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Scheme S1 The historic relationship between three polymeric hosts 
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Figure S1 Particle size distribution of nano-HMO inside NS with the aid of Nano 

Measure (Version 1.2, ZKBC) 
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Figure S2 XPS spectra of manganese species in HMO@NS and HMO (a) HMO@NS; 

(b) HMO 
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Figure S3 Zeta potentials of HMO and HMO@NS at different pH values. 
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Figure S4 Potentiometric titration curves of CS and NS as compared to water 
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Figure S5 TEM images of three polymer-based HMO nanocomposites and the bulky 

one. (a) HMO@NS; (b) HMO@SS; (c) HMO@CS; (d) HMO 
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Figure S6 Phosphate adsorption kinetics from the background by HMO@NS at 298 

K and pH 7.0. Adsorbent dose was 0.5 g/L. Initial phosphate was 10 mg P/L. 
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Figure S7 Adsorption isotherms of HMO@NS and NS at 298 K, pH 7.0. Each 

adsorbent dose was 0.50 g/L. 
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Table S1 

The intraparticle diffusion model parameters for phosphate adsorption on HMO@NS 

and NS 

 

Adsorbent 
 Intraparticle diffusion model   

Kp1 I R
2
 Kp2 I R

2
 

HMO@NS 1.64 0 0.993 0.502 12.2 0.966 

NS 1.26 0 0.991    

Kp1: Intraparticle diffusion rate constant of the first step for HMO@NS or NS; 

Kp2: Intraparticle diffusion rate constant of the second step for HMO@NS; 

I: Y-intercept. 
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Table S2 

Langmuir and Freundlichmodel parameters for phosphate adsorption on NS and 

HMO@NS. 

 

Adsorbent 
Langmuir model  Freundlich model 

qmax(mg/g) b(L/mg) R
2
  K[mg/g·(L/g) 

n
] n R

2
 

NS 41.2 0.099 0.950  8.25 2.69 0.994 

HMO@NS 28.0 0.833 0.644  15.66 6.37 0.994 
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Table S3  

Comparison of adsorption capacity of different phosphate adsorbents  

 

Adsorbents qmax References 

Fly ash 20.2 1 

Blast furnace slag 18.9 2 

CMOMO 26.3 3 

Ferric sludge 25.5 4 

Acid mine drainage sludge 32.0 5 

Iron oxide tailings 8.2 6 

Aluminum 23.0 7 

Fe oxide tailing 21.5 8 

Fe(III)/Cr(III) hydroxide 6.5 9 

Fe-Mn binary oxide adsorbent 36 10 

MgMn-layered double hydroxides 22.3 11 

HMO@NS >29.78* Present study 

* Obtained from the Freundlich adsorption isotherm (Figure S7 and Table S2) at the 

equilibrium concentration of 60 mg P/L. 
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Table S4  

Basic properties of the real effluent sampled from a WWTP in Nanjing city. 

 

pH 
Phosphate 

(mg P/L) 

Cl- 

(mg/L) 

SO4
2-

 

(mg/L) 

NO3
-
 

(mg/L) 

Mg
2+

 

(mg/L) 

Ca
2+

 

(mg/L) 

NH4
+
-N 

(mg/L) 

COD 

(mg/L) 

7.2 1.3 71.3 47.5 26.4 11.3 67.6 0.5 18.7 
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