refined anisotropically. R₁ = 0.0244 and wR₂ = 0.0659. GOF = 1.032. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-987644. Copies of data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].