Topological effects and binding modes operating with multivalent iminosugar-based glycoclusters and mannosidases

Yoan Brissonnet, \dagger Carmen Ortiz Mellet, \ddagger Sandrine Morandat, ${ }^{\dagger}$ M. Isabel Garcia Moreno, \ddagger David Deniaud, \dagger Susan E. Matthews, ${ }^{\forall}$ Sébastien Vidal, ${ }^{\text {I }}$ Sergej Šesták,II Karim El Kiratll and Sébastien G. Gouin.* ${ }^{*}$
† LUNAM Université, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France.
\ddagger Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González no 1, 41012 Sevilla, Spain,
- Dr. S. Morandat, Laboratoire de Génie Enzymatique et Cellulaire, FRE-CNRS 3580, Université de Technologie de Compiègne (UTC), BP 20529, 60205 Compiègne Cedex, France, \forall Dr S.E. Matthews School of Pharmacy - University of East Anglia - Norwich, NR4 7TJ , United Kingdom
I Dr. S. Vidal Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France,
II Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 84538 Bratislava, Slovakia
${ }^{\|}$Dr. K. El Kirat, Laboratoire de Biomécanique et Bioingénierie, UMR-CNRS 7338, Université de Technologie de Compiègne (UTC), BP 20529, 60205 Compiègne Cedex, France.

Contents

General chemical procedures and analytical data S2-S21
Inhibitory activities S22-S25
AFM procedure and images S26-S29
DLS measurements S30
NMR spectra of synthetic products S31-S50

Materials NMR spectra were recorded at room temperature with a Bruker Avance 300 Ultra Shield or eBruker Avance III 400 spectrometer and chemical shifts are reported in parts per million relative to tetramethylsilane or a residual solvent peak peak $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}: \delta=7.26,{ }^{13} \mathrm{C}\right.$: $\delta=77.2$; DMSO-d6: ${ }^{1} \mathrm{H}: \delta=2.54,{ }^{13} \mathrm{C}: \delta=40.4$). Peak multiplicity is reported as: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). High resolution mass spectra HRMS where obtained by Electrospray Ionisation (ESI) on a Micromass-Waters Q-TOF Ultima Global or with a Bruker Autoflex III SmartBeam spectrometer (MALDI). Lowresolution mass spectra (MS) were recorded with a Thermo electron DSQ spectrometer. All reagents were purchased from Acros Organics or Aldrich and were used without further purification. Column chromatography was conducted on silica gel Kieselgel SI60 (40-63 $\mu \mathrm{m}$) from Merck. Reactions requiring anhydrous conditions were performed under argon. Dichloromethane was distilled from calcium hydride under nitrogen prior to use. Microwave experiments were conducted in sealed vials in commercial microwave reactors especially designed for synthetic chemistry. (MultiSYNTH, Milestone). The instrument features a special shaking system that ensures high homogeneity of the reaction mixtures. Optical rotations were measured on a 343 PERKIN ELMER at $20^{\circ} \mathrm{C}$ in a 1 cm cell in the stated solvent; $[\alpha]_{\mathrm{D}}$ values are given in 10^{-1} deg. $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ (concentration c given as $\mathrm{g} / 100 \mathrm{~mL}$).

N-(3-Azidopropyl)-2,3,4,6-tetra-O-acetyl-1,5-dideoxy-1,5-imino-D-glucitol (14)

Conventional catalytic hydrogenolysis of $11(760 \mathrm{mg}, 1.25 \mathrm{mmol})$ was carried out with $\mathrm{Pd}(\mathrm{OH})_{2}(875 \mathrm{mg}, 1.25 \mathrm{mmol})$ in $\mathrm{MeOH}-1 \mathrm{M}$ aq. HCl solution $(8 \mathrm{~mL}, 3: 1)$ at 1 atm for 15 h . Then, the catalyst was filtered over celite and the solvent removed under reduced pressure to give $\mathbf{1 2}$ (quant) as a hygroscopic brown gum.
(For analytical data see: J. D. Diot, I. G. Moreno, G. Twigg, C. O. Mellet, K. Haupt, T. D. Butters, J. Kovensky, S. G. Gouin, J. Org. Chem; 2011, 76, 7757-7768.)

Imidazole-1-sulfonyl azide hydrochloride $13(326 \mathrm{mg}, 1.25 \mathrm{mmol})$ was added to the crude mixture ($275 \mathrm{mg}, 1.25 \mathrm{mmol}$) with $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(3.2 \mathrm{mg}$, $12.5 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ and the mixture was stirred overnight at room temperature. The solvent was evaporated under reduced pressure and crude $\mathbf{1 4}$ was dissolved in pyridineacetic anhydride ($1: 1,14 \mathrm{~mL}$) was stirred for 24 hours. Water $(9 \mathrm{~mL})$ was added slowly at $0^{\circ} \mathrm{C}$ to quench the reaction. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic layers were then washed with an aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 2 \times 10 \mathrm{~mL})$ and a saturated aqueous NaHCO_{3} solution (1 x 15 mL), dried (MgSO_{4}), filtered and concentrated. The resulting residue was purified by flash chromatography (AcOEt - petroleum spirit 4-6) to give $\mathbf{1 4}$ as yellow oil ($180 \mathrm{mg}, 35 \%$ for three steps).
$[\alpha]_{\mathrm{D}}=+3.8(\mathrm{c}=1$, Chloroform $) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.04-4.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and H-4), 4.92-4.80 (m, 1H, H-2), 4.10 (d, J = 2.7 Hz, 2H, H-6), 3.28 (t, J = 6.6 Hz, 2H, H-3'), 3.12 (dd, $J=11.4$ and $5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 2.89-2.75 (m, 1H, H-1'), 2.63-2.43 (m, 2H, H-1'b,5), 2.22 (dd, $J=1.2, J=11.4,1 H, H-1 \mathrm{~b}), 2.00,1.95,1.93$ ($3 \mathrm{~s}, 12 \mathrm{H}, \mathrm{C}=\mathrm{OCH}$), 1.71-1.53 (m, $2 \mathrm{H}, \mathrm{H}-2$ ').; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7,170.2,170.0,169.6$ (C=O), 74.4 (C-4), 69.2 (C-2), 69.1 (C-3), 61.9 (C-5), 59.5 (C-6), 52.7 (C-1), 49.0 (C-3'), 48.4 (C-1'), 25.2 (C2'), $20.7\left(\mathrm{CH}_{3}\right)$.; HRMS (MALDI): Found $415.1816 \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Na}$ requires 415.1823.

Methyl 2,3,4,6-tetra-O-propargyl- α-D-galactopyranoside (18)

$\mathrm{NaH}\left(412 \mathrm{mg}, 10.3 \mathrm{mmol}\right.$, dispersed in oil, 60%) was added in a small portion at $0^{\circ} \mathrm{C}$ to a solution of methyl α-D-galactopyranoside ($200 \mathrm{mg}, 1.03 \mathrm{mmol}$) in anhydrous DMF (10 mL). The suspension was stirred for one hour at room temp. Propargyl bromide ($690 \mu \mathrm{~L}, 6.18$ mmol , dispersed in toluene 80%) was added dropwise, and the reaction mixture was maintained for 3 hours. The mixture was cooled, MeOH was added 10 ml , and the solvent removed under reduced pressure after 30 min . Water 10 mL was added and the compound was extracted with diethyl ether ($2 \times 20 \mathrm{~mL}$). The organic phase was dried (MgSO_{4}), filtered, and the solvent were evaporated under reduced pressure. The crude material was purified by column chromatography ($8-2 \mathrm{EtOAc}$ - cyclohexane) to give $\mathbf{1 8}$ as a yellow oil ($306 \mathrm{mg}, 86 \%$).
$[\alpha]_{\mathrm{D}}=+31\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}, \mathrm{H}-1)$, $4.49\left(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CCH}\right), 4.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CCH}\right), 4.24-4.18(2 \mathrm{H}, \mathrm{dd}, J=2.4 \mathrm{~Hz}, J$ $\left.=7.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CCH}\right), 4.12-4.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 4.03-3.88(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,3,5), 3.78(1 \mathrm{H}, \mathrm{dd}, J=$ $5.7 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~A}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=6.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~B})$, 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.44 ($4 \mathrm{H}, \mathrm{m}$, CCH). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=98.8$ (C-1), 80.4, 80.2, 79.7 (C-2'), 78.6 (C-3), 76.2 (C-2), 74.7 (C-3'), 74.6 (C-4), 69.3 (C-6), 69.1 (C-5), 59.9, 59.1, 58.9, 58.8 (C-1'), 55.5 (OMe); HRMS (MALDI) $[\mathrm{M}+\mathrm{Na}]^{+}$: Found $369.1305 \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O} 6 \mathrm{Na}$ requires 369.1309.

Propargyl- α-D-glucopyranosyl- α-D-glucopyranoside (20)

$\mathrm{NaH}\left(280 \mathrm{mg}, 7.01 \mathrm{mmol}\right.$, dispersed in oil, 60%) was added in a small portion at $0^{\circ} \mathrm{C}$ to a solution of α-D-glucopyranosyl- α-D-glucopyranoside ($150 \mathrm{mg}, 0.44 \mathrm{mmol}$) in anhydrous DMF (10 mL). The suspension was stirred for one hour at room temp. Propargyl bromide ($490 \mu \mathrm{~L}, 4.38 \mathrm{mmol}$, dispersed in toluene 80%) was added dropwise, and the reaction mixture was stirred for 6 hours. mixture was cooled, MeOH was added 10 mL , and the solvent removed under reduced pressure after 30 min . Water 10 mL was added and the compound was extracted with diethyl ether ($2 \times 20 \mathrm{~mL}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent were evaporated under reduced pressure. The crude material was purified by column chromatography (EtOAc - cyclohexane, 7-3) to give 20 as a yellow oil (130 mg , 46\%).
$[\alpha]_{\mathrm{D}}=+125\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.18(2 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{H}-1)$, 4.56-4.35 ($8 \mathrm{H}, \mathrm{br}, \mathrm{H}-1^{\prime}$), 4.35-4.10 ($8 \mathrm{H}, \mathrm{br}, \mathrm{H}-1^{\prime}$), 4.13-4.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 3.83 ($2 \mathrm{H}, \mathrm{dd}, J$ $=3.5 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~A}), 3.75(2 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}, \mathrm{H}-3-3$ '), $3.70(2 \mathrm{H}, \mathrm{dd}, J=2.1 \mathrm{~Hz}, J=10.5$ Hz, H-6в), 3.56 ($2 \mathrm{H}, \mathrm{dd}, J=9.5,3.6 \mathrm{~Hz}, \mathrm{H}-2$), 3.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 2.49-2.38 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=94.0(\mathrm{C}-1), 81.3(\mathrm{C}-3), 80.2-80.1-79.7-79.5(\mathrm{C}-3$ '), 78.9 (C2), 76.6 (C-4), 75.0 (C-2'), 74.3 (C-3'), 69.9 (C-5), 67.8 (C-6), 60.5, 60.3, 58.6, 58.4 (C-1’); HRMS (MALDI) $[\mathrm{M}+\mathrm{Na}]^{+}$: Found $669.2317 \mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{11} \mathrm{Na}$ requires 669.2306.

Octakis(6-O-propargyl-2,3-di-O-methyl)cyclomaltooctaose (21)

$\mathrm{NaH}\left(105 \mathrm{mg}, 2.62 \mathrm{mmol}\right.$, dispersed in oil, 60%) was added in small portions at $0^{\circ} \mathrm{C}$ to a solution of octakis(2,3-di-O-methyl)cyclomaltooctaose ($200 \mathrm{mg}, 0.131 \mathrm{mmol}-\mathrm{K}$. Takeo, H. Mitoh, K. Uemura, Carbohydrate Res. 1989, 187, 203-221) in anhydrous DMF (15 mL). The suspension was magnetically stirred for one hour at room temp. Propargyl bromide ($180 \mu \mathrm{~L}$, 1.57 mmol ,) dispersed in toluene 80%, was then added dropwise, and the reaction mixture was stirred for 6 hours. The mixture was cooled, MeOH was added (5 mL), and the solvent removed under reduced pressure after 30 min . Water (5 mL) was added and the compound was extracted with diethyl ether ($2 \times 15 \mathrm{~mL}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent were evaporated under reduced pressure. The crude material was purified by column chromatography (EtOAc - cyclohexane 96-4) to give 21 as a brown gum (192 mg, $80 \%)$.
$[\alpha]_{\mathrm{D}}=+101\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.23(8 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{H}-1)$, $4.22(16 \mathrm{H}, \mathrm{dq}, J=2.61 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}, \mathrm{H}-1$ '), 3.96-3.78 ($24 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,-6$), 3.75-3.66 (8 H , $\mathrm{m}, \mathrm{H}-5), 3.72-3.58\left(32 \mathrm{H}, \mathrm{m}, \mathrm{H}-1\right.$ ', -4), 3.58-3.46 ($32 \mathrm{H}, \mathrm{m}, \mathrm{H}-, 2^{\prime},-3$), $3.20(8 \mathrm{H}, \mathrm{dd}, J=3.4$ $\mathrm{Hz}, J=9.66 \mathrm{~Hz}, \mathrm{H}-2$,), $2.49\left(8 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{H}-3{ }^{\prime}\right)$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=98.3$ (C-1), 82.2 (C-3), 82.0 (C-2), 79.8 (C-2'’), 79.0 (C-4), 75.1 (C-3'’), 70.9 (C-5), 68.7 (C-6), 61.6 (C-1'), 58.9 (C-2'), 58.6 (C-1''); HRMS (MALDI) [M+Na] ${ }^{+}$: Found 1847.7832 $\mathrm{C}_{88} \mathrm{H}_{128} \mathrm{O}_{40} \mathrm{Na}$ requires 1847.7874.

General procedure for CuAAC

To a solution of the $\mathbf{1 8}(30 \mathrm{mg}, 86.6 \mu \mathrm{~mol})$ and the azido-derivative $(230 \mathrm{mg}, 0.38 \mathrm{mmol})$ in dioxane- $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}, 4-1)$ copper sulfate ($65 \mathrm{mg}, 0.26 \mathrm{mmol}$) and sodium ascorbate (103 mg , 0.52 mmol) were added and the mixture was irradiated at $80^{\circ} \mathrm{C}$ for 45 min in a sealed vessel. The mixture was poured into a $\mathrm{NH}_{4} \mathrm{Cl}$ satd. solution $(20 \mathrm{~mL})$ and extracted with ethyl acetate. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed under reduced pressure. The crude product was purified by flash chromatography on silica gel (AcOEt $\mathrm{MeOH}, 99-1$), colorless oil, 66% yield.

Compound (22)

22 was purified by flash chromatography on silica gel (AcOEt - cyclohexane, 99-1), colorless oil, 92% yield.
$[\alpha]_{\mathrm{D}}=+1\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4{ }^{\prime}\right)$, 7.31-7.05 (20 H, m, $20 \times$ Har $)$, 4.95-4.71($3 \mathrm{H}, \mathrm{m}, \mathrm{CHHPh}$), 4.71-4.55 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}, 2 \times \mathrm{H}-6$ '), 4.454.28 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHHPh}$), 4.25-4.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 3.61 ($1 \mathrm{H}, \mathrm{dd}, J=3.7 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, \mathrm{H}-$ $6 \mathrm{~A}), 3.55-3.37(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-3,-4,-6 \mathrm{~B}), 2.93\left(1 \mathrm{H}, \mathrm{dd}, J=4.14 \mathrm{~Hz}, J=11.5 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}\right), 2.83-$ $2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ 'л $), ~ 2.52-2.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ 'в), 2.35-2.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 2.08 (t, J = 10.5 Hz , $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}$), 2.01-1.85 (m, 2H, H-2'); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.7$ (C-5'), 139.0, 138.5, 137.9 (Car), 128.6-127.5 (CHar), 122.1 (C-4'), 87.1 (C-3), 78.6 (C-2), 78.4 (C-4), 75.4, 75.3, 73.3, 72.9 ($\mathrm{CH}_{2} \mathrm{Ph}$), 66.6 (C-6), 64.7 (C-5), 56.5 (C-6'), 54.4 (C-1), 49.3 (C-1'), 48.5 (C3^{\prime}), 26.2 (C-2'); HRMS (MALDI) $[\mathrm{M}+\mathrm{Na}]^{+}$: Found $663.3533 \mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O} 5 \mathrm{Na}$ requires 663.3541 .

Compound (23)

23 was purified by flash chromatography on silica gel (AcOEt - cyclohexane, 95-5), colorless oil, 75% yield.
$[\alpha]_{\mathrm{D}}=+4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33-7.05(80 \mathrm{H}, \mathrm{m}$, Har), 6.926.84 ($12 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{H}-4,4 \times \mathrm{H}-3$ ') $)$, $5.02-4.77\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.72-4.60 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.54-4.37 ($20 \mathrm{H}, \mathrm{m}, 12 \times \mathrm{CH}_{2} \mathrm{Ph}, 4 \times \mathrm{H}-1$ ''), 4.33-4.11 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ''), 3.74-3.41 ($28 \mathrm{H}, \mathrm{m}, 4$ x H-2', $\left.3^{\prime}, 4^{\prime}, 6^{\prime}, 8 \times \mathrm{H}-6\right), 3.08\left(4 \mathrm{H}, \mathrm{dd}, J=3.7 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}{ }_{\mathrm{A}}\right.$), 2.93-2.79 (4 H, m, Н-6' 'А), 2.70-2.58 (4 H, m, Н-6' 'в), 2.40-2.30 (4 H, m, Н-5'), 2.22 ($4 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-$ 1'в), 2.09-1.90 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5{ }^{\prime \prime}$), 1.09 ($36 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.5$ (Civ), 144.8, 144.7 (C-2''), 139.0, 138.6, 137.9 (Car), 133.6 (Civ), 128.8-127.3 (CHar), 126.8 (C-4), 123.0 (C-3''), 87.2 (C-3'), 78.7 (C-2'), 78.5 (C-4'), 75.4, 75.3, 73.3, $72.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 66.4 (C-6'), 64.5 (C-1'’), 64.4 (C-5'), 54.7 (C-1'), 49.5 (C-6''), 48.3 (C-4'), 38.6 (C-6), 33.9 (C-2), 31.6 (C-1), 25.9 (C-5')); HRMS (ES) $[\mathrm{M}+2 \mathrm{H}]^{2+}$: Found $1076.2614 \mathrm{C}_{204} \mathrm{H}_{234} \mathrm{~N}_{16} \mathrm{O}_{20}$ requires 1076.2616.

Compound (24)

24 was purified by flash chromatography on silica gel (AcOEt - cyclohexane, 98-2), colorless oil, 64% yield.
$[\alpha]_{\mathrm{D}}=+5\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.67\left(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{H}-3{ }^{\prime}{ }^{\prime}\right), 7.31-7.05$ ($80 \mathrm{H}, \mathrm{m}, \mathrm{Har}$), 6.72 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 5.05 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ')), 4.97-4.67(12 H, m, CH2Ph), 4.694.59 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.45-4.31 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$,), 4.29-4.09 ($12 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{H}-6 \mathrm{~B}, 8 \times \mathrm{H}-4$ '), 3.68-3.41 ($20 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$)), $3.04\left(4 \mathrm{H}, \mathrm{dd}, J=4.8 \mathrm{~Hz}, J=11.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{A}\right), 2.87(4 \mathrm{H}$, д, $J=12.7 \mathrm{~Hz}, 4 \times \mathrm{H}-6 \mathrm{~B}$), 2.82-2.69 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ ' ${ }^{\text {A }}$), 2.61-2.46 (4 Н, $\mathrm{m}, \mathrm{H}-6$ ' ${ }^{\text {в) }}$) 2.36-2.27 (4 H, m, H-5'), 2.16 (4 H, t, J = 10.8 Hz, H-1'в), 2.04-1.87 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ '’), 1.06 ($36 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$).; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.2$ (Civ), 145.1, 144.6 (C-2') , 139.1, 138.7, 137.9 (Car), 134.2 (Civ), 128.4-127.3 (CHar), 125.1(C-4), 124.5 (C-3'’), 87.3 (C-3'), 78.7 (C-2'), 78.5 (C4'), 75.4, 75.2, 73.3, 72.8 (CH 2 Ph), 66.5 (C-6',C-1''), 64.4 (C-5'), 54.6 (C-1'), 49.4 (C-6' '), 48.4 (C-4''), 34.0 (C-2), 31.6 (C-6), 31.4 (C-1), 26.1 (C-5')); HRMS (ES) [M+2H] ${ }^{2+}$: Found $1613.8887 \mathrm{C}_{204} \mathrm{H}_{234} \mathrm{~N}_{16} \mathrm{O}_{20}$ requires 1613.8854 .

Compound (25)

25 was purified by flash chromatography on silica gel ($\mathrm{AcOEt}-\mathrm{MeOH}, 99-1$), colorless oil, 69\% yield.
$[\alpha]_{\mathrm{D}}=+28\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.96,7.78,7.76,7.54(4 \mathrm{H}, \mathrm{s}, 4$ x H-3''), 7.45-7.12 (80 H, m, Har), 5.1-4.75 (18 H, m, $12 \times \mathrm{CHHPh}, 5 \times \mathrm{H}-1$ ', H-1), 4.784.63 ($11 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2} \mathrm{Ph}, 3 \times \mathrm{H}-1$ '’), 4.50-4.32 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CHHPh}$), 4.34-4.13 (8 H, m, H-4’'), $3.92(1 \mathrm{H}, \mathrm{t}, J=9.2 \mathrm{~Hz}, \mathrm{H}-3), 3.84(1 \mathrm{H}, \mathrm{dd}, J=3.7 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~A}), 3.78-3.45(24 \mathrm{H}$, m, H-2', $3^{\prime}, 4^{\prime}, 6^{\prime}, \mathrm{H}-2,4,5,6$ в $), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.93-2.78\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}{ }^{\text {A }}\right.$), 2.69-2.59 (4 H,
 1.89-1.71 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ') $){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.0$, 144.8, 144.7, 144.6 (C2'’), 139.0, 138.5, 137.8 (Car), 128.7-127.5 (CHar), 123.8, 123.5, 123.0 (C-3'’), 97.8 (C-1), 87.2 (C-3'), 81.6 (C-3), 79.8 (C-2), 78.6 (C-2'), 78.4 (C-4'), 77.5 (C-4), 75.3, 75.2, 73.3, 72.8 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.0(\mathrm{C}-5), 68.8(\mathrm{C}-6), 66.4\left(\mathrm{C}-1\right.$ '’), $64.8\left(\mathrm{C}-6\right.$ '), $64.4\left(\mathrm{C}-5\right.$ '), $55.2\left(\mathrm{OCH}_{3}\right), 54.4(\mathrm{C}-$ 1'), 49.2 (C-6''), 48.4 (C-4''), 25.9 (C-5''); HRMS (MALDI) [M+Na] ${ }^{+}$: Found 2794.4184 $\mathrm{C}_{167} \mathrm{H}_{190} \mathrm{~N}_{16} \mathrm{O}_{22} \mathrm{Na}$ requires 2794.4133.

Compound (26)

26 was purified by flash chromatography on silica gel ($\mathrm{AcOEt}-\mathrm{MeOH}, 99-1$), colorless oil, 66\% yield.
$[\alpha]_{\mathrm{D}}=+14\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75,7.61,7.58,7.48(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 3'’), 7.40-7.08 ($80 \mathrm{H}, \mathrm{m}, \mathrm{Har}$), 5.02-4.72 ($18 \mathrm{H}, \mathrm{m}, 12 \times \mathrm{CHHPh}, 5 \times \mathrm{H}-1$ '', H-1), 4.72-4.50 ($11 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2} \mathrm{Ph}, 3 \times \mathrm{H}-1$ ''), 4.49-4.32 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.32-4.08 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ''), 4.04-4.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-3$), 4.93-4.83 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,-5$), 3.70-3.40 (22 H, m, $4 \times \mathrm{H}-2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$, H-6), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.12-2.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1{ }^{\text { }}$), 2.83-2.71 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6{ }^{\prime}{ }^{\prime}$), 2.64-2.46 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ ' ${ }^{\text {в }}$), 2.39-2.28 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ '), 2.23-2.10 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ 'в), 2.07-1.90 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 5^{\prime}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.0,144,9,144.5$ (C-2'’), 139.0, 138.5, 137.8 (Car), 128.7-127.5 (CHar), 123.2-122.9 (C-3'’), 98.5 (C-1), 87.1 (C-3'), 79.3 (C-3), 78.9 (C-2), 78.6 (C-2'), 78.4 (C-4'), 77.4 (C-4), 75.3, 75.0, 73.3, 72.8 ($\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 69.2$ (C-5), 69.0 (C-6), 66.2 (C-1'’), 65.0 (C-6'), 64.5 (C-5'), $55.3\left(\mathrm{OCH}_{3}\right), 54.4$ (C-1'), 49.2 (C-6'’), 48.3 (C-4'), 25.9 (C-5'’); HRMS (MALDI) [M+Na] ${ }^{+}$: Found $2794.4111 \mathrm{C}_{167} \mathrm{H}_{190} \mathrm{~N}_{16} \mathrm{O}_{22} \mathrm{Na}$ requires 2794.4133.

Compound (27)

27 was purified by flash chromatography on silica gel ($\mathrm{DCM}-\mathrm{MeOH}, 8-2$), purple solid, 66\% yield.
$[\alpha]_{\mathrm{D}}=$ too dark for analysis; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.93(8 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 8.11(8 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}, \mathrm{H}-5), 7.43(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ ' $)$, 7.22 ($8 \mathrm{H}, \mathrm{d}, ~ J=8.3 \mathrm{~Hz}, \mathrm{H} 6$), $5.09-4.97$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$, 4'), 4.97-4.83 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ '), 4.67 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$ ''), 4.22-3.99 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ ', -4'), 3.11 (4 H , dd, $J=4.9 \mathrm{~Hz}, J=11.8 \mathrm{~Hz}, \mathrm{H}-1$ 'А), 2.77-2.65 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ ' ${ }^{\text {в }}$), 2.61-2.51 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ '), 2.42-2.28 (4 H, m, Н-6' ' ${ }^{\prime}$), 2.25-2.15 (4 H, m, Н-1'в), 2.06-1.96 (48 H, m, СНЗ), 1.94-1.84 (8 H, m, H-5'’); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7-169.8(\mathrm{C}=\mathrm{O}), 157.9$, 150.5, 143.9, 136.5 (Civ), 135.9 (C-5), 131.8 (C1), 122.5 (C-2’), 120.4 (Civ), 112.9 (C-6), 74.4 (C-4'), 69.4 (C-3'), 69.2 (C-2'), 62.4 (C-5'), 61.9 (C-1'’), 59.6 (C-6'), 52.7 (C-1'), 48.4 (C-6'), 47.9 (C-4''), $27.1\left(\mathrm{C}-5{ }^{\prime \prime}\right), \quad 20.9 \quad\left(\mathrm{CH}_{3}\right) ; \quad$ HRMS (ES) $\quad[\mathrm{M}+2 \mathrm{H}]^{2+}$: Found 1275.4588 $\mathrm{C}_{124} \mathrm{H}_{142} \mathrm{~N}_{20} \mathrm{O}_{36} \mathrm{Zn}$ requires 1275.4577.

Compound (28)

28 was purified by flash chromatography on silica gel ($\mathrm{DCM}-\mathrm{MeOH}, 98-2$), colorless oil, 58% yield.
$[\alpha]_{\mathrm{D}}=+24\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.07,8.04,7.98,7.74(8 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $\left.3^{\prime}{ }^{\prime}\right)$, $5.18(2 \mathrm{H}, \mathrm{d}, J=3.46 \mathrm{~Hz}, \mathrm{H}-1)$, 5.08-4.98 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ', -4'), 4.98-4.74 ($16 \mathrm{H}, \mathrm{m}, 8 \mathrm{x}$ H-2', $8 \times \mathrm{H}-1$ ''), 4.73-4.57 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ''), 4.50-4.28 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ''), 4.19-4.01 ($18 \mathrm{H}, \mathrm{m}$, $16 \times \mathrm{H}-6$ ', $2 \times \mathrm{H}-5$), $3.80(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{H}-3$), 3.75-3.65 (4 H, m, H-6), 3.56-3.41 (4 H, m, H-2, -4), 3.26-3.13 (8 H, m, H-1'А), 2.97-2.79 (8 H, m, H-6' '), 2.72-2.47 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ', -6''), 2.41-2.22 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ' ${ }^{\prime}$), 2.18-1.89 (112 H, m, H-5', CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=170.3-169.7(\mathrm{C}=\mathrm{O}), 145.2-144.3$ (C-2'’), 124.3-123 (C-3''), $93.6(\mathrm{C}-1), 81.1(\mathrm{C}-3), 79.4$ (C2), 77.3 (C-4), 74.5 (C-4'), 70.7 (C-5), 69.4 (C-6, $\left.2^{\prime}, 3^{\prime}\right), 66.4,66.0,64.8,64.4$ (C-1'), 62.1 (C-5'), 59.8 (C-6'), 52.8 (C-1'), 48.6 (C-6'), 48.0 (C-4'), 26.9 (C-5''), 20.9 (CH_{3}); HRMS (MALDI) $[\mathrm{M}+4 \mathrm{H}]^{4+}$: Found $990.9178 \mathrm{C}_{172} \mathrm{H}_{250} \mathrm{~N}_{32} \mathrm{O}_{75}$ requires 990.9216.

Compound (29)

29 was purified by flash chromatography on silica gel ($\mathrm{DCM}-\mathrm{MeOH}, 99-1$), colorless oil, 57\% yield.
$[\alpha]_{\mathrm{D}}=+57\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.70\left(8 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}{ }^{\prime}\right), 5.19(8 \mathrm{H}, \mathrm{d}$, $J=3.43 \mathrm{~Hz}, \mathrm{H}-1$), 5.08-4.99 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime},-4{ }^{\prime}$), 4.98-4.87 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), 4.64-4.50 (16 H , m, H-1''), 4.45-4.30 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ''), 4.14 ($16 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 4.01-3.90 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 6А), 3.82-3.44 ($80 \mathrm{H}, \mathrm{m}, \mathrm{H}-3,-4,-5,-6 \mathrm{~B}, \mathrm{~A}, \mathrm{~B}$), 3.25-3.08 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-1^{\prime}{ }_{\mathrm{A}}$), 2.94-2.83 (8 H , m, Н-6' 'А), 2.71-2.53 (16 H, m, Н-5', -6' 'в), 2.36-2.26 (8 H, m, Н-1'в), 2.08-1.97 (112 H, m, $\mathrm{H}-5^{\prime}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6-169.7$ (C=O), $145.0\left(\mathrm{C}-2{ }^{\prime}\right)$), 123.0 (C3'’), 98.2 (C-1), 82.1 (C-2,-3), 78.6 (C-4), 74.4 (C-4'), 71.2 (C-5), 69.2 (C-6, -2 ', -3 '), 64.9 (C-1''), 61.9 (C-5'), 61.4 (C-A), 59.6 (C-6'), 58.8 (C-B), 52.7 (C-1'), 48.6 (C-6''), 47.9 (C$4{ }^{\prime}$), $26.8\left(\mathrm{C}-5\right.$ ''), $20.7\left(\mathrm{CH}_{3}\right)$.; HRMS (ES) $[\mathrm{M}+5 \mathrm{H}]^{5+}$: Found $1028.6470 \mathrm{C}_{224} \mathrm{H}_{341} \mathrm{~N}_{32} \mathrm{O}_{104}$ requires 1028.6488 .

General procedure for benzyl hydrogenolysis

Catalytic hydrogenation of compound $26(80 \mathrm{mg}, 28.8 \mu \mathrm{~mol})$ was carried out with $\mathrm{Pd}(\mathrm{OH})_{2}$ (73 mg) in $\mathrm{MeOH}-1 \mathrm{M}$ aq. HCl solution ($10 \mathrm{~mL}, 8: 2$) at 1 atm for 48 h . The catalyst was filtered over celite and the solvent removed under reduced pressure to give compound $\mathbf{5}$ (quant) as a sticky solid.

General procedure for acetates deprotection

Compound 29 ($30 \mathrm{mg}, 0.0058 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1-1,5 \mathrm{~mL})$. Amberlite resin IRA $400 \mathrm{OH}-1.25 \mathrm{meq} / \mathrm{mL}(780 \mathrm{mg})$ was added to the solution, and the mixture was stirred overnight at room temperature. The resin was filtered off and washed with methanol and water. The solvent was evaporated under reduced pressure to give compound $\mathbf{8}(20 \mathrm{mg}$, 91%) as pale yellow solid.

Compound (1)

1 was purified by flash chromatography on silica gel (AcOEt - cyclohexane, 99-1), white solid, 92% yield.
$[\alpha]_{\mathrm{D}}=-8\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4{ }^{\prime}\right), 4.79$ [under solvent peak] ($2 \mathrm{H}, \mathrm{H}-6^{\prime}$), 4.57-4.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ') , $3.82(2 \mathrm{H}, \mathrm{d}, J=2.57 \mathrm{~Hz}, \mathrm{H}-6), 3.62-3.54(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2), 3.42(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}, \mathrm{H}-4), 3.31(1 \mathrm{H}, \mathrm{t}, J=9.2 \mathrm{~Hz}, \mathrm{H}-3), 3.02(1 \mathrm{H}, \mathrm{dd}, J=4.96 \mathrm{~Hz}$, $\left.J=11.3 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}\right), 2.87-2.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1{ }^{\prime}{ }^{\mathrm{A}}\right.$), 2.75-2.55 (1 H, m, H-1' ${ }^{\mathrm{B}}$), 2.39-2.27 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1 \mathrm{~B},-5$), 2.24-2.14 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=147.0$ (C-5'), 124.1 (C4^{\prime}), 78.3 (C-3), 70.0 (C-4), 68.9 (C-2), 64.8 (C-5), 57.6 (C-6), 55.3 (C-1), 54.7 (C-6'), 49.3 (C-3'), 48.6 (C-1'), 23.2 (C-2'); HRMS (MALDI) $[\mathrm{M}+\mathrm{H}]^{+}$: Found $303.1655 \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires 303.1663 .

Compound (2)

White solid, $[\alpha]_{\mathrm{D}}=-4\left(\mathrm{c}=0.3, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=7.99(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$ '' $), 7.03$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 4.75-4.72 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '’), 4.70-4.59 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ '"), 4.08 ($4 \mathrm{H}, \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}$, Н-6'А), 4.02-3.94 (4 H, m, Н-6'в), 3.93-3.85 (4 H, m, Н-2'), 3.77-3.70 (4 H, m, Н-4'), 3.70-
 $\mathrm{t}, J=11.8 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}$ в), 2.62-2.45 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$ '), 1.06 ($36 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=153.6$ (Civ), 145.0,144.4 (C-2''), 133.4 (Civ), 127.1 (C-4), 125.9 (C-3'’), 75.8 (C3'), 67.1 (C-4'), 65.9 (C-2'), 65.7 (C-5'), 63.8 (C-1'’), 53.9 (C-6'), 53.3 (C-1'), 50.1 (C-6' '), 47.3 (C-4''), 36.8 (C-6), 33.4 (C-2), 30.8 (C-1), 23.6 (C-5''); HRMS (ES) [M+2Na] ${ }^{2+}$: Found $915.4951 \mathrm{C}_{92} \mathrm{H}_{136} \mathrm{~N}_{16} \mathrm{Na}_{2} \mathrm{O}_{20}$ requires 915.4968.

Compound (3)

White solid, $[\alpha]_{\mathrm{D}}=-8(\mathrm{c}=0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta=8.08\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-3{ }^{\prime}{ }^{\prime}\right)$, 6.79 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 5.05 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$ ''), 4.51-4.43 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ''), 4.22 ($4 \mathrm{H}, \mathrm{d}, \mathrm{H}-6 \mathrm{~A}$), 3.863.75 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}$), 3.50-3.42 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), $3.36\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.15(4 \mathrm{H}, \mathrm{t}, J=$ $\left.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.03-2.94$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~B},-1{ }^{\prime}{ }_{\mathrm{A}}$), 2.91-2.78 (4 H, m, H-6' ${ }^{\prime}$ A), 2.53-2.43 (4 H, m, H6 ' 'в), 2.15-2.00 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ 'в, -5 ', -5 ''), 0.97 ($36 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , MeOD): $\delta=153.4,146.5,145.7,135.5\left(\mathrm{C}_{\text {IV }}\right), 126.6$ (C-3'’), 126.3 (C-4), 80.5 (C-3'), 72.1 (C-4'), 70.8 (C-2'), 67.9 (C-5'), 67.4 (C-1'’) 59.6 (C-6'), 57.8 (C-1'), 50.3 (C-6'’), 49.5 (C-4’'), 34.8 (C2), 32.9 (C-6), 32.0 (C-1), 27.3 (C-5''); HRMS (ES) $[\mathrm{M}+2 \mathrm{Na}]^{2+}$: Found 915.4951 cf comp prec $\mathrm{C}_{92} \mathrm{H}_{136} \mathrm{~N}_{16} \mathrm{Na}_{2} \mathrm{O}_{20}$ requires 915.4949 .

Compound (4)

White solid, $[\alpha]_{\mathrm{D}}=-15\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=8.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}{ }^{\prime}\right), 8.12$
 3.69 ($12 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-5,-6,-\mathrm{H}^{\prime} \mathbf{\prime}^{\prime},-6^{\prime}$ в), 3.69-3.42 ($18 \mathrm{H}, \mathrm{m}, \mathrm{H}-3,-4,-1^{\prime},-2^{\prime},-3^{\prime},-$ ' $^{\prime \prime}{ }^{\prime}$), 3.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.35-3.18(8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ', -6 ' 'в), $3.12(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{H}-1$ '), 2.56-2.35 (8 H, m, H-5' ${ }^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=143.6-143.4$ (C-2'’), 125.8-125.4 (C-3'"), 97.0 (C-1), 80.4 (C-2), 78.9 (C-3), 76.7 (C-4), 75.7 (C-3'), 69.1 (C-5), 68.0 (C-6), 67.0 (C-2'), 66.0 (C-4'), 65.5 (C-5'), 64.9, 64.7, 62.9, $62.8\left(\mathrm{C}-1 ’\right.$ '), $55.1\left(\mathrm{OCH}_{3}\right), 53.8(\mathrm{C}-6$ '), 53.3 (C-1'), 50.1
(C-6''), 47.6 (C-4'’), 23.3 (C-5''); HRMS (MALDI) [M+Na] ${ }^{+}$: Found 1353.6590 $\mathrm{C}_{92} \mathrm{H}_{136} \mathrm{~N}_{16} \mathrm{NaO}_{20}$ requires 1353.6621 .

Compound (5)

White solid, $[\alpha]_{\mathrm{D}}=+32\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.15,8.12(4 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-$ 3''), 4.93-4.66 (9 H, m, H-1'’, H-1), 4.64-4.61 (8 H, m, H-4''), 4.23-4.18 (1 H, m, H-3), 4.10$4.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.00-3.82\left(10 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-4,-6{ }^{\prime}\right), 3.76-3.61\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~A},-\mathbf{2}^{\prime}\right), 3.59-3.49$ (5 H, m, H-6в, -4'), 3.47-3.35 (7-H, m, H-3', OMe), 3.32-3.22 (4 H, m, H-1' ${ }^{\prime}$), 3.17-3.05(4 H, m, Н-6' ${ }^{\prime}$), 3.03-2.87 (4 H, m, Н-6' 'в), 2.75-2.06 (8 H, m, H-1' ${ }^{\text {в, }}$-5'), 2.41-2.24 (8 H, m, Н$\left.5^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): ~ \delta=144.1(\mathrm{C}-2 ’ ’), 125.3(\mathrm{C}-3 ' ’), 97.7(\mathrm{C}-1), 77.5(\mathrm{C}-3), 77.3$ (C-3'), 75.7 (C-2), 74.8 (C-4), 68.9 (C-6, 2'), 68.5 (C-5), 67.7 (C-4'), 65.1 (C-5’), 65.0, 63.5,
 $\left.5^{\prime}{ }^{\prime}\right)$; HRMS (MALDI) $[\mathrm{M}+\mathrm{Na}]^{+}$: Found $1353.6659 \mathrm{C}_{92} \mathrm{H}_{136} \mathrm{~N}_{16} \mathrm{NaO}_{20}$ requires 1353.6621.

Compound (6)

Purple solid, $[\alpha]_{\mathrm{D}}=$ Too dark for analysis; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}+\varepsilon \mathrm{D}_{2} \mathrm{O}\right) \delta=8.73(8 \mathrm{H}$, s, H-1), 8.26 (4 H, s, H-3''), 7.95 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 7.30 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), 5.26 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$ ''), 4.554.30 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ''), 3.80-3.58 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}$), 3.38-3.31 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ '), $3.19(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.4$ Hz, H-4'), 3.04 ($4 \mathrm{H}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-3$ '), 3.00-2.84 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ' $\mathrm{A}, \mathrm{H}-6{ }^{\prime}{ }^{\prime}$ A), 2.71-2.58 ($4 \mathrm{H}, \mathrm{m}$, Н-6' ${ }^{\prime}$ в), 2.30-2.18 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ 'в, -5 '), 2.17-2.03 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ')) ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO $+\varepsilon \mathrm{D}_{2} \mathrm{O}$): $\delta=158.2,150.4,143.7(\mathrm{Civ}), 136.1(\mathrm{C}-5), 132.3(\mathrm{C} 1), 125.7(\mathrm{C}-3$ '’), 120.8 (Civ), 113.6 (C-6), 78.3 (C-3'), 69.8 (C-4'), 68.5 (C-2'), 66.7 (C-5'), 61.8 (C-1’’), 57.4 (C-6’), 55.9 (C-1'), 49.8 (C-6''), 48.5 (C-4'’), 25.4 (C-5''); HRMS (ES) [M+2H] ${ }^{2+}$: Found 939.3743 $\mathrm{C}_{92} \mathrm{H}_{110} \mathrm{~N}_{20} \mathrm{O}_{20} \mathrm{Zn}$ requires 939.3767.

Compound (7)

White solid, $[\alpha]_{\mathrm{D}}=+15\left(\mathrm{c}=0.5, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.10-8.04(8 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $\left.3^{\prime \prime}\right)$, 5.26 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{H}-1$), 4.99-4.58 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ''), 4.57-4.35 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ ''), 4.07-3.89 (4 H, m, H-3, -5), 3.88-3.74 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}$), 3.73-3.52 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-4,-6,-2$ '), 3.46-3.36 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ '), 3.34-3.25 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 3.07-2.95 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ' A), 2.90-2.57 (16 H, m, H-6''), 2.38-2.21 (16 H, m, H-1'в, -5'), 2.21-2.04 (16 H, m, H-5'); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=144.3-143.7$ (C-2’’), 125.2-124.8 (C-3’'), 92.4 (C-1), 80.4 (C-3), 78.5 (C-2), 78.3 (C-3'), 76.7 (C-4), 70.2 (C-5), 70.1 (C-4'), 68.9 (C-2'), 67.8 (C-6), 65.5 (C-1’’), 64.9 (C5'), 63.6, 63.3 (C-1''), 57.6 (C-6'), 55.4 (C-1'), 48.6 (C-4'’,6'), 24.0 (C-5'’); HRMS (ES) $[\mathrm{M}+2 \mathrm{Na}]^{2+}$: Found $1330.6411 \mathrm{C}_{108} \mathrm{H}_{182} \mathrm{~N}_{32} \mathrm{Na}_{2} \mathrm{O}_{43}$ requires 1330.6445 .

Compound (8)

White solid, $[\alpha]_{\mathrm{D}}=+37\left(\mathrm{c}=0.5, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=8.11\left(8 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right)$), 5.29 ($8 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 4.75-4.54 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ '’), 4.54-4.38 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-4{ }^{\prime}$), 4.09-3.51 (112 H, m, H-3, $-4,-5,-6,-2^{\prime},-6^{\prime},-7^{\prime}$ А,,$-7{ }^{\prime}$ в), 3.48-3.37 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ '), 3.37-3.25 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-3^{\prime}$), 3.02 ($8 \mathrm{H}, \mathrm{dd}, J=4.75 \mathrm{~Hz}, J=11 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{A}$), 2.94-2.78 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}{ }^{\prime} \mathrm{A}$), 2.77-2.64 ($8 \mathrm{H}, \mathrm{m}$, Н-6' ${ }^{\text {в }}$), 2.42-2.26 (m, $16 \mathrm{H}, \mathrm{H}-1{ }^{\prime}$ в, 5 '), 2.22-2.07 ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-5{ }^{\prime}$) $){ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{D}_{2} \mathrm{O}$): $\delta=144.0$ (C-2'"), 125.0 (C-3''), 96.6 (C-1), 81.4-79.8 (C-3,2), 78.4 (C-3'), $75.8(\mathrm{C}-4)$, 70.0 (C-5,4'), 68.8 (C-6,2'), 65.0 (C-5'), 63.6 (C-1’'), 59.8-58.8 (C-A), 58.4 (C-B), 57.7 (C6'), 55.5 (C-1'), 48.8 (C-6''), 48.6 (C-4''), 24.2 (C-5'').

General procedure for the inhibition assays

Inhibition constant $\left(K_{\mathrm{i}}\right)$ values were determined by spectrophotometrically measuring the residual hydrolytic activities of the glycosidases against the respective o - (for β-gluco/ β-galactosidase from bovine liver) or p-nitrophenyl α - or β-D-glycopyranoside (for other glycosidases) or α, α '-trehalose (for trehalase). Each assay was performed in phosphate buffer or phosphate-citrate buffer (for α - or β mannosidase and amyloglucosidase) at the optimal pH for the enzymes. The reactions were initiated by addition of enzyme to a solution of the substrate in the absence or presence of various concentrations of inhibitor. The mixture was incubated for $10-30 \mathrm{~min}$ at $37{ }^{\circ} \mathrm{C}$ or $55{ }^{\circ} \mathrm{C}$ (for amyloglucosidase) and the reaction was quenched by addition of $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$. Reaction times were appropriate to obtain $10-20 \%$ conversion of the substrate in order to achieve linear rates. The absorbance of the resulting mixture was determined at 405 nm . Approximate values of K_{i} were determined using a fixed concentration of substrate (around the K_{M} value for the different glycosidases) and various concentrations of inhibitor. Full K_{i} determinations and enzyme inhibition mode were determined from the slope of Lineweaver-Burk plots and double reciprocal analysis.

Representative Lineweaver-Burk Plot

Figure S1. Lineweaver-Burk Plot for K_{i} determination ($45 \mu \mathrm{M}$) and K_{i}^{\prime} determination (54 $\mu \mathrm{M})$ of $\mathbf{2}$ against baker yeast α-glucosidase (pH 6.8).

Figure S2. Lineweaver-Burk Plot for K_{i} determination $(0.5 \mu \mathrm{M})$ of $\mathbf{6}$ against Jack bean α mannosidase (pH 5.5).

Figure S3. Lineweaver-Burk Plot for K_{i} determination $(4.6 \mu \mathrm{M})$ of 7 against Aspergillus niger amyloglucosidase (pH 5.5).

Figure S4. Lineweaver-Burk Plot for K_{i} determination $(2.3 \mu \mathrm{M})$ of 5 against Aspergillus niger amyloglucosidase (pH 5.5).

Figure S5. Lineweaver-Burk Plot for K_{i} determination $(18 \mu \mathrm{M})$ and K_{i}^{\prime} determination (108 $\mu \mathrm{M}$) of $\mathbf{6}$ against green coffee α-galactosidase (pH 6.8).

Figure S6. Lineweaver-Burk Plot for K_{i} determination $(1.7 \mu \mathrm{M})$ and K_{i} ' determination (4.3 $\mu \mathrm{M}$) of 7 against green coffee α-galactosidase (pH 6.8).

GM and LM inhibition

GM and LM inhibition were measured as previously described (I. Nemčovičová, S. Šesták, D. Rendić, M. Plšková, J. Mucha, I. B. H.Wilson, Glycoconj. J. 2013, in press). Briefly, mannosidase activities were measured with p-nitrophenyl- α-D-mannopyranoside (pNP-Man; Sigma) as substrate at a concentration of 2 mM (diluted from a 100 mM stock solution in dimethylsulfoxide) in 100 mM of acetate buffer at pH 6.0 or at pH 5.2 for GM and LM , respectively. $0.5-2 \mu \mathrm{l}$ of enzyme and $10 \mu \mathrm{l}$ of the inhibitor in 50% DMSO (or the same volume of 50% DMSO in a control reaction) were incubated for 3 h at $37^{\circ} \mathrm{C}$ (total volume of $50 \mu \mathrm{l}$). In case of GM , the reaction was supplemented with 0.2 mM CoCl (final concentration). The reactions were terminated with ten volumes $(0.5 \mathrm{ml})$ of a 100 mM sodium carbonate solution. The formation of p-nitrophenol was measured at 410 nm with a spectrophotometer.

Sample preparation for AFM imaging

JB α Man was suspended in 20 mM citrate buffer pH 5.5 . The multivalent iminosugars were suspended either in citrate or citrate/DMSO (or methanol) mixtures. Mixtures of JB α Man/DNJ 1:1 ($\mathrm{mol} / \mathrm{mol}$) in 20 mM citrate buffer pH 5.5 (final concentration of JB α Man and DNJ 4.54 nM) and incubated for 1 h at room temperature. Freshly cleaved mica squares ($16 \mathrm{~mm}^{2}$) were glued onto steel sample discs (Agar Scientific, England) using Epotek 377 (Polytec, France). A $150 \mu \mathrm{~L}$ portion of the JB α Man/DNJ suspensions were then deposited onto the mica samples, and were allowed to adsorb on the solid surface for 20 h at room temperature. Subsequently, samples were rinsed 3 times with ultrapure water and they were dried in a dessicator under vacuum for 1 h . The samples were then left overnight under ambient conditions before AFM imaging.

AFM imaging

The samples were investigated using a commercial AFM (NanoScope III MultiMode AFM, Veeco Metrology LLC, Santa Barbara, CA) equipped with a $125 \mu \mathrm{~m} \times 125 \mu \mathrm{~m} \times 5 \mu \mathrm{~m}$ scanner (J-scanner). Topographic images were recorded in air in Tapping ${ }^{\text {TM }}$ mode using RTESP cantilevers (Veeco Metrology Group, Santa Barbara, CA) with a nominal spring constant of $40 \mathrm{~N} / \mathrm{m}$ (manufacturer specified), with a minimal applied force ($<200 \mathrm{pN}$), at a scan rate of 2 Hz and a drive amplitude of $\sim 300 \mathrm{kHz}$. The curvature radius of silicon nitride tips was $\sim 10 \mathrm{~nm}$. Images were obtained at room temperature $\left(21-22^{\circ} \mathrm{C}\right)$ in air. All images (512×512 pixels) shown in this paper are flattened raw data.

RESULTS

Figure S7: AFM height (left and middle) and deflection (right column) images of JB α Man alone or interacting with monovalent ligand ($\mathrm{z}=10 \mathrm{~nm}$ in height images ; scale bar is 500 nm).

Figure S8: AFM height (left and middle) and deflection (right column) images of JB α Man interacting with tetravalent ligands ($\mathrm{z}=10 \mathrm{~nm}$ in height images ; scale bar is 500 nm).

Figure S9: AFM height (left and middle) and deflection (right column) images of JB α Man interacting with mannose octavalent ligands ($\mathrm{z}=10 \mathrm{~nm}$ in height images ; scale bar is 500 nm).

Figure S10: AFM height images tetravalent ligands $\mathbf{3}$ and $\mathbf{6}$ adsorbed on mica without $\mathrm{JB} \alpha \mathrm{Man}$ (scale bar is 500 nm). Note that left and right column are the same images. Indeed, images of the left column are presented with the same z-scale as the ones with proteins (see previous figures) and the z -scale was adjusted at 2.5 nm to reveal the presence of very thin structures (right column).

Figure S11: AFM height (left and middle) and deflection (right column) images of JB α Man interacting with tetravalent ligands at different JB α Man/ligand molar ratios ($\mathrm{z}=10 \mathrm{~nm}$ in height images ; scale bar is 500 nm). By increasing the amount of ligand, the surface covered with aggregates increases in AFM images.

DLS measurements

Dynamic light scattering (DLS) was used to determine the hydrodynamic diameter of protein/ligands complexes in solution (20 mM citrate buffer pH 5.5). Samples were prepared by incubating the protein with the different ligands ($1: 10$, molar ratio) at $4.54 \mu \mathrm{M}$ during one hour at ambient temperature under gentle agitation. The measurements were performed with the Zetasizer (Nano ZS, Malvern Instruments Ltd., UK). The mean hydrodynamic diameter was determined from the autocorrelation function of the intensity of light scattered from the particles. The software used was DTS Nano version 5.03, supplied by the manufacturer (Malvern Instruments Ltd.).

Figure S12: Typical size distribution graph obtained by DLS on mixtures of $\mathrm{JB} \alpha \mathrm{Man} / 6$ in 1:10 molar ratio. Theses results show the coexistence of large complexes (731.9 ± 161.9) with the free protein (10.4 ± 2.2) and the free ligand 6 (less than 1 nm$)$.

1	1	1	1	1	1	1	1	1	1	1	
200	180	160	140	120	100	80	60	40	20	0	ppm

r
\qquad

$$
9 \varepsilon 6^{\circ} \mathrm{sz}-
$$

$\left.\begin{array}{llllllllllllllllll} & 210 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40\end{array}\right) 30$
(R=H)

(R=C)

hemithere \uparrow \qquad
\qquad

(R=H)

L8T・もて—

8 ($\mathrm{R}=\mathrm{H}$)

