Supporting Information

For

Copper-catalyzed regioselective formation of tri- and tetra-substituted vinylboronates in air

Bidal ,Y. D.; Lazreg, F; Cazin, C. S. J.

Contents

1. Synthesis of starting materials. .. S3
1.1. Generalities .. S3
1.2. Synthesis of internal alkynes 5-9... S3
1.2.1 Preparation of 5 ... 54
1.2.2 Preparation of 7 ...S4
1.2.3. Preparation of $\mathbf{8}$.. S5
1.2.4. Preparation of 9 ... S6
1.2.5. Preparation of 6 .. S6
2. General procedure for the β-hydroboration of internal alkynes.....................................S7
2.1. Procedure for Table 1. .. S7

Optimization of reaction conditions..S7
2.2. General procedure for Table 2. ... S11
2.3. General procedure for Scheme 2. ..S11
3. General procedure for the carboboration of internal alkynes S15
3.1. General procedure for Table 3. ...S15
3.2. General procedure for Scheme 4...S16
4. General procedure for α-hydroboration of internal alkynes ... S21
4.1. General procedure for Table 4. ... S21
4.2. General procedure for Table 5. .. S21
4.3. General procedure for Scheme 6...S22
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ... S27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of products 1a-9a... S27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of products $\mathbf{1 b} \mathbf{b} \mathbf{9 b}, \mathbf{8 d}$ and $\mathbf{8 f}$. S31

6. References... S43

1. Synthesis of starting materials.

1.1. Generalities

Reactions were performed in air (unless otherwise stated) and solvents were dispensed from a solvent purification system. Bis-(pinacolato)diboron was used as received. Pinacolborane was used as received and stored at $-20^{\circ} \mathrm{C}$ under argon. NHC-Cu complexes ${ }^{[1]}$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ${ }^{[2]}$ were synthesized according to published procedures. Internal alkynes were used as received or prepared according to literature procedures. ${ }^{[3] 1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AVANCE 400 Ultrashield spectrometer or on a Bruker AVANCE 300 spectrometer using the residual solvent peak as reference $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right)$ at 298 K . Gas chromatography (GC) analyses were performed on an Agilent 7890A apparatus equipped with a flame ionization detector and a (5\%-Phenyl)-methylpolysiloxane column ($30 \mathrm{~m}, 320 \mu \mathrm{~m}$, film: $0.25 \mu \mathrm{~m}$). Flash chromatography was performed on silica gel $60 \AA$ pore diameter and $40-63 \mu \mathrm{~m}$ particle size. Elemental analyses were performed at London Metropolitan University Service 166-220 Holloway Road, London, N7 8DB. Mass spectroscopy was performed by the EPSRC National Mass Spectrometry Service Centre at Swansea University, Grove Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.

1.2. Synthesis of internal alkynes 5-9

$\left[\mathrm{Pd}(\mathrm{Cl})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was synthesized according to a published procedure. ${ }^{[2]}$ Alkynes 5, 7, 8, 9 were synthesised according to a general procedure shown below. $\mathbf{6}$ was synthesised according to a similar method of the literature. ${ }^{[3]}$

A Schlenk flask was charged with THF (20 mL), triethylamine (10 mL), aryl iodide, alkyne, $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and CuI . The reaction mixture was stirred overnight at the indicated temperature, allowed to cool to rt and quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$. The solution was concentrated in vacuo and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added. After filtration, the filtrate was washed with $1 \mathrm{NHCl}_{(\mathrm{aq} .)}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$.

1.2.1 Preparation of $\mathbf{5}$

5
$\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](50.0 \mathrm{mg}, 0.070 \mathrm{mmol}), \mathrm{CuI}(13.5 \mathrm{mg}, 0.070 \mathrm{mmol}), 1$-bromo-4-iodobenzene $(4.0 \mathrm{~g}, 14.0 \mathrm{mmol})$, 1-hexyne ($1.8 \mathrm{~mL}, 15.4 \mathrm{mmol}, 1.1$ equiv.) were charged in a Schlenk flask and stirred at RT for 48 h .

Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/ethyl acetate $\left.10: 1\right)$ afforded 1.6 g of the title compound 5 (48\%) as a yellowish oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=7.35\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.20\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $2.35\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59-1.49$ $\left.\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48-1.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})_{2}\right), 0.91\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=133.0$ (s, CH phenyl), 131.4 (s, CH phenyl), 123.2 ($\mathrm{s}, C^{I V}$ phenyl), $121.6\left(\mathrm{~s}, C^{I V}\right.$ phenyl), $91.7\left(\mathrm{~s}, C^{I V}\right), 79.7\left(\mathrm{~s}, C^{I V}\right), 30.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $22.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 19.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 13.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

These data were compared and found similar to literature values. ${ }^{[3]}$

1.2.2 Preparation of 7

7
$\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](50.0 \mathrm{mg}, 0.070 \mathrm{mmol}), \mathrm{CuI}(13.5 \mathrm{mg}, 0.070 \mathrm{mmol})$, 3-iodopyridine $(3.0 \mathrm{~g}$, 14.6 mmol), 1-hexyne ($2.0 \mathrm{~mL}, 17.4 \mathrm{mmol}, 1.2$ equiv.) were charged in a Schlenk flask and stirred at $50^{\circ} \mathrm{C}$ for 24 h .

Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane) afforded 2.1 g of the title compound $7(90 \%)$ as a dark orange oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}$): $\delta=8.56$ (br. s, $1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}$), $8.42-8.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$ Ar), $7.60-7.58\left(\mathrm{dt},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}\right), 7.14-7.10(\mathrm{dd}$,
$\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}\right), 2.35\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.56-1.36(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH} 2), 0.88\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 9 8} \mathbf{~ K}$): $\delta=152.3$ ($\mathrm{s}, \mathrm{CH} \mathrm{Ar}$), 147.9 (s, CH Ar), 138.3 (s , $C \mathrm{H} \mathrm{Ar}), 122.9$ ($\mathrm{s}, C \mathrm{H} \mathrm{Ar}$), 121.2 ($\mathrm{s}, C^{I V} \mathrm{Ar}$), 94.1 ($\mathrm{s}, C^{I V}$), 77.3 ($\mathrm{s}, C^{I V), ~} 30.6$ ($\mathrm{s}, \mathrm{CH}_{2}$), $22.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 19.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 13.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

These data were compared and found similar to literature values. ${ }^{[3]}$

1.2.3. Preparation of $\mathbf{8}$

$\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](50.0 \mathrm{mg}, 0.070 \mathrm{mmol}), \mathrm{CuI}(13.5 \mathrm{mg}, 0.070 \mathrm{mmol})$, 4-iodo-methylbenzoate $(4.0 \mathrm{~g}, 15.3 \mathrm{mmol})$, cyclohexylacetylene ($2.4 \mathrm{~mL}, 18.3 \mathrm{mmol}, 1.2$ equiv.) were charged in a Schlenk flask and stirred at $50^{\circ} \mathrm{C}$ for 24 h .

Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/ethyl acetate $\left.10: 1\right)$ afforded 3.5 g of the title compound 8 (94 \%) as an orange solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=7.98-7.92\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), 7.48-7.42 (d, ${ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ phenyl), $\left.3.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})_{3}\right), 2.66-2.55(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 1.93-1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.81-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63-1.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.43-1.30(m, 3H, CH2).
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8} \mathbf{K}$): $\delta=166.8$ ($\mathrm{s}, C^{I V}$ carbonyl), $131.6(\mathrm{~s}, \mathrm{CH}$ phenyl), 129.5 (s, CH phenyl), 129.1 ($\mathrm{s}, C^{I V}$ phenyl), 128.8 ($\mathrm{s}, C^{I V}$ phenyl), 98.0 ($\mathrm{s}, C^{I V}$), 80.2 ($\mathrm{s}, C^{I V}$), $52.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 32.6(\mathrm{~s}, \mathrm{CH}), 29.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 26.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$.

These data were compared and found similar to literature values. ${ }^{[3]}$

1.2.4. Preparation of $\mathbf{9}$

9
$\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](75.0 \mathrm{mg}, 0.105 \mathrm{mmol}), \mathrm{CuI}(13.5 \mathrm{mg}, 0.070 \mathrm{mmol})$, 2-iodo-thiophene (1.55 $\mathrm{mL}, 14.0 \mathrm{mmol}$), 1-hexyne ($1.8 \mathrm{~mL}, 15.4 \mathrm{mmol}, 1.1$ equiv.) were charged in a Schlenk flask and stirred at $50^{\circ} \mathrm{C}$ for 24 h .

Flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane) afforded 2.1 g of the title compound $9(90 \%)$ as a brown liquid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}, 298 \mathbf{K}\right): \delta=7.17-7.16\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.3 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}), 7.12-7.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}), 6.95-6.92\left(\mathrm{dd},{ }^{3} J(\mathrm{H}-\mathrm{H})=5.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}\right), 2.43\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.52-1.43(m,2H, CH2), $0.95\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=131.0$ (s, CH Ar), 126.9 (s, CH Ar), $125.9(\mathrm{~s}, C \mathrm{H} \mathrm{Ar}), 124.4\left(\mathrm{~s}, C^{I V} \mathrm{Ar}\right), 94.6\left(\mathrm{~s}, C^{I V}\right), 73.8\left(\mathrm{~s}, C^{I V}\right), 30.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 22.2\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $19.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 13.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

These data were compared and found similar to literature values. ${ }^{[3]}$

1.2.5. Preparation of $\mathbf{6}$

A Schlenk flask was charged with 3-phenyl-2-propyn-1-amine hydrochloride ($2.0 \mathrm{~g}, 11.9$ mmol), tosylchloride ($2.5 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.1$ equiv.), DMAP ($40.0 \mathrm{mg}, 0.33 \mathrm{mmol}$) and dichloromethane (20 mL). Triethylamine was added dropwise $(5.0 \mathrm{~mL}, 35.7 \mathrm{mmol}, 3.0$ equiv.). The reaction mixture was stirred at room temperature for 14 hours. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(1 \times 20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Flash chromatography (SiO_{2}, pentane/ethyl acetate $8: 2$) afforded 2.0 g of the title compound $\mathbf{6}(59 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=7.81\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.30-7.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.15-7.11\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, CH phenyl), 4.63 (br. s, $1 \mathrm{H}, \mathrm{NH}$), $\left.4.08\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right)_{2}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8} \mathbf{K}\right): \delta=143.9$ ($\mathrm{s}, C^{I V}$ phenyl), 137.0 ($\mathrm{s}, C^{I V}$ phenyl), 131.7 (s, CH phenyl), 129.8 (s, CH phenyl), 128.6 (s, CH phenyl), 128.3 (s, CH phenyl), 127.6 ($\mathrm{s}, C \mathrm{H}$ phenyl), $122.2\left(\mathrm{~s}, C^{I V}\right.$ phenyl), $84.8\left(\mathrm{~s}, C^{I V}\right), 83.3\left(\mathrm{~s}, C^{I V}\right), 33.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $21.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

These data were compared and found similar to literature values. ${ }^{[4]}$

2. General procedure for the $\boldsymbol{\beta}$-hydroboration of internal alkynes.

2.1. Procedure for Table 1.

In a glovebox, a vial was charged with the Cu catalyst, the base (0.2 mmol), bis(pinacolato)diboron ($2.2 \mathrm{mmol}, 0.558 \mathrm{~g}, 1.1$ equiv.), 1-phenyl-1-butyne 1 ($2.0 \mathrm{mmol}, 0.284$ $\mathrm{mL})$, the solvent (2.4 mL) and $\mathrm{MeOH}(0.180 \mathrm{~mL}, 2$ equiv.). At low catalyst loading, a stock solution of Cu was prepared $\left(0.005 \mathrm{mmol}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo before addition of the other reagents. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h under inert atmosphere. The conversion was determined by GC. The volatiles were removed in vacuo and the products were obtained after purification by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR.

Optimization of reaction conditions

Catalyst	Loading (ppm)	Base	Loading $(\mathrm{mol} \%)$	Solvent	Conversion $(\%)$
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	50000	$\mathrm{NaO}^{t} \mathrm{Bu}$	5	THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	20000	$\mathrm{NaO}^{t} \mathrm{Bu}$	2	THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	10000	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	5000	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	1000	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	26
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Methyl THF	30
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	toluene	13

[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DME	20
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{PPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	24
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DCM	22
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Dioxane	29
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DMSO	31
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IPr})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	$i \mathrm{PrOH}$	34
[CuIPr)($\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	/	Methyl THF	11
[CuIPr)($\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	/	Toluene	9
[CuIPr)($\left.\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	/	1	THF	9
[CuIPr)($\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	1	DME	7
[CuIPr)($\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	/	$\mathrm{H}_{2} \mathrm{O}$	3
[CuIPr)($\left.\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	1	1	MTBE	18
[CuIPr)($\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	/	DCM	0
[CuIPr)($\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	1	Dioxane	11
[CuIPr)($\left.\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	1	1	DMSO	2
[CuIPr)($\left.\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	1	1	$i \mathrm{PrOH}$	2
[CuIPr)($\left.\mathrm{I}^{t} \mathrm{Bu}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	1	ethanol	2
$\left.[\mathrm{CuIPr})\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	1	1	Methyl-THF	5
$\left.[\mathrm{CuIPr})\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	/	1	Toluene	6
$[\mathrm{CuIPr})\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	1	THF	4
$\left.[\mathrm{CuIPr})\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	1	1	DME	4
$\left.[\mathrm{CuIPr})\left(\mathrm{P}^{\prime} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	/	1	MTBE	15
[CuIPr)($\left.\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)$]	250	1	1	DCM	0
$\left.[\mathrm{CuIPr})\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	/	/	Dioxane	6
$\left.[\mathrm{CuIPr})\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	1	/	DMSO	0
$\left.[\mathrm{CuIPr})\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\left(\mathrm{BF}_{4}\right)\right]$	250	1	1	$i \mathrm{PrOH}$	3
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{t} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Methyl THF	62
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{\prime} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Toluene	43
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{t} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	55
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{t} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DME	50
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{t} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	42
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{\prime} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DCM	48

$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{t} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Dioxane	67
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{t} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DMSO	12
$\left[\mathrm{Cu}(\mathrm{Cl})\left(\mathrm{I}^{t} \mathrm{Bu}\right)\right]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	i PrOH	46
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Methyl THF	63
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Toluene	57
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	69
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DME	69
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	65
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DCM	76
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Dioxane	74
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DMSO	23
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{ICy})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	i PrOH	70
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Methyl THF	95
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Toluene	95
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	98
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DME	97
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	97
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DCM	90
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Dioxane	96
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DMSO	81
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	i PrOH	96
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Methyl THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Toluene	92
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DME	93
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	96
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DCM	92
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Dioxane	94
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DMSO	80
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	250	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	i PrOH	95
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Methyl THF	99
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Toluene	96

[Cu(Cl)(SIMes)]	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	95
[Cu(Cl)(SIMes)]	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	DME	89
[Cu(Cl)(SIMes)]	125	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	1	MTBE	97
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{SIMes})]$	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Dioxane	97
[Cu(Cl)(SIMes)]	125	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	1	$i \mathrm{PrOH}$	87
[Cu(Cl)(SIMes)]	50	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	1	Methyl THF	69
[Cu(Cl)(SIMes)]	50	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Toluene	89
[Cu(Cl)(SIMes)]	50	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	76
[Cu(Cl)(SIMes)]	50	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	93
[Cu(Cl)(SIMes)]	50	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	dioxane	81
[Cu(Cl)(SIMes)]	50	$\mathrm{KO}^{\prime} \mathrm{Bu}$	1	MTBE	87
[Cu(Cl)(SIMes)]	50	CsOH	1	MTBE	89
[Cu(Cl)(SIMes)]	50	KOH	1	MTBE	93
[Cu(Cl)(SIMes)]	50	NaOH	1	MTBE	95
[Cu(Cl)(SIMes)]	50	NaOMe	1	MTBE	74
[Cu(Cl)(SIMes)]	50	$\mathrm{K}^{t} \mathrm{Am}$	1	MTBE	91
[Cu(Cl)(IMes)]	125	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	1	Methyl THF	98
[Cu(Cl)(IMes)]	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	THF	97
[Cu(Cl)(IMes)]	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	96
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	125	$\mathrm{NaO}^{\prime} \mathrm{Bu}$,	Dioxane	96
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	125	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	$i \mathrm{PrOH}$	91
[Cu(Cl)(IMes)]	50	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	Methyl THF	87
[Cu(Cl)(IMes)]	50	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	I	THF	87
[Cu(Cl)(IMes)]	50	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	MTBE	92
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	50	$\mathrm{NaO}^{t} \mathrm{Bu}$	1	dioxane	80
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	50	$\mathrm{KO}^{\prime} \mathrm{Bu}$	1	MTBE	92
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	50	CsOH	1	MTBE	91
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	50	KOH	1	MTBE	92
[Cu(Cl)(IMes)]	50	NaOH	1	MTBE	96
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	50	NaOMe	1	MTBE	93
[Cu(Cl)(IMes)]	50	$\mathrm{K}^{t} \mathrm{Am}$	1	MTBE	92
[$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	25	NaOH	1	MTBE	36

$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	25	NaOH	2	MTBE	34
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	25	NaOH	5	MTBE	50
$[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$	25	NaOH	10	MTBE	31
$[\mathrm{Cu}(\mathrm{Cl})($ SIMes $)]$	25	NaOH	5	MTBE	43

2.2. General procedure for Table 2.

Catalysts and reagents were stored in air. A vial was charged in air with the Cu catalyst (stock solution 0.005 mmol in 3.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The latter was evaporated in vacuo before addition of the other reagents), the base (0.2 mmol), bis-(pinacolato)diboron ($2.2 \mathrm{mmol}, 0.558 \mathrm{~g}, 1.1$ equiv.), 1-phenyl-1-butyne $\mathbf{1}(2.0 \mathrm{mmol}, 0.284 \mathrm{~mL})$, the solvent $(2.4 \mathrm{~mL})$ and $\mathrm{MeOH}(0.180$ $\mathrm{mL}, 2$ equiv.). The vial was closed with a screw-cap, and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h . The conversion was determined by GC analysis. The volatiles were removed in vacuo and the products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity of the reactions were determined by ${ }^{1} \mathrm{H}$ NMR.
(Z)-4,4,5,5-tetramethyl-2-(1-phenylbut-1-en-2-yl)-1,3,2-dioxaborolane 1a. ${ }^{[5]}$

1a
After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 9:1) 1a was isolated as a colorless oil in 98% yield (0.263 g).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 9 8} \mathbf{K}, \mathbf{T M S}$): $\delta=7.34-7.22$ (m, $5 \mathrm{H}, \mathrm{CH}$ phenyl), 7.20 (br. s, $1 \mathrm{H}, \mathrm{C} H), 2.39\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31(\mathrm{~s}, 12 \mathrm{H}), 1.10\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.6 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}).

2.3. General procedure for Scheme 2.

Catalysts and reagents were stored in air. A vial was charged with $[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$ (stock solution 0.005 mmol in 3.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The latter was removed in vacuo before addition of other reagents), $\mathrm{NaOH}(0.025 \mathrm{mmol}, 1 \mathrm{mg})$, bis-(pinacolato)diboron ($0.55 \mathrm{mmol}, 140 \mathrm{mg}$, 1.1 equiv.), the alkyne (0.5 mmol), CPME (0.6 mL) and $\mathrm{MeOH}(1.0 \mathrm{mmol}, 0.05 \mathrm{~mL})$. The vial was closed with a screw-cap, and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 16 h .

Conversion was determined by GC analysis. The volatiles were removed in vacuo and the products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data were found similar to literature values for $\mathbf{2 a},{ }^{[3]} \mathbf{3 a},{ }^{[6]} \mathbf{4 a},{ }^{[7]} \mathbf{5 a},{ }^{[3]}$ $\mathbf{7 a},{ }^{[3]} \mathbf{8 a},{ }^{[3]}$ and $\mathbf{9 a} \cdot{ }^{[3]}$
(Z)-4-(4,4,5,5-Tetramethyl-2-(1-phenylprop-1-en-2-yl)-1,3,2-dioxaborolane, 2a ${ }^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 15:1) 2a was isolated as a colorless oil in 98% yield $(0.119 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8} \mathbf{~ K}$): $\delta=7.40-7.32$ ($\mathrm{m}, \mathbf{4 H}, \mathbf{C H}$ phenyl), $7.25-7.23$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ phenyl and $\mathrm{C} H), 1.99\left(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32(\mathrm{~s}, 12 \mathrm{H})$.
(Z)-trimethyl-(2-phenyl-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane, 3a ${ }^{[6]}$

3a

After purification $\left(\mathrm{SiO}_{2}\right.$, pentane) 3a was isolated as a colorless solid in 70% yield $(0.105 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=7.39$ (br s, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{C}-\mathrm{Si}\right), 7.32-7.31$ (m, 4H, CH phenyl), $7.23-7.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $1.26(\mathrm{~s}, 12 \mathrm{H}),-0.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right)$.

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 7:3) 4a was isolated as a colorless oil in 90% yield (0.102 g).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$, TMS): $\delta=6.20\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H\right)$, 4.76-4.64 (m, 1H, CH-OH), $2.18\left(\mathrm{q},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.28-1.26(\mathrm{~m}, 15 \mathrm{H})$, $0.98\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.
(Z)-2-(1-(4-bromophenyl)hex-1-en-2-yl)-4,4,5,5-Tetramethyl-1,3,2-dioxaborolane, 5a ${ }^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 20:1) 5a was isolated as yellowish oil in 93 \% yield $(0.170 \mathrm{~g})$.
${ }^{1}$ H NMR ($\mathbf{3 0 0} \mathbf{M H z}$, CDCl $\left._{3}, 298 \mathbf{K}, \mathbf{T M S}\right): \delta=7.45\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.18\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), 7.11 (br. s, $\left.1 \mathrm{H}, \mathrm{C} H\right), 2.33\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.51-1.26(\mathrm{~m}, 16 \mathrm{H}), 0.88\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
(Z)-4-methyl-N-(3-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ally)benzene sulfonamide, $6 a$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 8:2) $\mathbf{6 a}$ was isolated as a colorless solid in 90% yield (0.186 g , mixture of α - and β-products).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{H}_{3}, 298 \mathrm{~K}, \mathbf{T M S}\right): \delta=7.63\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), 7.36-7.28 (m, 4H, CH phenyl), 7.24-7.18 (m, 5H, CH phenyl), $5.33\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{2}\right), 3.96\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} H_{2}-\mathrm{NH}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.26(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8} \mathbf{K}, \mathbf{T M S}\right): \delta=145.8\left(\mathrm{~s}, C H\right.$ phenyl), $143.2\left(\mathrm{~s}, C^{\mathrm{IV}}\right.$ phenyl), 137.2 ($\mathrm{s}, C^{\mathrm{IV}}$ phenyl), 136.2 ($\mathrm{s}, C^{\mathrm{IV}}$ phenyl), 129.6 (s, CH phenyl), 129.2 (s, CH phenyl), 128.5 (s, CH phenyl), 128.3 (s, $C \mathrm{H}-\mathrm{CH}_{2}$), 127.5 ($\mathrm{s}, C \mathrm{H}$ phenyl), 84.2 ($\mathrm{s}, C^{\mathrm{IV}}-\mathrm{O}$), 42.9 (s, $\mathrm{CH}_{2}-\mathrm{NH}$), 24.9 (s, $\left.\mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}\right), 21.7$ (s, CH_{3}, tosyl).

HRMS calcd. for $\mathbf{C}_{\mathbf{2 2}} \mathbf{H}_{\mathbf{2 8}} \mathbf{B N O} \mathbf{4} \mathbf{S} \mathbf{(M + H)}{ }^{+} 413.1942$ found 413.1941.
(Z)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-2-yl)pyridine, 7a ${ }^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.6: 4\right) 7 \mathrm{a}$ was isolated as a dark orange oil in 95% yield $(0.151 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}, \mathbf{T M S}$): $\delta=8.55$ (br. $\mathrm{s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Ar}$), 7.62 (d, ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}$), 7.30 (br. s, $1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}$), 7.14 (br. s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), 2.37-2.30 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right), 1.52-1.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31(\mathrm{~s}, 12 \mathrm{H}), 1.29-1.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88(\mathrm{t}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.
(Z)-methyl-4-(2-cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate, $8 a^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 8:2) 8a was isolated as a colorless solid in 92% yield (0.144 g).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}\right): \delta=8.00\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H\right.$ phenyl), $7.31\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C}\right.$ phenyl), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.63-2.54 (m, 1H, CH2-CH-CH2), 1.72-1.62 (m, 5 H CH 2 cyclohexyl), 1.56-1.49 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ cyclohexyl), 1.31 (s, 12H), 1.27-1.09 (m, 3H, CH2 cyclohexyl).
(Z)- 4,4,5,5-tetramethyl-2-(1-(thiophen-2-yl)hex-1-en-2-yl)-1,3,2-dioxaborolane, $9 a^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 15:1) 9a was isolated as a dark orange oil in 93% yield (0.136 g).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}\right): \delta=7.32-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Ar}$ and $\mathrm{CH}=\mathrm{C}), 7.12$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Ar}\right), 7.01\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.7 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Ar}\right)$, $2.52\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right), 1.50-1.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29(\mathrm{~s}, 12 \mathrm{H}), 0.94(\mathrm{t}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3. General procedure for the carboboration of internal alkynes

3.1. General procedure for Table 3.

Catalysts and reagents were stored in air. A vial was charged in air with [$\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$, $\mathrm{NaO} t \mathrm{Bu}$, bis-(pinacolato)diboron, 1-phenyl-1-butyne $\mathbf{1}(0.5 \mathrm{mmol}, 0.071 \mathrm{~mL})$, CPME (1.4 mL) and MeI. The vial was closed with a screw-cap, and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h . The conversion was determined by GC analysis using an aliquot of the crude mixture. The volatiles were then removed in vacuo and the products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity of the product was determined by ${ }^{1} \mathrm{H}$ NMR.

1b

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.8: 2\right) \mathbf{1 b}$ was isolated as a colorless solid in 90 $\%$ yield (0.122 g).
${ }^{1}$ H NMR (400 MHz, CDCl $\left.{ }_{3}, 298 \mathrm{~K}, \mathbf{T M S}\right): \delta=7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ phenyl), 7.24-7.19 (m, $1 \mathrm{H}, \mathrm{CH}$ phenyl), $7.11\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right), 1.98(\mathrm{q}$, $\left.{ }^{3} J(\mathrm{H} . \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.33(\mathrm{~s}, 12 \mathrm{H}), 0.89\left(\mathrm{t},{ }^{3} J(\mathrm{H} . \mathrm{H})=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($\left.\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}, \mathbf{T M S}\right): \delta=149.0\left(C^{\mathrm{IV}}\right.$ phenyl), $144.9\left(C^{\mathrm{IV}}\right.$, $\mathrm{C}=\mathrm{C}), 128.1\left(\mathrm{CH}\right.$ phenyl), 127.3 ($C \mathrm{H}$ phenyl), $126.3\left(\mathrm{CH}\right.$ phenyl), $83.2\left(C^{\mathrm{VV}}, C-\mathrm{O}-\mathrm{B}\right), 25.7$ $\left(\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}\right), 24.6\left(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right)$, $15.2\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.

HRMS calcd. for $\left.\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{2 5}} \mathbf{B O} \mathbf{2} \mathbf{(M - 2 H +} \mathbf{H}\right)^{+} \mathbf{2 7 0 . 1 9 0 4}$ found 270.1900

3.2. General procedure for Scheme 4.

Catalysts and reagents were stored in air. A vial was charged in air with $[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})]$ (4.1 $\mathrm{mg}, 2 \mathrm{~mol} \%$), $\mathrm{NaO}^{t} \mathrm{Bu}$ ($0.55 \mathrm{mmol}, 53 \mathrm{mg}, 1.1$ equiv.), bis-(pinacolato)diboron (0.65 mmol , $165 \mathrm{mg}, 1.3$ equiv.), alkyne (0.5 mmol), CPME (1.4 mL) and the electrophile ($3-4$ equiv.). The vial was closed with a screw-cap, and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h . The conversion was determined by GC analysis using an aliquot of the crude mixture. The volatiles were then removed in vacuo and the products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity of the product was determined by ${ }^{1} \mathrm{H}$ NMR.
(Z)- 4,4,5,5-tetramethyl-2-(3-phenylbut-2-en-3-yl)-1,3,2-dioxaborolane, $2 b^{[8]}$

2b

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 15:1) 2b was isolated as a colorless oil in 91% yield (0.117 g).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8} \mathbf{K}, \mathbf{T M S}$): $\delta=7.35-7.30$ ($\mathrm{m}, \mathbf{2 H}, \mathbf{C H}$ phenyl), 7.24-7.19 (m, 1H, CH phenyl), 7.13-7.11 ($2 \mathrm{H}, \mathrm{CH}$ phenyl), $2.23\left(\mathrm{q},{ }^{5} J(\mathrm{H}, \mathrm{H})=1.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3}\right), 1.59$ (q, $\left.{ }^{5} J(\mathrm{H}, \mathrm{H})=1.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$.

(Z)-trimethyl(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)

 silane, 3b

3b
After purification $\left(\mathrm{SiO}_{2}\right.$, gradient pentane/diethyl ether 100:0 to $\left.8: 2\right)$ 3b was isolated as a colorless solid in 32% yield $(0.051 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}$): $\delta=7.31-7.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}$ phenyl), 7.17-7.13(m, 2H, CH phenyl), $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right), 1.30(\mathrm{~s}, 12 \mathrm{H}),-0.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=151.8$ ($\mathrm{s}, C^{\mathrm{IV}}$ phenyl), 144.1 (s, $C=\mathrm{C}-\mathrm{Si}$), 128.5 (s, CH phenyl), 127.8 (s, CH phenyl), 126.1 ($\mathrm{s}, C \mathrm{H}$ phenyl), 83.6 (s, $C^{\mathrm{IV}}-\mathrm{O}$), 60.5 (s , $\left.C^{\mathrm{IV}}-\mathrm{Si}\right), 24.8\left(\mathrm{~s}, C \mathrm{H}_{3}-\mathrm{C}-\mathrm{O}\right), 23.2\left(\mathrm{~s}, C \mathrm{H}_{3}-\mathrm{C}=\mathrm{C}\right),-0.13\left(\mathrm{~s}, C \mathrm{H}_{3}-\mathrm{Si}\right)$.

HRMS calcd. for $\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{3 3}} \mathbf{B N O} \mathbf{2} \mathbf{S i}\left(\mathbf{M}+\mathbf{N H}_{\mathbf{4}}\right)^{+} 333.2409$ found 333.2404 .
(Z)-2-(2-(4-bromophenyl)hept-2-en-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 5b

After purification $\left(\mathrm{SiO}_{2}\right.$, pentane/dichloromethane 7:3) $\mathbf{5 b}$ was isolated as a colorless solid in 85% yield (0.161 g).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}\right): \delta=7.43\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $6.98\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right), 1.94\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}\right), 1.33(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH} \mathrm{CO}), 1.30-1.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.77\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$).
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=147.2\left(\mathrm{~s}, C^{\mathrm{IV}}\right.$ phenyl), 143.8 ($\mathrm{s}, C^{\mathrm{IV}}{ }^{\text {p }}$ phenyl), 131.3 (s, CH phenyl), 129.4 (s, CH phenyl), 120.2 ($\mathrm{s}, \mathrm{C}^{\mathrm{IV}} \mathrm{C}=\mathrm{C}$), 83.4 (s, $C^{\mathrm{IV}}-\mathrm{O}$), 32.8 ($\mathrm{s}, \mathrm{CH}_{2}$), $32.2\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 25.1\left(\mathrm{~s}, C \mathrm{H}_{3}-\mathrm{C}=\mathrm{C}\right), 25.0\left(\mathrm{~s}, C \mathrm{H}_{3}-\mathrm{C}-\mathrm{O}\right), 22.7\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 14.1\left(\mathrm{~s}, C \mathrm{H}_{3}\right)$.

HRMS calcd. for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 8}} \mathbf{B B r O} \mathbf{2} \mathbf{(M + \mathbf { H })}{ }^{+} 378.1466$ found 378.1475.
(Z)-methyl-4-(1-cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl) benzoate, 8 b

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.15: 1\right) \mathbf{8 b}$ was isolated as a colorless solid in 93% yield (0.152 g).
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}\right): \delta=7.99\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.17\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}=\mathrm{CO}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right)$, 1.96-1.90 (m, 1H, CH), 1.72-1.51 (m, 6H, CH2), 1.37 (s, 12H), 1.28-1.19 (m, 2H, CH CH_{2}), 1.060.92 (m, 2H, CH2).
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=167.3$ ($\mathrm{s}, \mathrm{C}^{\mathrm{IV}}$ carbonyl), 149.9 (s , C^{IV} phenyl), 142.8 ($\mathrm{s}, C^{\mathrm{IV}}$ phenyl), 129.6 ($\mathrm{s}, C \mathrm{H}$ phenyl), 129.5 ($\mathrm{s}, C \mathrm{H}$ phenyl), 128.9 (s , $C H$ phenyl), 128.2 ($\mathrm{s}, C^{\mathrm{IV}} \mathrm{C}=\mathrm{C}$), 127.7 ($\mathrm{s}, C \mathrm{H}$ phenyl), 83.6 ($\mathrm{s}, C^{\mathrm{IV}}-\mathrm{O}$), 52.2 ($\mathrm{s}, C \mathrm{H}_{3}-\mathrm{C}=\mathrm{O}$), $42.2(\mathrm{~s}, C \mathrm{H}-\mathrm{C}=\mathrm{C}), 32.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.4\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 26.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.3\left(\mathrm{~s}, C \mathrm{H}^{3}-\mathrm{C}-\mathrm{O}\right), 25.2(\mathrm{~S}$, $C \mathrm{H}_{3}-\mathrm{C}-\mathrm{O}$), 24.9 (s, $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}$).

HRMS calcd. for $\mathbf{C}_{23} \mathbf{H}_{33} \mathbf{B O}_{\mathbf{4}}(\mathbf{M}+\mathbf{H})^{+} 384.2582$ found 384.2581 .

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.40: 1\right) 9 \mathbf{b}$ was isolated as a dark orange oil in 97 $\%$ yield (0.148 g).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $3,298 \mathbf{K}$, TMS): $\delta=7.22\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=\right.$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}), 6.97\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H-\mathrm{CH}-\mathrm{S}\right), 6.87(\mathrm{dd}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}\right), 2.27-2.23\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right.$ and $\mathrm{CH}_{2}-$ $\mathrm{C}=\mathrm{C}), 1.32(\mathrm{~s}, 12 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}), 0.85\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{1 0 0 . 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=145.5\left(\mathrm{~s}, \mathrm{CH}-\mathrm{C}^{\mathrm{IV}}-\mathrm{S}\right), 139.6\left(\mathrm{C}^{\mathrm{IV}}-\mathrm{C}-\mathrm{S}\right)$, 126.5 ($\mathrm{s}, \mathrm{CH}=\mathrm{CH}-\mathrm{S}$), 125.1 ($\mathrm{s}, \mathrm{CH} \mathrm{Ar}$), 124.2 ($\mathrm{s}, \mathrm{CH} \mathrm{Ar}$), $83.4\left(C^{\mathrm{IV}}-\mathrm{O}\right), 32.8\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $32.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.9\left(\mathrm{~s}, C \mathrm{H}_{3}-\mathrm{C}-\mathrm{O}\right), 24.6\left(\mathrm{~s}, C \mathrm{H}_{3}-\mathrm{C}=\mathrm{C}\right), 22.8\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 14.1\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.

HRMS calcd. for $\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{2 7}} \mathbf{B O}_{\mathbf{2}} \mathbf{S}(\mathbf{M}+\mathbf{H})^{+} 306.1938$ found 306.1934.
(Z)-methyl-4-(1-cyclohexyl-3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)benzoate, 8 b

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.15: 1\right) \mathbf{8 b}$ was isolated as a colorless solid in 93% yield (0.152 g).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}, \mathbf{T M S}\right): \delta=7.84\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), 7.17-7.04 (m, 5H, CH phenyl), $6.86\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $3.86(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{OOC}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C}=\mathrm{C}), 1.63-1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.379 \mathrm{~s}, 12 \mathrm{H}), 1.09-0.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8} \mathbf{~ K}$): $\delta=167.3$ ($\mathrm{s}, C^{\mathrm{IV}}$ carbonyl), 147.7 ($\mathrm{s}, C^{\mathrm{IV}}$ phenyl), 146.0 ($\mathrm{s}, C^{\mathrm{IV}}$ phenyl), 139.2 ($\mathrm{s}, C^{\mathrm{IV}}$ phenyl), 129.2 ($\mathrm{s}, C \mathrm{H}$ phenyl), 129.1 ($\mathrm{s}, C \mathrm{H}$ phenyl), 128.4 (s, CH phenyl), 128.1 ($\mathrm{s}, C \mathrm{H}$ phenyl), 126.0 ($\mathrm{s}, C \mathrm{H}$ phenyl), 83.8 (s, $C^{\mathrm{IV}}-\mathrm{O}$), 52.0 (s, $\left.C_{3}-\mathrm{C}=\mathrm{O}\right), 45.2\left(\mathrm{~s}, C \mathrm{H}_{2}-\mathrm{C}=\mathrm{C}\right), 42.3(\mathrm{~s}, C \mathrm{H}-\mathrm{C}=\mathrm{C}), 32.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 26.3\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 26.1$ (s, CH_{2}), 25.1 ($\mathrm{s}, \mathrm{CH}^{3}-\mathrm{C}-\mathrm{O}$).

HRMS calcd. for $\mathbf{C}_{\mathbf{2} 9} \mathbf{H}_{\mathbf{3 7}} \mathbf{B O}_{\mathbf{4}}\left(\mathbf{M}+\mathbf{N H}_{4}\right)^{+} 477.3155$ found 477.3159 .
(Z)-2-(1-cyclopropyl-2-(thiophen-2-yl)hept-2-en-3-yl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane, 9d

After purification $\left(\mathrm{SiO}_{2}\right.$, pentane/dichloromethane $\left.6: 4\right) \mathbf{9 d}$ was isolated as an orange oil in 60% yield (0.104 g).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}$): $\delta=7.23\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=\right.$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}), 6.98\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{S}\right), 6.83(\mathrm{dd}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz}, J(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}\right), 2.48\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{C}=\mathrm{C}), 2.17\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{C}\right), 1.35-1.21(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH})_{2}\right), 1.30(\mathrm{~s}, 12 \mathrm{H})$, $0.82\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.76-0.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 0.35-0.30(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 0.10-0.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right)$.
${ }^{13} \mathbf{C}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$): $\delta=144.2\left(\mathrm{~s}, \mathrm{CH}-\mathrm{C}^{\mathrm{IV}}-\mathrm{S}\right), 126.5(\mathrm{~s}, \mathrm{CH}=\mathrm{CH}-\mathrm{S})$, 125.6 ($\mathrm{s}, C \mathrm{H} A r$), $124.2(\mathrm{~s}, C \mathrm{H} \mathrm{Ar}), 83.4\left(C^{\mathrm{IV}}-\mathrm{O}\right), 43.6\left(\mathrm{~s}, C \mathrm{H}_{2}-\mathrm{CH}-\mathrm{CH}_{2}\right), 32.9\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $32.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.9\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}\right), 22.8\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 14.1\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 10.9$ (s , $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 4.4 (s, CH_{2}, cyclopropane).

HRMS calcd. for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{3 1}} \mathbf{B O} \mathbf{2} \mathbf{S} \mathbf{(M + H)}{ }^{+} 346.2253$ found 346.2247.

4. General procedure for $\boldsymbol{\alpha}$-hydroboration of internal alkynes

4.1.General procedure for Table 4.

In a glovebox, a vial was charged with the Cu catalyst, the base, 1-phenyl-1-butyne 1 (0.50 $\mathrm{mmol}, 0.071 \mathrm{~mL})$ and the solvent $(0.6 \mathrm{~mL})$. The reaction mixture was stirred for 5 minutes at RT, cooled down to $-30^{\circ} \mathrm{C}$ and then pinacolborane $\mathrm{HB}(\mathrm{pin})$ was added slowly $(0.75 \mathrm{mmol}$, $0.11 \mathrm{~mL}, 1.5$ equiv.). The reaction mixture was allowed to warm up to RT for 20 h under inert atmosphere. The conversion was determined by GC analysis using an aliquot of the crude mixture. The volatiles were then removed in vacuo and the products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity and the $(\alpha: \beta)$ ratio of the products were determined by ${ }^{1} \mathrm{H}$ NMR.

4.2. General procedure for Table 5.

Catalysts and reagents were stored in air, with the exception of HB (pin) which was kept under argon to avoid decomposition. A vial was charged in air with $[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})], \mathrm{NaOH}$ ($2.5 \mathrm{mg}, 12 \mathrm{~mol} \%$), 1-phenyl-1-butyne $1(0.50 \mathrm{mmol}, 0.071 \mathrm{~mL}$) and CPME (0.6 mL). The mixture was stirred for 5 minutes and cooled down to $-30^{\circ} \mathrm{C}$ and then pinacolborane HB (pin) was added slowly ($0.75 \mathrm{mmol}, 0.11 \mathrm{~mL}, 1.5$ equiv.). The vial was closed with a screw-cap, and the reaction mixture was stirred at the required temperature for 20 h . The conversion was determined by GC analysis using an aliquot of the crude mixture. The volatiles were then removed in vacuo and the products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity and the $(\alpha: \beta)$ ratio of the products were determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data were found similar to literature values for $\mathbf{1 c} .{ }^{[5]}$
(Z)- 4,4,5,5-tetramethyl-2-(1-phenylbut-1-en-1-yl)-1,3,2-dioxaborolane, $1 c^{[5]}$

1c

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 20:1) 1c was isolated as a yellowish oil in 94% yield (0.121 g).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 9 8} \mathbf{K}, \mathbf{T M S}$): $\delta=7.33-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ phenyl), 7.22-7.12 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $6.57\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H-\mathrm{CH}_{2}\right), 2.17\left(\mathrm{q},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.27(\mathrm{~s}, 12 \mathrm{H}), 1.00\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.

4.3. General procedure for Scheme 6.

Catalysts and reagents were stored in air, with the exception of $\mathrm{HB}(\mathrm{pin})$ which was kept under argon to avoid decomposition. A vial was charged in air with $[\mathrm{Cu}(\mathrm{Cl})(\mathrm{IMes})], \mathrm{NaOH}$ ($2.5 \mathrm{mg}, 12 \mathrm{~mol} \%$), alkyne (0.50 mmol) and CPME (0.6 mL). The mixture was stirred for 5 minutes, cooled down to $-30^{\circ} \mathrm{C}$ and then pinacolborane $\mathrm{HB}(\mathrm{pin})$ was added slowly $(0.75$ $\mathrm{mmol}, 0.11 \mathrm{~mL}, 1.5$ equiv.). The vial was closed with a screw-cap and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h . The conversion was determined by GC analysis using an aliquot of the crude mixture. The volatiles were then removed in vacuo and the products were purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$. The regioselectivity and the $(\alpha: \beta)$ ratio of the products were determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data were found similar to literature values for $\mathbf{2 c},{ }^{[3]} \mathbf{3} \mathbf{c},{ }^{[3]} \mathbf{5 c},{ }^{[3]} \mathbf{7 c},{ }^{[3]}$ $\mathbf{8 c},{ }^{[3]}$ and $9 \mathbf{c} .{ }^{[3]}$
(Z)- 4,4,5,5-tetramethyl-2-(1-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane, $2 c^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 30:1) 2c was isolated as a yellowish oil in 70% yield $(0.085 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}$): $\delta=7.34-7.29$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ phenyl), 7.22-7.14 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $6.72\left(\mathrm{q},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3}\right), 1.77\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{3}-\mathrm{CH}\right), 1.27(\mathrm{~s}, 12 \mathrm{H})$.

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.40: 1\right) \mathbf{3 c}$ was isolated as a colorless solid in 87% yield (0.132 g).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}, \mathbf{T M S}$): $\delta=8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Si}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}$ phenyl), 7.26-7.23 (m, 2H, CH phenyl), 1.30 (s, 12H), $0.00\left(\mathrm{~s},\left(9 \mathrm{H}, \mathrm{Si}-\mathrm{CH}_{3}\right)\right.$. (Z)- 4,4,5,5-tetramethyl-2-(1-phenylhex-1-en-1-yl)-1,3,2-dioxaborolane, $5 c^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.30: 1\right) \mathbf{5 c}$ was isolated as a yellowish oil in 91% yield $(0.166 \mathrm{~g})$.
${ }^{1}$ H NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}\right): \delta=7.42\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.00\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $6.59\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right)$, 2.17-2.05 (m, 2H, CH2), 1.40-1.19 (m, 4H, CH2 $), 1.26(\mathrm{~s}, 12 \mathrm{H}), 0.83\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$).
benzenesulfonamide, $6 \boldsymbol{c}$

Following the procedure described in 4.2, compounds $\mathbf{6 c}$ and $\mathbf{6 a}$ were obtained as a mixture 75:25 as a yellowish solid after purification $\left(\mathrm{SiO}_{2}\right.$, dichloromethane/diethylether 20:1) in 65 $\%$ yield (0.134 g).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}$, TMS) of $\mathbf{6 a}: \delta=7.63\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), 7.36-7.28 (m, 4H, CH phenyl), 7.24-7.18 (m, 5H, CH phenyl), $5.33\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} H-\mathrm{CH}_{2}\right), 3.96\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}\right), 2.42(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.26 (s, 12H).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}, \mathbf{T M S}$) of $\mathbf{6 c}: \delta=7.81\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.72\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.68-7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$ phenyl), $7.09(\mathrm{~d}$, ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ phenyl), $7.00\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), 5.60-5.52(m, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}-\mathrm{B}), 4.78$ (broad m, $1 \mathrm{H}, \mathrm{NH}$), 3.88-3.83 (m, 2H, CH2-NH), 2.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ tosyl), 1.24 (s, 12H).

HRMS calcd. for $\left.\mathbf{C}_{\mathbf{2 2}} \mathbf{H}_{\mathbf{2 8}} \mathbf{B N O} \mathbf{4} \mathbf{S} \mathbf{(M +} \mathbf{H}\right)^{+} 413.1936$ found 413.1941 .
(Z)-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-1-yl)pyridine, 7c ${ }^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.7: 3\right) 7 \mathrm{c}$ was isolated as a dark brown oil in 99 $\%$ yield (0.142 g).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}, 298 \mathrm{~K}, \mathbf{T M S}$): $\delta=8.43$ (br. s, 2H, CH Ar), $7.48\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Ar}), 7.26$ (br. s, 1H, CH Ar), $6.69\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 2.14$ $\left(\mathrm{q},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.46-1.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24(\mathrm{~s}, 12 \mathrm{H}), 0.83\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $\left.=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)$.
(Z)-methyl-4-(2-cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate, $8 c^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.15: 1\right) \mathbf{8 c}$ was isolated as a colorless solid in 99 $\%$ yield (0.184 g).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}, \mathbf{T M S}\right): \delta=7.98\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ phenyl), $7.18\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H\right.$ phenyl), $6.40\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H=\mathrm{C}-\mathrm{B}\right), 3.91$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}-\mathrm{CO}$), 2.29-2.16(m, $\left.1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}=\mathrm{C}\right), 1.67-1.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.26(\mathrm{~s}, 12 \mathrm{H})$, 1.18-1.10(m, 6H, CH2).
(Z)- 4,4,5,5-tetramethyl-2-(1-thiophen-2-yl)-hex-1-en-1-yl)-1,3,2-dioxaborolane, $9{ }^{[3]}$

After purification $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate 20:1) $9 \mathbf{c}$ was isolated as a dark orange oil in 78% yield (0.114 g).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, 298 \mathbf{K}$, TMS): $\delta=7.24\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=\right.$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H-\mathrm{S}), 7.13\left(\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H-\mathrm{C}-\mathrm{S}\right), 7.01(\mathrm{dd}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H-\mathrm{CH}-\mathrm{S}\right), 6.55\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}-\right.$
B), 2.46-2.39 (m, 2H, CH $2-\mathrm{CH}=\mathrm{C}), 1.54-1.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30(\mathrm{~s}, 12 \mathrm{H}), 0.90\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of products 1a-9a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of products $\mathbf{1 b}-\mathbf{9 b}, \mathbf{8 d}$ and 8 f .

1b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of products $1 \mathrm{c}-9 \mathrm{c}$

6. References

[1] a) Díez-Gonzalez, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Slawin, A. M. Z.; Nolan, S. P.; Dalton Trans., 2010, 39, 7595-7606. b) Citadelle, C. A.; Le Nouy, E.; Bisaro, F.; Slawin, A. M. Z.; Cazin, C. S. J.; Dalton Trans. 2010, 39, 4489-4491. c) Lazreg, F.; Slawin, A. M. Z.; Cazin C. S. J.; Organometallics, 2012, 31, 7969-7975.
[2] Oskooie, H. A.; Heravi, M. M.; Behbahani, F. K.; Molecules, 2007, 12, 1438-1446.
[3] Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y.; Chem. Eur. J. 2012, 18, 4179-4184.
[4] Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L.; Bao, M.; Asao, N.; Chen, M.; Yamamoto, Y.; J. Am. Chem. Soc., 2012, 134, 17536-17542.
[5] Kim, H.-R.; Yun, J.; Chem. Commun, 2011, 47, 2943-2945.
[6] Reed, M. A.; Chang, M. T.; Snieckus, V.; Org. Lett., 2004, 6, 2297-2300.
[7] Moure, A. L.; Gomez Arayas, R.; Cardenas, D. J.; Alonso, I.; Carretero, J. C.; J. Am. Chem. Soc. 2012, 134, 7219-7222.
[8] Alfaro, R.; Parra, A.; Aleman, J.; Garcia Ruano, J. L.; Tortosa, M.; J. Am. Chem. Soc. 2012, 134, 15165-15168.

