Supporting Information

for

Enantio- and Diastereoselective Synthesis of

Spiro-Epoxyoxindoles

Amina Boucherif,[‡] Qing-Qing Yang,[‡] Qiang Wang,[‡] Jia-Rong Chen,[‡] Liang-Qiu Lu,^{*‡} and Wen-Jing Xiao^{*‡§}.

[‡] Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China; [§] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), China.

E-mail: wxiao@mail.ccnu.edu.cn; luliangqiu@mail.ccnu.edu.cn

Table of Contents

1.	General Information	1
2.	Materials	1
3.	Details for Condition Optimization	2
4.	Absolute Configuration of Representative Product 3ka	3
5.	Copies of HPLC for Products	4
6.	Copies of ¹ H NMR and ¹³ C NMR Spectra	18
7.	Copies of HRMS for Products	32

1. General Information

Proton and carbon nuclear magnetic resonance (1 H and 13 C NMR) spectra were recorded on 400/600 MHz spectrometers. Chemical shifts (δ) are reported in parts per million (ppm) relative to residual solvent signals (CHCl₃, 7.26 ppm for 1 H NMR, CDCl₃, 77.0 ppm for 13 C NMR). Data are reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet, br = broad signal), coupling constants (Hz). Mass spectra were measured on MS spectrometer (EI) or LC/MS/MS (ESI-MS). HRMS analysis were taken on an analysis instrument. Chromatographic purification of products was accomplished using airforced- flow chromatography. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC. Optical rotations were measured with a polarimeter.

2. Materials

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods.¹ Flash column chromatography was performed using 200-300 mesh silica gel. *N*-methyl isatins **1a-1** were prepared according to literature procedures from commercially available isatins using a methyl protection reaction.² Sulfonium salts **2a-c** were prepared as described by Aggarwal et al.³ from optically active Camphor, which was commercially available and used as received.

References

1 Perrin, D. D. Armarego, W. L. F. Purification of Laboratory Chemicals, 4th ed.; Pergamon Press, Oxford, 1997.

2 Barry M. Trost; Y. Zhang; J. Am. Chem. Soc. 2007, 129, 14548.

3 (a) Aggarwal, V. K.; Hynd, G.; Picoul, W.; Vasse, J. J. Am. Chem. Soc. 2002, 124, 9964. (b) Aggarwal, V. K.; Charmant, J. P. H.; Fuentes, D.; Harvey, J. N.; Hynd, G.; Ohara, D.; Picoul, W.; Robiette, R.; Smith, C.; Vasse, J.; Winn, C. J. Am. Chem. Soc. 2006, 128, 2105, and references therein.

3. Details for Condition Optimization

		+ + Br OMe	O ^{∐_} NEt₂	TMG (2.5 equiv.)	NE	Et ₂
	1a	2a			\ 3aa	
entry	solvent	conc. [M]	t (h)	yield (%) ^b	dr ^c	ee(%) ^d
1	MeCN	0.05	24	92%	> 95:5	74
2	CH_2Cl_2	0.05	24	92%	> 95:5	85
3	CHCl ₃	0.05	24	64%	> 95:5	88
4	THF	0.05	24	95%	> 95:5	90
5	MeOH	0.05	48	43%	> 95:5	78
6	Toluene	0.05	24	99%	> 95:5	89
7	Xylene	0.05	24	99%	> 95:5	89
8	Et ₂ O	0.05	24	99%	> 95:5	91
9	Et ₂ O	0.1	24	99%	> 95:5	90
10	Et ₂ O	0.025	24	99%	> 95:5	91

Table S1. Study of solvent and concentration effect^a

^a Reaction conditions: **1a** (0.15 mmol), **2a** (0.18 mmol), TMG (0.375 mmol), solvent, rt. ^b Yield of isolated product. ^c Determined by ¹H NMR. ^d Determined by chiral HPLC analysis.

Table S2. Study of base effect^a

	$N \rightarrow N$	$2a \xrightarrow{+Br}{O} O$	Base (x equiv Et ₂ O, RT		O NEt ₂ N 3aa	
entry	base	X	yield (%) ^b	dr ^c	ee(%) ^d	
1	TMG	2.5	99%	> 95:5	90	
2	TMG	1.3	80%	> 95:5	90	

3	TMG	1.5	89%	> 95:5	90
4	КОН	2.5	78%	> 95:5	90
5	CS_2CO_3	2.5	98%	> 95:5	90
6	DBU	2.5	99%	> 95:5	90

^a Reaction conditions: **1a** (0.15 mmol), **2a** (0.18 mmol), Base (X equiv.), Et_2O (3 mL), RT. ^b Yield of isolated product. ^c Determined by ¹H NMR. ^d Determined by chiral HPLC analysis.

Table 3. Study of temperature effect^a

0 + N =0 + 1a		Br O +S N OMe		equiv)	N N Saa
entry	Τ [^ο C]	t (h)	yield (%) ^b	dr ^c	$ee(\%)^d$
1	25 °C	24	99%	> 95:5	90
2	0 °C	48	99%	> 95:5	93
3	-10 °C	96	93%	> 95:5	93

^a Reaction conditions: **1a** (0.15 mmol), **2a** (0.18 mmol), DBU (0.375 mmol), Et₂O (3 mL). ^b Yield of isolated product. ^c Determined by ¹H NMR. ^d Determined by chiral HPLC analysis.

4. Absolute Configuration of Representative Product 3ka

Figure 1. Absolute configuration of product 3ka established by X-ray analysis.

5. Copies of HPLC for Products

(3R,3'R)-N,N-Diethyl-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3aa):

(3R,3'R)-N,N-diethyl-5-methoxy-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide(3ba):

#	[min]		[min]	mAU	*s	[mAU]	8
1	8.148	BB	0.2461	705.	59827	39.	53275	5.0599
2	9.269	PB	0.2204	1.323	93e4	919.	28040	94.9401

(3R,3'R)-N,N-diethyl-1,5-dimethyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3ca):

Peak	RetTime	Type	Width	Ar	ea	Heid	ght	Area	
#	[min]		[min]	mAU	*s	[mAU	1	8	
									í.
1	9.425	VV	0.2046	1053.	88757	77.8	30813	3.6432	
2	9.979	VV	0.2200	2.787	40e4	1940.9	0979	96.3568	

(3R,3'R)-N,N-diethyl-5-fluoro-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3da):

(3R,3'R)-5-chloro-N,N-diethyl-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3ea):

Peak RetTime		Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	13.642	PV	0.5967	6770.48926	169.61292	49.9409
2	16.096	VB	0.6196	6786.52344	168.60075	50.0591

Peak	RetTime	Type	pe Width Area Height		Height	Area	
#	[min]		[min]	mAU *s	[mAU]	8	
1	13.459	PB	0.5601	812.35510	22.31594	3.8484	
2	15.342	BB	0.6002	2.02965e4	514.32941	96.1516	

(3R,3'R)-N,N-diethyl-1-methyl-5-nitro-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3fa):

Peak	RetTime	ime Type Width Ar		Area	a Height			Area
#	[min]	200	[min]	mAU *	s	[mAU	1	8
1	13.220	BB	0.3629	3754.49	9536	159.8	32578	50.0439
2	23.541	BB	0.7340	3747.90	649	76.9	98526	49.9561

Peak	RetTime	Type	Width	ith Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU	1	8	
1	12.988	VB	0.3616	7413.	45068	318.	73776	93.6466	
2	23.598	BB	0.7216	502.	96320	10.0	57270	6.3534	

(3R,3'R)-6-chloro-N,N-diethyl-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3ga):

(3R,3'R)-6-bromo-N,N-diethyl-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3ha):

VWD1 A, Wavelength=254 nm (BA149.D) 0 mAU 0 400 -NEt₂ 350 O: 300 -250 -3ia 200 -17.855 150-100 -50 -0 10 12.5 15 17.5 7.5 20 2.5 Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] 8 ---|-----|--------|------|----------| ----| 0.2176 5891.17285 416.11902 49.8476 1 9.104 VB 2 17.859 BB 0.6064 5927.20020 148.65514 50.1524

(3R,3'R)-7-chloro-N,N-diethyl-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3ja):

(3R,3'R)-7-bromo-N,N-diethyl-1-methyl-2-oxospiro[indoline-3,2'-oxirane]-3'-carboxamide (3ka):

VWD1 A, Wavelength=254 nm (BA177.D) mAU 0 С NEt₂ 250 7117 Ô 200 ĊF₃ 150 3la 100 50 0 14 16 6 8 10 12 min Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU 1 8 ---!-----!-- | ------ | ------- | -----------1 1 6.462 BV 0.1419 2615.68652 281.43369 50.2960 2 7.117 VB 0.1739 2584.89673 226.57855 49.7040 VWD1 A, Wavelength=254 nm (BA173.D) mAU 1400 1200 1000 800 -600 · 400 -200 -7.129 0 10 mi

(3R,3'R)-N,N-diethyl-1-methyl-2-oxo-7-(trifluoromethyl)spiro[indoline-3,2'-oxirane]-3'-carboxamide (3la)

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	mAU *s	[mAU]	8	
1	6.446	VV	0.1448	1.36054e4	1425.85474	96.3487	
2	7.129	VB	0.1803	515.60114	43.57608	3.6513	
2	7.129	VB	0.1803	515.60114	43.57608	3.6513	

(3R,3'R)-1-methyl-3'-(morpholine-4-carbonyl)spiro[indoline-3,2'-oxiran]-2-one (3ac):

Peak	RetTime	Type	Width	Ar	rea	Heid	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	8
1	10.632	PB	0.2819	5221.	28076	281.5	51251	84.9554
2	21.848	BB	0.6150	924.	63037	22.	77097	15.0446

6. Copies of ¹H NMR and ¹³C NMR Spectra

¹H NMR (600 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (100 MHz, CDCl₃) spectrum of 3aa

¹H NMR (600 MHz, CDCl₃) spectrum of 3ba

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ba

¹H NMR (600 MHz, CDCl₃) spectrum of 3ca

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ca

¹H NMR (600 MHz, CDCl₃) spectrum of 3da

¹³C NMR (100 MHz, CDCl₃) spectrum of 3da

¹H NMR (600 MHz, CDCl₃) spectrum of 3ea

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ea

¹H NMR (600 MHz, CDCl₃) spectrum of 3fa

¹³C NMR (100 MHz, CDCl₃) spectrum of 3fa

¹H NMR (600 MHz, CDCl₃) spectrum of 3ga

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ga

¹H NMR (600 MHz, CDCl₃) spectrum of 3ha

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ha

¹H NMR (600 MHz, CDCl₃) spectrum of 3ia

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ia

¹H NMR (600 MHz, CDCl₃) spectrum of 3ja

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ja

¹H NMR (600 MHz, CDCl₃) spectrum of 3ka

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ka

¹H NMR (600 MHz, CDCl₃) spectrum of 3la

¹³C NMR (100 MHz, CDCl₃) spectrum of 3la

¹H NMR (600 MHz, CDCl₃) spectrum of 3ab

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ab

¹H NMR (400 MHz, CDCl₃) spectrum of 3ac

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ac

7. Copies of HRMS for Products

x10 6 +ESI		Collision Energy	Ionization Mode			
x10 6 +ESI		0	ESI			
1-	Scan (0.239-	-0.368 min, 9 Scans) I	=rag=150.0V BA148.d	Subtract		
		554				
0.8		- 1 .				
0.0		586				
0.6			N			
8		1000	803			
0.4		374	11.3			
		Ţ.	22			
0.2		31				
o						
100	150 200 25	50 300 350 400 4	50 500 550 600 6	50 700 750 80	00 850 900 9	950
Peak List		Coun	its vs. Mass-to-Charge	; (11/2)		
m/z	z Abund	Formula	Ion		C	r
100.0763	403949.3	3				
289.1554	1 1070810.2	2 C16 H21 N2 O	3 (M+H)+		0,(
290.1587	1 158554.3	3 C16 H21 N2 O	3 (M+H)+	$\setminus \land$		NEta
311.1374	105200.2	2		$\gamma >$		
577.3032	1 252285				0	
578.3064	1 74778.6	0			N	
594.3297	1 236103.3	3			\	
595.3329	1 70959.9					
599.2852	1 222354.9)			3ca	
600.2884	1 661//					
Formula Calcul	ator Results					
IonFormula	Measur	red Mass Tgt Mas	s Diff (ppm) Scor	ne		
C16 H21 N2 O	3 289	.1554 289.154	7 -2.62 94.7	1		
oro ner ne or						
End Of Repor	:					
End Of Repor	:					
End Of Repor	t					
End Of Repor	:					
End Of Repor	t					
End Of Repor	t					
End Of Repor	t					
End Of Repor	t					
End Of Repor	t					
End Of Repor	;					
End Of Repor						
End Of Repor						

x10 ⁵ +8	ESI Sc	an (0.168-0	.265 min, 7 § Ф	Scans) Frag=	150.0V BA17	6.d Subtra	ract		
8-00	0/0.001		293.131		585.254				
4 -			5.1131						
2-			31						
0-	00 15	0 200 250	300 350	400 450 5 Counts vs.	00 550 600 Mass-to-Cha	650 700 irge (m/z)	0 750 800 85	50 900 950	
Peak List	_	Abund	<u>г</u>		Tan	J- (/		0	
100.0766	z	1100025.9		illiula	1011		0	, J	
293.131	1	1016995.7	C15 H	18 F N2 O3	(M+H)+	-	Ĭ		F 4
294.1343	1	134483.1	C15 H:	18 F N2 O3	(M+H)+	F~	\checkmark	V. N	Et ₂
315.1131		171895.7						ĺ∕ ≓ O	
585.2543	1	889360.2						uí –	
586.2575	1	262501.6					· ·	Ň	
602.2809	1	608126.7						1	
607 2363	1	769032.1							
608,2395	1	224540.2					20	10	
		Baardha					30	la	
ormula Ca IonFo	rmula	or Results Mea	sured Mass	Tgt Mass	Diff (ppm) Score	T		
C15 H18	F N2 O	3	293.131	293.1296	-4.95	88.79]		
C23	H17		293.131	293.1325	4.91	73.45]		

Fragment 1	tor Vol 50	tage i	Collision Energy	Ioni	zation Mode ESI				
×10 5 +E	SI Sci	an (0.104-0.1	69 min, 5 Sca	ns) Frag=1	50.0V BA152	2.d Subtrac			
175 15			88						
1.75			0 1 .						
1.5 8			309			8			
1.25			-			.17			
1			228			639			
0.75			1.08			1			
0.5			18			1			
0.25									
10	0 15	200 250	300 350 400 C	0 450 50 Counts vs. I	0 550 600 Mass-to-Chai	650 700 rge (m/z)	750 800	850 90	0 950
100 m/z	2 15	200 250 Abund	300 350 400 C	0 450 50 Counts vs. I	0 550 600 Mass-to-Char	650 700 rge (m/z)	750 800	850 90	0 950
100 eak List <u>m/z</u> 100.0764	2 150	200 250 Abund 238432	300 350 400 C	0 450 50 Counts vs. I ula	0 550 600 Mass-to-Char	650 700 rge (m/z)	750 800	850 90	0 950 O
100 m/z 100.0764 309.1008	2 150 2 1	200 250 Abund 238432 194076.7	300 350 400 C Formu C15 H18 C	0 450 50 Counts vs. I ula I N2 03	0 550 600 Mass-to-Char Ion (M+H)+	650 700 rge (m/z)	750 800	850 900 O	0 950
100 m/z 100.0764 309.1008 310.1039	2 150 2 1 1	200 250 Abund 238432 194076.7 22772.3	300 350 400 C Form C15 H18 C C15 H18 C	0 450 50 Counts vs. I ula I N2 03 I N2 03	0 550 600 Mass-to-Chai Ion (M+H)+ (M+H)+	650 700 rge (m/z)	750 800	850 900 O	0 950
100 m/z 100.0764 309.1008 310.1039 311.0983 321.0828	2 150 2 1 1 1 1	200 250 Abund 238432 194076.7 22772.3 53252.1 29992 2	300 350 400 CI5 H18 C C15 H18 C C15 H18 C C15 H18 C	0 450 50 counts vs. I ula N2 03 N2 03 N2 03	0 550 600 Mass-to-Char (M+H)+ (M+H)+ (M+H)+	650 700 rge (m/z)	750 800	850 900 O	0 950
100 eak List m/z 100.0764 309.1008 310.1039 311.0983 331.0828 617.1938	2 150 1 1 1 1	Abund 238432 194076.7 22772.3 53252.1 38838.3 25824 6	300 350 400 Formu C15 H18 C C15 H18 C C15 H18 C C15 H18 C	0 450 50 counts vs. I ula N2 03 N2 03 N2 03	0 550 600 Mass-to-Chai (M+H)+ (M+H)+ (M+H)+	650 700 rge (m/z)	750 800	850 90	0 950 O NEt ₂
100 aak List <u>m/z</u> 100.0764 309.1008 310.1039 311.0983 331.0828 617.1938 634.2204	2 150 2 1 1 1 1 1	Abund 238432 194076.7 22772.3 53252.1 38838.3 25824.6 60870	300 350 400 Form C15 H18 C C15 H18 C C15 H18 C	0 450 50 Counts vs. I ula N2 03 N2 03 N2 03	0 550 600 Mass-to-Char (M+H)+ (M+H)+ (M+H)+	650 700 rge (m/z)	750 800	850 90 0	0 950 O NEt ₂
100 ak List m/z 100.0764 309.1008 310.1039 311.0983 331.0828 617.1938 634.2204 636.2185	2 150 2 1 1 1 1 1 1 1 1	Abund 238432 194076.7 22772.3 53252.1 38838.3 25824.6 60870 38783.2	300 350 400 Form C15 H18 C C15 H18 C C15 H18 C	0 450 50 counts vs. I ula N2 03 N2 03 N2 03	0 550 600 Mass-to-Char (M+H)+ (M+H)+ (M+H)+	650 700 rge (m/z)	750 800	850 90	0 950 O NEt ₂
100 ak List m/z 100.0764 309.1008 310.1039 311.0983 331.0828 617.1938 634.2204 636.2185 639.176	2 150 2 1 1 1 1 1 1 1 1 1 1	Abund 238432 194076.7 22772.3 53252.1 38838.3 25824.6 60870 38783.2 79859	300 350 400 C Form C15 H18 C C15 H18 C C15 H18 C	0 450 50 Counts vs. I ula N2 03 N2 03 N2 03	0 550 600 Mass-to-Char (M+H)+ (M+H)+ (M+H)+	650 700 rge (m/z)	750 800	850 90	0 950 O NEt ₂
100 eak List <u>m/z</u> 100.0764 309.1008 310.1039 311.0983 331.0828 617.1938 634.2204 636.2185 639.176 641.1737	2 150 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 238432 194076.7 22772.3 53252.1 38838.3 25824.6 60870 38783.2 79859 51613.6	300 350 40 Formu C15 H18 C C15 H18 C C15 H18 C	0 450 50 counts vs. 1 N2 03 N2 03 N2 03 N2 03	0 550 600 Mass-to-Chai (M+H)+ (M+H)+ (M+H)+	650 700 ge (m/2)	750 800	0 0 N 3ga	0 950 O NEt ₂
100 sak List m/z 100.0764 309.1008 310.1039 311.0983 331.0828 617.1938 634.2204 636.2185 639.176 641.1737	2 150 1 1 1 1 1 1 1 1 1 1	Abund 238432 194076.7 22772.3 53252.1 38838.3 25824.6 60870 38783.2 79859 51613.6	300 350 400 Formu C15 H18 C C15 H18 C C15 H18 C	0 450 50 counts vs. I II N2 03 N2 03 N2 03	0 550 600 Mass-to-Char (M+H)+ (M+H)+ (M+H)+	650 700 rge (m/2)	750 800	0 N 3ga	0 950 O NEt ₂
100 aak List m/z 100.0764 309.1008 310.1039 311.0983 331.0828 617.1938 634.2204 636.2185 639.176 641.1737 rmula Calu IonFort	2 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 238432 194076.7 22772.3 53252.1 38838.3 25824.6 60870 38783.2 79859 51613.6 r Results	300 350 40 Formu C15 H18 C C15 H18 C C15 H18 C C15 H18 C	0 450 50 counts vs. I IN2 03 IN2 03 IN2 03 IN2 03	0 550 600 Mass-to-Chai (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+	650 700 rge (m/z)	750 800	0 N 3ga	0 950 O NEt ₂ O

Agilent Technologies

Page 1 of 1

Printed at: 3:35 PM on: 11/30/2013

Data Filename Sample Name User Name Acquired Time Instrument Agilent Technologies 6224 TOF LC/MS

BA150.d BA150 2013-7-2 4:26:49 PM

User Spectra

Fear List				
m/z	Z	Abund	Formula	Ion
100.0764		654172		
353.0506	1	484564.9	C15 H18 Br N2 O3	(M+H)+
355.0487	1	478998	C15 H18 Br N2 O3	(M+H)+
707.0918	1	139177.7		
722.1202	1	141129.8		
724.1183	1	331119		
726.1169	1	155355.5		
727.0833		105515.4		
729.0738	1	266800.6		
731 0726	1	121722.8		

3ha

ormula Calculator Results						
IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score		
C15 H18 Br N2 O3	353.0506	353.0495	-3.13	90.43		

--- End Of Report ---

Agilent Technologies Page 1 of 1 Printed at: 3:53 PM on: 11/30/2013

Data Filename Sample Name User Name Acquired Time Instrument Agilent Technologies 6224 TOF LC/MS

BA135 2013-7-2 4:17:34 PM

BA135.d

User Spectra

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z)

Peak List							
m/z	z	Abund	Formula	Ion			
100.0762		532544.6					
353.0502	1	437669.8	C15 H18 Br N2 O3	(M+H)+			
355.0483	1	429076.6	C15 H18 Br N2 O3	(M+H)+			
707.0908	1	269067.2					
709.0896	1	124711					
722.1191	1	202321.3					
724.1174	1	466676.9					
725.1202	1	128373.4					
726.116	1	223146					
729.0728	1	164418.7					

3ka

Formula Calculator Re	Formula Calculator Results						
IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score			
C15 H18 Br N2 O3	353.0502	353.0495	-1.75	92.54			

---- End Of Report ----

Agilent Technologies Page 1 of 1 Printed at: 2:58 PM on: 11/30/2013

Data Filename Sample Name User Name Acquired Time Instrument Agilent Technologies 6224 TOF LC/MS

BA177.d Unavailable Unavailable Unavailable

User Spectra

Frag	mentor Voltage 150	Collision Energy 0	Ionization Mode ESI		
x10 ⁵	+ESI Scan (0.13	ا (35-0.183 min, 4 Scans)	Frag=150.0V BA177.0	d Subtract	
7-	.0764	1271		26	
6-	100	343		5.247	
5- 4-				89	
3-		1097			
2- 1-		365.			
0					

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z)

Peak	List
	1

m/z	Z	Abund	Formula	Ion
100.0764		788661.4		
343.1277	1	838479.9	C16 H18 F3 N2 O3	(M+H)+
344.131	1	120262.6	C16 H18 F3 N2 O3	(M+H)+
365.1097		100931.1		
685.2476	1	431358.5		
686.2508	1	133469.2		
702.2741	1	174963.3		
703.2773	1	50926.1		
707.2297	1	409489.6		
708.2328	1	125239.6		

Formula Calculator Results							
IonFormula	Measured Mass	Tgt Mass	Diff (ppm)	Score			
C16 H18 F3 N2 O3	343.1277	343.1264	-3.72	91.18			
C18 H19 N2 O5	343.1277	343.1288	3.42	87.37			
C24 H17 F2	343.1277	343.1293	4.7	73.46			

---- End Of Report ----

Agilent Technologies

Page 1 of 1

Printed at: 3:57 PM on: 11/30/2013

