Green, One Step Synthesis of Catalytically Active Palladium Nanoparticles Supported on Cellulose Nanocrystals

Supporting Information

Marzieh Rezayat¹, Rebecca K. Blundell², Jason E. Camp^{2,3}, Darren A. Walsh², Wim Thielemans^{2,4,+},*

¹ Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran

² School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK

³ School of Biological and Chemical Sciences, Queen Mary University of London, London

E1 4NS, UK

⁴ Process and Environmental Research Division, Faculty of Engineering, The University of Nottingham, NG7 2RD, UK

⁺Current address: KU Leuven, Kortrijk Campus, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

*Email: <u>Wim.Thielemans@kuleuven.be</u>

Figure S1. Representative FTIR spectra for CNXL before and after synthesis of PdNPs.

Figure S2: Representative XPS spectrogram indicating the signals used for atomic composition determination.

Figure S3: Representative XPS spectrogram of the Pd_{3d} region indicating the decomposition used for Pd(0) and Pd(II) atomic composition determination.

Fig. S4: High magnification TEM micrograph of PdNPs showing the crystal plane diffraction.