Biarylmethoxy nicotinamides as novel and specific inhibitors of Mycobacterium tuberculosis (Mtu)

Chaitanya Kumar Kedari ${ }^{2}$, Nilanjana Roy Choudhury ${ }^{1}$, Sreevalli Sharma ${ }^{1}$, Parvinder Kaur ${ }^{1}$, Supreeth Guptha ${ }^{1}$, Manoranjan Panda ${ }^{1}$, Kakoli Mukerjee ${ }^{2}$, Vasanthi Ramachandran ${ }^{1}$, Balachandra Bandodkar ${ }^{2}$, Sreekanth Ramachandran ${ }^{1}$ and Subramanyam J Tantry ${ }^{1 *}$
${ }^{1}$ AstraZeneca India Pvt. Ltd, Avishkar, Bellary Road, Bangalore-560024, India
${ }^{2}$ Present address: Alkem Laboratories Ltd, Peenya Industrial Estate, Bangalore 560024, India

Table 4: Ring B, linker modifications and SAR

entry \begin{tabular}{l}

Ring $\mathrm{B} \&$
linker
substitution

 MIC

($\mu \mathrm{g} / \mathrm{mL})$
\end{tabular}

Table 5. In-vitro DMPK profiling

DMPK Properties	9a	9f	9c	9j	9k
LogD	3.0	3.4	3.1	2.8	3.0
MuCL $\left._{\text {int }} \mu \mathrm{L} \backslash \mathrm{min} \backslash \mathrm{mg}\right)$	26.0	ND	7.6	16	44
Hu PPB (\% free)	4.2	<1	2.1	<1	1.8
CYP1A2 $(\mu \mathrm{M})$	>20	>20	>20	>20	>20
CYP3A4 $(\mu \mathrm{M})$	>20	>20	>20	>20	>20
CYP2D6 $(\mu \mathrm{M})$	>20	>20	>20	>20	>20
CYP2C9 $(\mu \mathrm{M})$	>20	12.4	10.7	>20	19
CYP2C19 $(\mu \mathrm{M})$	>20	9.1	>20	18	>20

Table 6. Studies on drug sensitive and single drug resistant clinical isolates

*Uncharacterized clinical isolates, ${ }^{\dagger}$ Uncharacterized clinical isolate, refer to www.atcc.org, ${ }^{\dagger}$ Mutation mapped to alkyl hydroxyperoxide reductase subunit C (AhpC).

Table. 7. Solubility data for compounds*
entry
*Throught the study, ring A was 4-(2-methoxyethoxy)-2-methylphenyl and ring B was pyridine.

Experimental Section: Chemistry

All anhydrous solvents, reagent grade solvents for chromatography and starting materials were purchased from either Sigma Aldrich Chemical Co. or Fisher Scientific. Water was distilled and purified through a Milli-Q water system (Millipore Corp., Bedford, MA). General methods of purification of compounds involved the use of preloaded silica cartridges purchased from Grace Purification systems and / or re-crystallized. The reactions were monitored by TLC on pre-coated Merck $60 \mathrm{~F}_{254}$ silica gel plates and visualized using UV light (254 nm). All compounds were analyzed for purity by LCMS, HPLC 1H NMR and HRMS. 1 H NMR was done using Bruker 300 MHz NMR and/or Bruker 400 MHz NMR spectrometers. Chemical shifts are reported in ppm (δ) relative to the residual solvent peak in the corresponding spectra; chloroform $\delta 7.26$ and $\delta 77.23$, methanol $\delta 3.31$ and $\delta 49.00$, DMSO-d6 $\delta 3.33$ and coupling constants (J) are reported in hertz (Hz) (where, $\mathrm{s}=$ singlet, bs $=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{bd}=$ broad doublet, $\mathrm{ddd}=$ double doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{tt}-$ triple triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$ and analyzed using ACD NMR data processing. Mass spectra values are reported as m / z. HPLC was carried out on Agilent 1200 series instrument using SUNFIRE C-18 $4.6 \times 50 \mathrm{~mm}$ column. Mobile phase: Solvent A: $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ at $p \mathrm{H} 4.0$; Solvent B: Acetonitrile; Flow rate: $1.0 \mathrm{~mL} \backslash \mathrm{~min}$.

All reactions were conducted under Nitrogen unless otherwise noted. Solvents were removed in vacuo on a rotary evaporator.

Abbreviations: NMP $=$ N-methyl Pyrrolidine; $\mathrm{HCl}=$ hydrochloric acid; $\mathrm{DMF}=$ dimethylformamide; $\mathrm{NaH}=$ sodium hydride; $\mathrm{CsF}=$ caesium fluoride; $\mathrm{CsCO} 3=$ Caesium carbonate; LAH=Lithium aluminium hydride.

Preparation of Key Intermediates and Final Products

General procedure followed for the synthesis of title compounds $\mathbf{5 a - g}$ and $\mathbf{1 6 - 2 2}$ is demonstrated through the synthesis of a representative compound 2-((5-(4-methoxy-2-methylphenyl)pyridin-2-yl)methoxy) nicotinamide 5b

Step 1: Synthesis of 5-(4-methoxy-2-methylphenyl)picolinate intermediate (3).

In a 10 mL Biotage Microwave vial, a solution of 4-methoxy-2-methylphenylboronic acid $(0.250 \mathrm{~g}, 1.51 \mathrm{mmol})$ and methyl 5-bromopicolinate $(0.325 \mathrm{~g}, 1.51 \mathrm{mmol})$ dissolved in methanol $(10 \mathrm{~mL})$ was placed. To this solution, CsF $(0.686 \mathrm{~g}, 4.52 \mathrm{mmol})$ and PdCl_{2} (dppf)$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct ($0.062 \mathrm{~g}, 0.08 \mathrm{mmol}$) was added. The resulting suspension was purged with N_{2} gas for 5 minutes and then irradiated with microwave at $120^{\circ} \mathrm{C}$ for 30 min . The completion of the reaction was monitored by LCMS. After completion of the reaction, the crude mixture was filtered through celite bed and the filterate was evaporated under reduced pressure. The resulting residue was re-dissolved in ethylacetate $(20 \mathrm{~mL})$ and the organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give a crude mass. The crude mass was purified by flash chromatography through pre-loaded silica gel columns using $0-5 \%$ methanol-dichloromethane gradient to give 0.220 g of methyl 5-(4-methoxy-2methylphenyl)picolinate (3), in 56.8% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- $d 6$) $\delta \mathrm{ppm} 2.26$ (s, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 6.88-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.29 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (dd, $J=8.10,2.26 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=1.51 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS calcd. 257.2; Found: $258.0(\mathrm{M}+\mathrm{H})^{+}$

Step 2. Synthesis of 5-(4-methoxy-2-methylphenyl)pyridin-2-yl)methanol intermediate

 (4).

In a 100 mL RB flask, methyl 5-(4-methoxy-2-methylphenyl)picolinate ($0.2 \mathrm{~g}, 0.78 \mathrm{mmol}$) dissolved in THF (10 mL) was taken. The resulting solution was then cooled to $0^{\circ} \mathrm{C}$ on an ice bath. Lithium aluminium hydride $(0.057 \mathrm{~g}, 1.56 \mathrm{mmol})$ was slowly added onto the reaction mixture under N_{2} atmosphere. With stirring, the reaction mixture was allowed to warm to room temperature over a period of 1 hr . After completion of the reaction, the reaction mass was re-cooled to $0{ }^{\circ} \mathrm{C}$ and quenched slowly by addition of saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The crude mass was extracted with ethylacetate ($3 \times 20 \mathrm{~mL}$) and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give crude product. The crude mass was purified by flash chromatography through pre-loaded silica gel columns using $0-10 \%$ methanol-dichloromethane gradient to give 0.120 g of (5-(4-methoxy-2-methylphenyl)pyridin-2-yl)methanol (4), in 67.3% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CHLOROFORM-d) $\delta \mathrm{ppm} 2.15$ (s, 3 H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 6.65-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.03$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=8.03,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.38$ (s, 1 H); ESMS calcd. 229.2; Found: 230.0 $(\mathrm{M}+\mathrm{H})^{+}$

Step 3. Synthesis of 2-((5-(4-methoxy-2-methylphenyl)pyridin-2-yl)methoxy)nicotin amide (5b).

In a 25 mL RB flask, sodium hydride 60% in paraffin oil ($0.031 \mathrm{~g}, 0.79 \mathrm{mmol}$) was suspended in DMF (10 mL) at $0^{\circ} \mathrm{C}$. To the above suspension, (5-(4-methoxy-2-methylphenyl)pyridin-2yl)methanol ($0.12 \mathrm{~g}, 0.52 \mathrm{mmol}$) was added slowly at $0{ }^{\circ} \mathrm{C}$ and the temperature was allowed
to warm to room temperature over a period of 10 min . and stirred for 30 min . The above reaction mixture was re-cooled to $0{ }^{\circ} \mathrm{C}$ and 2 -chloronicotinamide ($0.082 \mathrm{~g}, 0.52 \mathrm{mmol}$) was added slowly over a period of 10 min . The resulting solution was then heated to $100^{\circ} \mathrm{C}$ for 2 hours. The reaction was monitored by LCMS. After complétion of the reaction, the reaction mixture was quenched with water and the preciptated solid was filtered, washed with water and dried. The crude material was purified on reverse phase preparative HPLC system to give 0.12 g of 2-((5-(4-methoxy-2-methylphenyl)pyridin-2-yl)methoxy)nicotinamide (5b) in 60% yield. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CHLOROFORM}-d\right) \delta \mathrm{ppm} 2.20(\mathrm{~s}, 3 \mathrm{H}) 3.77(\mathrm{~s}, 3 \mathrm{H}) 5.67$ (s, 2 H) 5.95 (br. s., 1 H) $6.72-6.84$ (m, 2 H) $6.98-7.12$ (m, 2 H) 7.37 (d, $J=8.03 \mathrm{~Hz}, 1 \mathrm{H}) 7.60$ (dd, $J=8.03,2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.24(\mathrm{dd}, \mathrm{J}=4.77,1.76 \mathrm{~Hz}, 1 \mathrm{H}) 8.31$ (br. s., 1 H$) 8.43-8.56$ (m, 2 H). ESMS Found: $350.0(\mathrm{M}+\mathrm{H})^{+}$HRMS calcd. For $(\mathrm{M}+1) \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}, 350.1505$; found $350.1508 ; \mathrm{HPLC}_{\mathrm{R}}=5.934 \mathrm{~min}$, purity 99%.

2-((5-(2,4-dimethylphenyl)pyridin-2-yl)methoxy)nicotinamide (5a)

${ }^{1}$ H NMR (300 MHz, DMSO-d6) $\delta \mathrm{ppm} 2.21$ (s, 3 H) 2.32 (s, 3 H) 5.65 ($\mathrm{s}, 2 \mathrm{H}$) 7.07 - 7.21 (m, 4 H) 7.54 (d, $J=7.91 \mathrm{~Hz}, 1 \mathrm{H}) 7.74-7.85$ (m, 2 H) 8.02 (br. s., 1 H) 8.21 (dd, $J=7.35,1.70$ Hz, 1 H) 8.31 (dd, $J=4.80,1.79 \mathrm{~Hz}, 1 \mathrm{H}) 8.48-8.57(\mathrm{~m}, 1 \mathrm{H})$; ESMS Found: $333.9(\mathrm{M}+\mathrm{H})^{+}$ HRMS calcd. For $(M+1) \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$, 333.1603; found: 333.1601; HPLC $\mathrm{t}_{\mathrm{R}}=6.313 \mathrm{~min}$, purity 99%.

2-((5-(4-methoxy-2-methylphenyl)pyridin-2-yl)methoxy)nicotin amide (5b).

Data already given as a part of general procedure towards the synthesis of compound $\mathbf{5 b}$

2-((5-(2-fluoro-4-methoxyphenyl)pyridin-2-yl)methoxy)nicotinamide (5c).

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 3.83(\mathrm{~s}, 3 \mathrm{H}) 5.64(\mathrm{~s}, 2 \mathrm{H}) 6.89-7.06(\mathrm{~m}, 2 \mathrm{H}) 7.16$ (dd, $J=7.35,4.90 \mathrm{~Hz}, 1 \mathrm{H}) 7.50-7.60$ (m, 2 H) 7.79 (br. s., 1 H$) 7.92-8.06$ (m, 2 H) 8.20 (dd, $J=7.44,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.29$ (dd, $J=4.80,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.70$ (s, 1 H); ESMS Found: 353.9 $(\mathrm{M}+\mathrm{H})^{+}$HRMS calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{3}, 354.1248$; found $(\mathrm{M}+1) 354.1249$; HPLC $\mathrm{t}_{\mathrm{R}}=5.882$ min, purity 99%.

2-((5-(2-chloro-4-methoxyphenyl)pyridin-2-yl)methoxy)nicotinamide (5d).

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta \mathrm{ppm} 3.84$ (s, 3 H) 5.66 (s, 2 H) 7.05 (dd, $J=8.57,2.54 \mathrm{~Hz}$, 1 H) $7.13-7.22$ (m, 2 H) 7.42 (d, $J=8.48 \mathrm{~Hz}, 1 \mathrm{H}) 7.56$ (d, $J=8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.76$ (br. s., 1 H$)$ 7.88 (dd, $J=8.10,2.26 \mathrm{~Hz}, 1 \mathrm{H}) 8.01$ (br. s., 1 H$) 8.21$ (dd, $J=7.44,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.30$ (dd,
$J=4.71,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 8.59(\mathrm{~d}, J=2.07 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS Found: 369.8 (M+); HRMS calcd. For $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3}, 370.0952$; found: 370.0963 ; HPLC $\mathrm{t}_{\mathrm{R}}=6.078$ min, purity 99%.

2-(4-(1-methyl-1H-imidazol-2-yl)benzyloxy)nicotinamide (5e).

1H NMR (300 MHz , DMSO-d6) $\delta \mathrm{ppm} 3.75$ (s, 3 H) 5.57 (s, 2 H) 6.98 (s, 1 H$) 7.15$ (dd, $J=7.54,4.90 \mathrm{~Hz}, 1 \mathrm{H}) 7.25(\mathrm{~s}, 1 \mathrm{H}) 7.55-7.63(\mathrm{~m}, 2 \mathrm{H}) 7.71(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 4 \mathrm{H}) 8.18$ (dd, $J=7.54,1.88 \mathrm{~Hz}, 1 \mathrm{H}$) 8.32 (dd, $J=4.71,1.88 \mathrm{~Hz}, 1 \mathrm{H}$); ESMS found: 309.3 (M+); HRMS calcd. For $(\mathrm{M}+1) \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}, ; 309.1352$ found: $309.1353 ; \mathrm{HPLC}_{\mathrm{R}}=4.254$, purity 99%

1H NMR (400 MHz, DMSO-d6) $\delta \mathrm{ppm} 2.22$ ($\mathrm{s}, 3 \mathrm{H}$) 3.87 (s, 3 H) 5.56 (s, 2 H$) 6.79$ ($\mathrm{s}, 1 \mathrm{H}$) 7.16 (dd, $J=7.53,5.02 \mathrm{~Hz}, 1 \mathrm{H}) 7.39$ (m, $J=8.53 \mathrm{~Hz}, 2 \mathrm{H}) 7.58$ (m, $J=8.03 \mathrm{~Hz}, 2 \mathrm{H}) 7.74$ (br. s., 2 H) 7.98 (s, 1 H) 8.17 (dd, $J=7.53,2.01 \mathrm{~Hz}, 1$ H) 8.33 (dd, $J=5.02,2.01 \mathrm{~Hz}, 1 \mathrm{H}$); ESMS found: $350.0(\mathrm{M}+)$; HRMS calcd. For $(\mathrm{M}+1) \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} ;$ 350.1498; found: 350.1502; HPLC $\mathrm{t}_{\mathrm{R}}=5.95 \mathrm{~min}$, Purity 97%.

General procedure followed for the synthesis of title compounds $\mathbf{9 a - k}$ is demonstrated through the synthesis of a representative compound 2-((5-(4-methoxy-2-methylphenyl)pyridin-2-yl)methoxy) nicotinamide 9a

Step 1: 2-((5-bromopyridin-2-yl)methoxy)nicotinamide (7).

In a 50 mL round-bottomed flask, sodium hydride 60% in paraffin oil $(0.585 \mathrm{~g}, 14.63 \mathrm{mmol})$ was suspended in DMF $\left(10 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$. To the above suspension, (5-bromopyridin-2yl)methanol ($2.5 \mathrm{~g}, 13.30 \mathrm{mmol}$) was added slowly at $0^{\circ} \mathrm{C}$ and the temperature was allowed to warm to room temperature over a period of 20 min . and stirred for additional 30 min . The above reaction mixture was re-cooled to $0{ }^{\circ} \mathrm{C}$ and 2-chloronicotinamide ($2.290 \mathrm{~g}, 14.63$ mmol) was added slowly over a period of 10 min . The resulting solution was then heated to $110{ }^{\circ} \mathrm{C}$ for 2 hours and the reaction was monitored by LCMS. After completion of the reaction, the reaction mixture was quenched with water $(50 \mathrm{~mL})$ and the resulting residue was extracted into ethylacetate ($50 \mathrm{~mL} \times 2$). The combined organic layer was washed with 10% aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(30 \mathrm{~mL} \times 2)$, water $(30 \mathrm{~mL} \times 2)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent resulted in brown solid. The crude product was purified by flash chromatography through pre-loaded silica gel columns using $0-10 \%$ methanoldichloromethane gradient to give 3.5 g of 2-((5-bromopyridin-2-yl)methoxy)nicotinamide (7) in 85% yield. ESMS calcd. 308.1; found: 309.5

Step2. 2-((5-(4-hydroxy-2-methylphenyl)pyridin-2-yl)methoxy)nicotinamide (8)

In a 10 mL Biotage Microwave vial, a solution of 2-((5-bromopyridin-2-yl)methoxy) nicotinamide ($2 \mathrm{~g}, 6.5 \mathrm{mmol}$), 4-hydroxy-2-methylphenylboronic acid ($0.986 \mathrm{~g}, 6.49 \mathrm{mmol}$), $\mathrm{PdCl} 2(\mathrm{dppf})-\mathrm{CH} 2 \mathrm{Cl} 2$ adduct $(0.265 \mathrm{~g}, 0.32 \mathrm{mmol})$ and $\mathrm{CsF}(2.96 \mathrm{~g}, 19.47 \mathrm{mmol})$ dissolved in methanol (10 mL) was placed. The resulting brown coloured solution was purged with N_{2} gas for 5 minutes and then irradiated with microwave at $120^{\circ} \mathrm{C}$ for 30 min . The completion of the reaction was monitored by LCMS. After completion of the reaction, the crude mixture was filtered through celite bed and the filterate was evaporated under reduced pressure. The resulting residue was re-dissolved in ethylacetate $(100 \mathrm{~mL})$ and the organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give a crude solid. The crude solid was purified by flash chromatography through pre-loaded silica gel columns using $0-5 \%$ methanol-dichloromethane gradient to give 1.31 g of 2-((5-(4-hydroxy-2-methylphenyl)pyridin-2-yl)methoxy)nicotinamide (8) in 60.3% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6 δ ppm 2.17 (s, 3 H) 5.64 (s, 2 H$) 6.62-6.78(\mathrm{~m}, 2 \mathrm{H}) 7.06(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 1 \mathrm{H})$ 7.16 (dd, $J=7.44,4.99 \mathrm{~Hz}, 1 \mathrm{H}) 7.51(\mathrm{~d}, J=7.91 \mathrm{~Hz}, 1 \mathrm{H}) 7.76(\mathrm{dd}, J=8.19,1.98 \mathrm{~Hz}, 2 \mathrm{H}) 8.00$ (br. s., 1 H) 8.21 (dd, $J=7.44,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.30$ (dd, $J=4.90,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 8.48$ (d, $J=2.07$ Hz, 1 H) 9.46 (s, 1H); ESMS calcd. 335.3 Found: 335.6 (M+).

2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)nicotinamide (9a)

In a 25 mL RB flask, 2-((5-(4-hydroxy-2-methylphenyl)pyridin-2-yl)methoxy)nicotinamide $(0.434 \mathrm{~g}, 1.29 \mathrm{mmol})$ and potassium carbonate $(0.447 \mathrm{~g}, 3.24 \mathrm{mmol})$ was suspended in $\operatorname{DMF}(5 \mathrm{~mL})$. After stirring for 5 min at room temperature, 1-bromo-2-methoxyethane (0.146 $\mathrm{mL}, 1.55 \mathrm{mmol}$) was added at once. The resulting suspension was heated to 110 oC for 2 hr and the reaction was monitored by LCMS. After complétion of the reaction, the reaction mixture was quenched with water $(50 \mathrm{~mL})$ and the resulting residue was extracted into ethylacetate ($25 \mathrm{~mL} \times 2$). The organic layer was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (20 mL x 2), water ($20 \mathrm{~mL} \times 2$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evoparation of solvent resulted in crude product which was purified on reverse phase preparative HPLC system to give 0.4 g of 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)nicotinamide (9a) in 79\% yield. 1 H NMR (300 MHz, DMSO-d6) $\delta \mathrm{ppm} 2.22$ (s, 3 H) 3.32 (s, 3 H) 3.67 (dd, $J=5.27,3.77 \mathrm{~Hz}, 2$ H) 3.99-4.18 (m, 2 H) $5.64(\mathrm{~s}, 2 \mathrm{H}) 6.87(\mathrm{dd}, J=8.29,2.64 \mathrm{~Hz}, 1 \mathrm{H}) 6.93(\mathrm{~d}, J=2.45 \mathrm{~Hz}, 1 \mathrm{H})$ $7.10-7.22(\mathrm{~m}, 2 \mathrm{H}) 7.53$ (d, $J=8.29 \mathrm{~Hz}, 1 \mathrm{H}) 7.74-7.83$ (m, 2 H) 8.02 (br. s., 1 H) 8.20 (dd, $J=7.44,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.31$ (dd, $J=4.90,2.07 \mathrm{~Hz}, 1 \mathrm{H}) 8.51$ (d, $J=1.70 \mathrm{~Hz}, 1 \mathrm{H}$); ESMS found: $393.7(\mathrm{M}+)$; HRMS calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} ;$; 394.1761; found $(\mathrm{M}+1) 394.1760$; HPLC $\mathrm{t}_{\mathrm{R}}=$ $5.536 \mathrm{~min} .$, Purity $=99 \%$.

2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyrimidin-2-yl)methoxy)nicotinamide (9b).

1H NMR (400 MHz, DMSO-d6) δ ppm 2.24 ($\mathrm{s}, 3 \mathrm{H}$) $3.31(\mathrm{~s}, 3 \mathrm{H}) 3.65-3.68(\mathrm{~m}, 2 \mathrm{H}) 4.11$ 4.15 (m, 2 H) 5.78 (s, 2 H) $6.90(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 1 \mathrm{H}) 6.95(\mathrm{~s}, 1 \mathrm{H}) 7.17$ (dd, $J=7.53,5.02 \mathrm{~Hz}, 1$ H) $7.24(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}) 7.82-7.88(\mathrm{~m}, 1 \mathrm{H}) 8.21-8.25(\mathrm{~m}, 1 \mathrm{H}) 8.26-8.32(\mathrm{~m}, 2 \mathrm{H})$
$8.80(\mathrm{~s}, 2 \mathrm{H})$; ESMS found: $395.2(\mathrm{M}+1)$; HRMS calcd. For (M+1) $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}, 395.1713$ found 395.1714 ; $\mathrm{HPLC}_{\mathrm{R}}=5.367 \mathrm{~min}$ purity 97%.

2-((5-(2-methyl-4-((tetrahydrofuran-2-yl)methoxy)phenyl)pyridin-2-yl)methoxy)

 nicotinamide (9c).
${ }^{1} \mathrm{H}$ NMR (300 MHz , CHLOROFORM- d) $\delta \mathrm{ppm} 1.64-1.78(\mathrm{~m}, 1 \mathrm{H}) 1.83-1.96(\mathrm{~m}, 2 \mathrm{H})$ 1.96-2.10(m, 1 H$) 2.18(\mathrm{~s}, 3 \mathrm{H}) 3.71-3.82(\mathrm{~m}, 1 \mathrm{H}) 3.82-3.96(\mathrm{~m}, 3 \mathrm{H}) 4.14-4.29(\mathrm{~m}, 1 \mathrm{H})$ 5.70 (s, 2 H) 6.04 (br. s., 1 H) $6.72-6.84$ (m, 2 H) $6.94-7.11$ (m, 2 H) 7.43 (d, $J=8.10 \mathrm{~Hz}, 1$ H) 7.67 (dd, $J=8.01,2.17 \mathrm{~Hz}, 1 \mathrm{H}) 8.21$ (dd, $J=4.80,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.29$ (br. s., 1 H) 8.43 8.57 (m, 2 H).; ESMS found: 420.44 (M+1); HRMS calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}, 420.1917$; found $(\mathrm{M}+1) 420.1918 ; \mathrm{HPLC}_{\mathrm{R}}=6.026 \mathrm{~min}$ purity 99%.
(S)-2-((5-(2-methyl-4-((tetrahydrofuran-2-yl)methoxy)phenyl)pyridin-2-yl)methoxy) nicotinamide (9d)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 1.60-1.73(\mathrm{~m}, 1 \mathrm{H}) 1.79-1.92(\mathrm{~m}, 2 \mathrm{H}) 1.95-2.05$ (m, 1 H) $2.22(\mathrm{~s}, 3 \mathrm{H}) 3.62-3.73(\mathrm{~m}, 1 \mathrm{H}) 3.74-3.84(\mathrm{~m}, 1 \mathrm{H}) 3.90-4.01(\mathrm{~m}, 2 \mathrm{H}) 4.10-$ $4.21(\mathrm{~m}, 1 \mathrm{H}) 5.64(\mathrm{~s}, 2 \mathrm{H}) 6.87(\mathrm{dd}, J=8.53,2.51 \mathrm{~Hz}, 1 \mathrm{H}) 6.93(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}) 7.13$ -
7.19 (m, 2 H) 7.53 (d, $J=8.03 \mathrm{~Hz}, 1 \mathrm{H}) 7.74-7.83$ (m, 2 H) 8.02 (br. s., 1 H) 8.20 (dd, $J=7.53$, $2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.30(\mathrm{dd}, J=5.02,2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.50(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 419.6 $(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} ; 420.1917$ found(M+1) 420.1920; HPLC $\mathrm{t}_{\mathrm{R}}=6.038$ min. Purity $=99 \%$

(R)-2-((5-(2-methyl-4-((tetrahydrofuran-2-yl)methoxy)phenyl)pyridin-2-yl)methoxy) nicotinamide (9e)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 1.61-1.74(\mathrm{~m}, 1 \mathrm{H}) 1.81-1.94(\mathrm{~m}, 2 \mathrm{H}) 1.97-2.07$ (m, 1 H) 2.22 (s, 3 H) 3.63-3.72(m, 1H) 3.74-3.84(m, 1H) 3.90-4.02(m, 2 H) 4.104.23 (m, 1 H) 5.64 (s, 2 H) 6.87 (dd, $J=8.57,2.54 \mathrm{~Hz}, 1 \mathrm{H}) 6.93$ (d, $J=2.26 \mathrm{~Hz}, 1 \mathrm{H}) 7.13$ $7.20(\mathrm{~m}, 2 \mathrm{H}) 7.53$ (d, $J=8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.71-7.83$ (m, 2 H) 8.02 (br. s., 1 H) 8.20 (dd, $J=7.44$, $1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.31$ (dd, $J=4.90,2.07 \mathrm{~Hz}, 1 \mathrm{H}) 8.50(\mathrm{~d}, J=2.07 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 419.6 $(\mathrm{M}+1) ;$ HRMS calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} ; 420.1917$ found $(\mathrm{M}+1) 420.1915 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=6.044 \mathrm{~min}$. Purity $=99 \%$.

2-((5-(2-chloro-4-((tetrahydrofuran-2-yl)methoxy)phenyl)pyridin-2-yl)methoxy) nicotinamide (9f)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 1.60-1.75(\mathrm{~m}, 1 \mathrm{H}) 1.77-1.94(\mathrm{~m}, 2 \mathrm{H}) 1.94-2.08$ (m, 1 H) 3.63-3.74(m, 1H) 3.74-3.85(m, 1H) 3.94-4.11(m, 2H) 4.11-4.22(m, 1 H$)$
5.65 (s, 2 H) 7.06 (dd, $J=8.67,2.45 \mathrm{~Hz}, 1 \mathrm{H}) 7.13-7.24$ (m, 2 H$) 7.40$ (d, $J=8.48 \mathrm{~Hz}, 1 \mathrm{H})$ 7.55 (d, $J=8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.79$ (br. s., 1 H$) 7.88$ (dd, $J=8.01,2.17 \mathrm{~Hz}, 1 \mathrm{H}) 8.03$ (br. s., 1 H) 8.20 (dd, $J=7.54,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 8.30$ (dd, $J=4.71,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 8.58$ (d, $J=1.88 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: $440.1(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{4} ; 440.1371$ found ($\mathrm{M}+1$) 440.1364; HPLC $t_{R}=6.117$, Purity 99%.

2-((5-(4-(2-(diethylamino)ethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)nicotinamide (9g).

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 0.98(\mathrm{t}, J=7.06 \mathrm{~Hz}, 6 \mathrm{H}) 2.22(\mathrm{~s}, 3 \mathrm{H}) 2.53-2.60(\mathrm{~m}, 4$ H) $2.78(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}) 4.04(\mathrm{t}, J=6.12 \mathrm{~Hz}, 2 \mathrm{H}) 5.64(\mathrm{~s}, 2 \mathrm{H}) 6.86(\mathrm{~d}, J=8.29 \mathrm{~Hz}, 1 \mathrm{H})$ $6.91(\mathrm{~s}, 1 \mathrm{H}) 7.12-7.21(\mathrm{~m}, 2 \mathrm{H}) 7.53(\mathrm{~d}, J=7.91 \mathrm{~Hz}, 1 \mathrm{H}) 7.75-7.84(\mathrm{~m}, 2 \mathrm{H}) 8.03$ (br. s., 1 H) $8.20(\mathrm{dd}, J=7.35,2.07 \mathrm{~Hz}, 1 \mathrm{H}) 8.28-8.34(\mathrm{~m}, 1 \mathrm{H}) 8.51(\mathrm{~s}, 1 \mathrm{H})$; ESMS found: 435.3.3 $(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} ; 434.2317$ found $(\mathrm{M}+1) 434.2418 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=6.078$, Purity 99.8 \%.

2-((5-(2-methyl-4-(2-morpholinoethoxy)phenyl)pyridin-2-yl)methoxy)nicotinamide (9h).

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 2.22(\mathrm{~s}, 3 \mathrm{H}) 2.43-2.49(\mathrm{~m}, 4 \mathrm{H}) 2.70(\mathrm{t}, J=5.65 \mathrm{~Hz}, 2$ H) $3.58(\mathrm{t}, J=4.43 \mathrm{~Hz}, 4 \mathrm{H}) 4.12(\mathrm{t}, J=5.56 \mathrm{~Hz}, 2 \mathrm{H}) 5.64(\mathrm{~s}, 2 \mathrm{H}) 6.87(\mathrm{~d}, J=8.48 \mathrm{~Hz}, 1 \mathrm{H})$ 6.93 (s, 1 H) $7.14-7.21(\mathrm{~m}, 2 \mathrm{H}) 7.53(\mathrm{~d}, J=7.91 \mathrm{~Hz}, 1 \mathrm{H}) 7.76-7.83(\mathrm{~m}, 2 \mathrm{H}) 8.02(\mathrm{br}, \mathrm{s}, 1$
H) $8.20(\mathrm{~d}, J=7.54 \mathrm{~Hz}, 1 \mathrm{H}) 8.31(\mathrm{~d}, J=3.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.51(\mathrm{~s}, 1 \mathrm{H})$; ESMS found: 449.1 $(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} ; 449.2183$ found $(\mathrm{M}+1) 449.2183$; HPLC $\mathrm{t}_{\mathrm{R}}=5.263$, Purity 98%.

2-((5-(2-chloro-4-(2-methoxyethoxy)phenyl)pyrimidin-2-yl)methoxy)nicotinamide (9i)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 3.31$ (s, 3 H) $3.81-3.90(\mathrm{~m}, 14 \mathrm{H}) 4.19(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}$, 2H) 4.78 ($7, J=6.22 \mathrm{~Hz}, 2 \mathrm{H}$) $5.79(\mathrm{~s}, 2 \mathrm{H}) 7.09$ (dd, $J=8.57,2.54 \mathrm{~Hz}, 1 \mathrm{H}) 7.18$ (dd, $J=7.35$, $4.90 \mathrm{~Hz}, 1 \mathrm{H}) 7.25(\mathrm{~d}, J=2.64 \mathrm{~Hz}, 1 \mathrm{H}) 7.49(\mathrm{~d}, J=8.48 \mathrm{~Hz}, 1 \mathrm{H}) 7.85$ (br. s., 1 H) $8.24-8.33$ (m, 3 H) 8.88 (s, 2 H); ESMS found: $415.2(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4}$, 415.1167 found $(\mathrm{M}+1)$ 415.1170; HPLC $\mathrm{t}_{\mathrm{R}}=5.33$, Purity 97%.

2-((5-(2-chloro-4-(3-fluoropropoxy)phenyl)pyrimidin-2-yl)methoxy)nicotinamide (9j).

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 2.06-2.29(\mathrm{~m}, 2 \mathrm{H}) 4.17(\mathrm{t}, J=6.31 \mathrm{~Hz}, 2 \mathrm{H}) 4.54(\mathrm{t}$, $J=5.93 \mathrm{~Hz}, 1 \mathrm{H}) 4.70(\mathrm{t}, J=5.84 \mathrm{~Hz}, 1 \mathrm{H}) 5.79(\mathrm{~s}, 2 \mathrm{H}) 7.10(\mathrm{dd}, J=8.67,2.64 \mathrm{~Hz}, 1 \mathrm{H}) 7.18$ (dd, $J=7.35,4.90 \mathrm{~Hz}, 1 \mathrm{H}) 7.26(\mathrm{~d}, J=2.45 \mathrm{~Hz}, 1 \mathrm{H}) 7.50(\mathrm{~d}, J=8.67 \mathrm{~Hz}, 1 \mathrm{H}) 7.85$ (br. s., 1 H) 8.22-8.34(m, 3 H) $8.88(\mathrm{~s}, 2 \mathrm{H})$; ESMS found: $417.2(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClFN}_{4} \mathrm{O}_{3}, 417.1123$ found $(\mathrm{M}+1) 417.1119 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=5.80$, Purity 99%.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta \mathrm{ppm} 1.10-1.12(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) 3.61-3.66(\mathrm{~m}, 1 \mathrm{H})$ 3.68-3.73 (m, 2 H) 4.14-4.18 (m, 2 H) 5.79 (s, 2 H) 7.09 (dd, $J=8.67,2.64 \mathrm{~Hz}, 1 \mathrm{H}) 7.18$ (dd, $J=7.35,4.90 \mathrm{~Hz}, 1 \mathrm{H}) 7.25$ (d, $J=2.45 \mathrm{~Hz}, 1 \mathrm{H}) 7.49$ (d, $J=8.67 \mathrm{~Hz}, 1 \mathrm{H}) 7.85$ (br. s., 1 H) $8.22-8.34(\mathrm{~m}, 3 \mathrm{H}) 8.88(\mathrm{~s}, 2 \mathrm{H})$; ESMS found: 443.2; HRMS calcd for (M+1) $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{4}, 443.1480$ found: $443.1474 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=5.99$, purity 99%.

2-((4'-methoxy-2'-methylbiphenyl-4-yl)methoxy)nicotinamide (16).

1H NMR (300 MHz, CHLOROFORM- d) $\delta \mathrm{ppm} 2.20$ (s, 3 H) 3.77 (s, 3 H) 5.52 (s, 2 H) 5.65 (br. s., 1 H) 6.75 (d, $J=2.26 \mathrm{~Hz}, 2 \mathrm{H}) 7.03$ (dd, $J=7.63,4.80 \mathrm{~Hz}, 1 \mathrm{H}) 7.09$ (d, $J=8.29 \mathrm{~Hz}, 1 \mathrm{H})$ 7.27 (m, $J=8.10 \mathrm{~Hz}, 2 \mathrm{H}) 7.41$ (m, $J=8.10 \mathrm{~Hz}, 2$ H) 7.72 (br. s., 1 H) 8.27 (dd, $J=4.80,1.98$ Hz, 1 H) 8.49 (dd, $J=7.54,2.07 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 349.4 (M+1); HRMS calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} ; 349.1552$ found $(\mathrm{M}+1) 349.1549 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=8.589$, Purity 97%.

2-((4'-methoxy-2'-methylbiphenyl-4-yl)methylamino)nicotinamide (17)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 2.21(\mathrm{~s}, 3 \mathrm{H}) 3.76(\mathrm{~s}, 3 \mathrm{H}) 4.68(\mathrm{~d}, J=5.84 \mathrm{~Hz}, 2 \mathrm{H})$ $6.59(\mathrm{dd}, J=7.63,4.80 \mathrm{~Hz}, 1 \mathrm{H}) 6.78-6.84(\mathrm{~m}, 1 \mathrm{H}) 6.86(\mathrm{~d}, J=2.45 \mathrm{~Hz}, 1 \mathrm{H}) 7.11(\mathrm{~d}, J=8.29$ Hz, 1 H) 7.25 (m, $J=8.10 \mathrm{~Hz}, 2 \mathrm{H}) 7.35$ (m, $J=8.10 \mathrm{~Hz}, 2 \mathrm{H}) 7.42$ (br. s., 1 H$) 7.99$ (dd, $J=7.72,1.70 \mathrm{~Hz}, 1 \mathrm{H}) 8.05$ (br. s., 1 H) 8.17 (dd, $J=4.90,1.70 \mathrm{~Hz}, 1 \mathrm{H}) 9.02$ (t, $J=5.75 \mathrm{~Hz}, 1$ H); ESMS found: 350.0 (M+1); HRMS calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$; 348.1706 found(M+1) $348.1705 ; \mathrm{HPLC}_{\mathrm{R}}=5.717 \mathrm{~min}$. Purity $=99 \%$.

2-(4'-methoxy-2'-methylbiphenyl-4-yloxy)nicotinamide (18).

${ }^{1} \mathrm{H}$ NMR (300 MHz , CHLOROFORM- d) $\delta \mathrm{ppm} 2.24$ (s, 3 H) 3.77 (s, 3 H) 6.02 (br. s., 1 H) 6.70-6.80(m, 2 H) 7.09-7.20(m, 5H) 7.28-7.35 (m, 2 H) 7.73 (br. s., 1 H) 8.22 (dd, $J=4.80,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.57$ (dd, $J=7.63,1.98 \mathrm{~Hz}, 1 \mathrm{H}$); ESMS found: 335.0 (M+1); HRMS calcd. For $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}, 336.1348$, found ($\mathrm{M}+1$): 336.1355; HPLC $\mathrm{t}_{\mathrm{R}}=6.264$ min. Purity $=99$ \%.

1H NMR (400 MHz, DMSO-d6) δ ppm 2.26 (s, 3 H) 3.79 (s, 3 H) 5.79 (s, 2 H$) 6.90$ (d, $J=8.53 \mathrm{~Hz}, 1 \mathrm{H}) 6.95(\mathrm{~d}, J=2.51 \mathrm{~Hz}, 1 \mathrm{H}) 7.18(\mathrm{dd}, J=7.28,4.77 \mathrm{~Hz}, 1 \mathrm{H}) 7.26(\mathrm{~d}, J=8.53 \mathrm{~Hz}$, $1 \mathrm{H}) 7.86$ (br. s., 1 H) 8.24 (br. s., 1 H$) 8.27-8.33$ (m, 2 H$) 8.81$ (s, 2 H); ESMS found 350.8 ; HRMS calcd for $\mathrm{C} 19 \mathrm{H} 18 \mathrm{~N} 4 \mathrm{O} 3(\mathrm{M}+1) 351.1144$ found: $351.1150 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=5.493 \mathrm{~min}$. Purity $=99.9$ \%.

2-((5-(4-methoxy-2-methylphenyl)pyridin-3-yl)methoxy)nicotinamide (20).

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ ppm $2.18(\mathrm{~s}, 3 \mathrm{H}) 3.78(\mathrm{~s}, 3 \mathrm{H}) 5.32(\mathrm{~s}, 2 \mathrm{H}) 6.57(\mathrm{t}, J=6.78$ $\mathrm{Hz}, 1 \mathrm{H}) 6.80-6.99(\mathrm{~m}, 2 \mathrm{H}) 7.16(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 1 \mathrm{H}) 7.55-7.67(\mathrm{~m}, 1 \mathrm{H}) 7.67-7.74(\mathrm{~m}, 1$ H) $8.22-8.40(\mathrm{~m}, 2 \mathrm{H}) 8.48(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.57(\mathrm{~d}, \mathrm{~J}=2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.96(\mathrm{~d}, \mathrm{~J}=3.01 \mathrm{~Hz}$, $1 \mathrm{H})$; ESMS found: $350.0(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} ; 350.1498$ found (M+1) $350.1501 ;$ HPLC $t_{R}=5.717 \mathrm{~min}$. Purity $=99 \%$.

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta \mathrm{ppm} 1.71$ (d, $J=6.59 \mathrm{~Hz}, 3 \mathrm{H}$) 2.21 (s, 3 H) 3.32 (s, 3 H) 3.64-3.70(m, 2 H) 4.04-4.16(m, 2 H) $6.43(\mathrm{q}, J=6.53 \mathrm{~Hz}, 1 \mathrm{H}) 6.82-6.90(\mathrm{~m}, 1 \mathrm{H}) 6.92(\mathrm{~d}$, $J=2.07 \mathrm{~Hz}, 1 \mathrm{H}) 7.07-7.21(\mathrm{~m}, 2 \mathrm{H}) 7.54(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.77(\mathrm{dd}, J=8.10,2.26 \mathrm{~Hz}, 1 \mathrm{H})$ 7.81 (br. s., 1H) 8.04 (br. s., 1 H) 8.19 (dd, $J=7.44,1.98 \mathrm{~Hz}, 1 \mathrm{H}) 8.25$ (dd, $J=4.80,1.98 \mathrm{~Hz}, 1$ H) $8.49(\mathrm{~d}, J=1.70 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: $407.7(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$, ; 408.1917 found $(\mathrm{M}+1) 408.1910 ;$ HPLC $_{\mathrm{t}}=5.993 \mathrm{~min}$. Purity $=99 \%$.

2-((4-(4-methoxy-2-methylphenyl)thiazol-2-yl)methoxy)nicotinamide (22).

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 2.39$ ($\mathrm{s}, 3 \mathrm{H}$) 3.78 (s, 3 H) 5.83 ($\mathrm{s}, 2 \mathrm{H}$) 6.80-6.90 (m, 2 H) $7.21(\mathrm{dd}, J=7.44,4.99 \mathrm{~Hz}, 1 \mathrm{H}) 7.55(\mathrm{~d}, J=8.48 \mathrm{~Hz}, 1 \mathrm{H}) 7.68(\mathrm{~s}, 1 \mathrm{H}) 7.83$ (d, $J=6.03$ Hz, 2 H) 8.21 (dd, $J=7.35,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 8.35$ (dd, $J=4.90,1.88 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 350.0 $(\mathrm{M}+1) ;$ HRMS calcd. For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} ; ; 356.1063$ found $(\mathrm{M}+1) 356.1058 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=5.717$ min. Purity $=99 \%$.

General procedure followed for the synthesis of title compounds $\mathbf{1 5 a} \mathbf{- h}$ is demonstrated through the synthesis of a representative compound 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)-N-methyl nicotinamide 15a

Step 1. 1-bromo-4-(2-methoxyethoxy)2-methylbenzene (11)

Synthesis of In a 10 mL RB flask, 4-bromo-3-methyl phenol (700mg, 3.74mmol) dissolved in DMF (5 mL) was taken. K2CO3 (672 mg , 4.87 mmol) was added and the reaction mixture was heated to 50 oC for 30 min . At that temperature, 1-bromo-2-methoxyethane (422 uM , 4.49 mmol) was added in one lot. The temperature of the reaction mixture was raised to 100 oC and heated for 4 h . The reaction was monitored by LCMS. After complétion of the reaction, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and the resulting residue was extracted kinto ethylacetate ($35 \mathrm{~mL} \times 2$). The organic layer was washed with water (20 mL x 2) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evoparation of solvent resulted in crude product which was purified on a preloaded silica column using $0-40 \%$ EtOAC-Hexane gradient to give 850 mg of 1-bromo-4-(2-methoxyethoxy)2-methylbenzene (11) in 92% yield. 1H NMR (400 MHz , DMSO-d6) δ ppm $2.30(\mathrm{~s}, 3 \mathrm{H}) 3.34(\mathrm{~s}, 3 \mathrm{H}) 3.60-3.66(\mathrm{~m}, 2 \mathrm{H}) 4.04-4.09(\mathrm{~m} 2 \mathrm{H}) 6.73(\mathrm{dd}, \mathrm{J}=8.53,3.01$ $\mathrm{Hz}, 1 \mathrm{H}) 6.97(\mathrm{~d}, \mathrm{~J}=3.01 \mathrm{~Hz}, 1 \mathrm{H}) 7.43$ (d, J= $8.53 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 263.7, 265.7 (M+).

Step 2. (5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methanol (12).

In a 10 mL Biotage Microwave vial, a solution of was 1-bromo-4-(2-methoxyethoxy)-2methylbenzene ($0.6 \mathrm{~g}, 2.44 \mathrm{mmol}$), 6-(hydroxymethyl)pyridin-3-ylboronic acid $(0.374 \mathrm{~g}, 2.44$ $\mathrm{mmol}), \mathrm{CsCO}_{3}(1.196 \mathrm{~g}, 3.67 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct $(0.10 \mathrm{~g}, 0.12 \mathrm{mmol})$ in methanol (8 mL) was placed. The resulting brown coloured solution was purged with N_{2} gas
for 5 minutes and then irradiated with microwave at $120^{\circ} \mathrm{C}$ for 45 min . The completion of the reaction was monitored by LCMS. After completion of the reaction, the crude mixture was filtered through celite bed and the filterate was evaporated under reduced pressure. The resulting residue was re-dissolved in ethylacetate $(50 \mathrm{~mL})$ and the organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give a crude solid. The crude solid was purified by flash chromatography through pre-loaded silica gel columns using $0-100 \%$ EtOAc-Hexane gradient to give 0.244 g of (5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methanol in 36.5% yield. ESMS calcd. 273.3; found: 274.2 $(\mathrm{M}+\mathrm{H})$.

Step 3. methyl 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy) nicotinate (13).

In a 50 mL RB flask, sodium hydride 60% in paraffin oil $(0.643 \mathrm{~g}, 13.40 \mathrm{mmol})$ was suspended in DMF (25 mL) at $0{ }^{\circ} \mathrm{C}$. To the above suspension, (5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methanol ($3.33 \mathrm{~g}, 12.18 \mathrm{mmol}$) was added slowly at $0^{\circ} \mathrm{C}$ and the temperature was allowed to warm to room temperature over a period of 10 min . and stirred for 30 min . The above reaction mixture was re-cooled to $0{ }^{\circ} \mathrm{C}$ and methyl 2-chloronicotinate $(2.299 \mathrm{~g}, 13.40 \mathrm{mmol})$ was added slowly over a period of 10 min . The resulting solution was then heated to $120^{\circ} \mathrm{C}$ for 2 hours. The reaction was monitored by LCMS. After complétion of the reaction, the reaction mixture was quenched with water and the preciptate was extracted into EtOAc $(100 \mathrm{~mL})$, washed with water and dried over Na2SO4. Evaporation of solvent resulted in curde product as oil which was purified on flash chromatography over preloaded silica gel column using $0-100 \%$ EtOAc-Hexane gradient. This resulted in 2.70 g of oily 2 - yield. ESMS calcd. 408.4.4; found: $409.2(\mathrm{M}+\mathrm{H})$.

Step 4. Synthesis of 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)

 nicotinic acid (14).

In a 25 mL RB flask, methyl 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2yl)methoxy)nicotinate ($1.031 \mathrm{~g}, 2.52 \mathrm{mmol}$) dissolved in dioxane (10 mL) was placed. LiOH $(0.073 \mathrm{~g}, 3.03 \mathrm{mmol})$ was added slowly and the resulting reaction mixture was stirred at room temperature for 18 hrs. The reaction was monitered by LCMS. After completion of the reaction, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and back washed with EtOAc ($25 \mathrm{~mL} \times 2$). The combined aqueous layer was acidified with slow addition of 1 NHCl to pH 6.5 , extracted into EtOAc (30mL x 2) washed with water, dried over Na2SO4 and evoparated. This resulted in 0.95 g of 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2yl)methoxy)nicotinic acid as pure white solid in 94\% yield. ESMS calcd. 394.4; found: 394.6 ($\mathrm{M}+$).

Step 5. 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)-N-methyl nicotin amide (15a)

In a 10 mL RB flask, 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy) nicotinic acid ($0.2 \mathrm{~g}, 0.51 \mathrm{mmol}$) dissolved in DMF (2 mL) was taken. To this solution, HATU $(0.212 \mathrm{~g}, 0.56 \mathrm{mmol})$ and DIEA $(0.195 \mathrm{~mL}, 1.12 \mathrm{mmol})$ was added. The resulting brown coloured solution was stirred at room temperature for 10 min and 2 M methanamine solution in methanol $(0.254 \mathrm{~mL}, 0.51 \mathrm{mmol})$ was added once and the reaction mixture was stirred for 2 hr at room temperature. The reaction was monitored by LCMS. After complétion of the reaction, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and the resulting residue was extracted into ethylacetate ($25 \mathrm{~mL} \times 2$). The organic layer was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($20 \mathrm{~mL} \times 2$), water ($20 \mathrm{~mL} \times 2$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evoparation of solvent resulted in crude product which was purified on reverse phase preparative HPLC system to give $\quad 0.11 \mathrm{~g}$ of 2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)-Nmethylnicotinamide (16a) in 53% yield. 1H NMR (400 MHz , DMSO-d6) δ ppm 2.23 (s, 3 H) $2.86(\mathrm{~d}, J=4.52 \mathrm{~Hz}, 3 \mathrm{H}) 3.64-3.71(\mathrm{~m}, 2 \mathrm{H}) 4.08-4.15(\mathrm{~m}, 2 \mathrm{H}) 5.65(\mathrm{~s}, 2 \mathrm{H}) 6.87$ (dd, $J=8.28,2.76 \mathrm{~Hz}, 1 \mathrm{H}) 6.93$ (d, $J=2.51 \mathrm{~Hz}, 1 \mathrm{H}) 7.12-7.21$ (m, 2 H$) 7.50(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 1$ H) $7.80(\mathrm{dd}, J=8.03,2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.18(\mathrm{dd}, J=7.53,2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.29(\mathrm{dd}, J=5.02,2.01 \mathrm{~Hz}$, $1 \mathrm{H}) 8.54$ (d, $J=1.51 \mathrm{~Hz}, 1 \mathrm{H}) 8.70(\mathrm{~d}, J=4.02 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 407.7 (M+1); HRMS calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} ; 408.1917$ found $(\mathrm{M}+1) 408.1912 ;$ HPLC $\mathrm{t}_{\mathrm{R}}=6.071 \mathrm{~min}$. Purity $=99$ $\%$.

2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)-N,N-dimethyl

 nicotinamide (15b).

1H NMR (300 MHz , DMSO-d6) δ ppm 2.22 (s, 3 H) 2.85 (s, 3 H) 3.01 (s, 3 H) 3.32 ($\mathrm{s}, 3 \mathrm{H}$) $3.63-3.71$ (m, 2 H) 4.12 (dd, $J=5.46,3.77 \mathrm{~Hz}, 2$ H) 5.55 (s, 2 H$) 6.87$ (dd, $J=8.38,2.54 \mathrm{~Hz}, 1$ H) 6.93 (d, $J=2.45 \mathrm{~Hz}, 1 \mathrm{H}) 7.11(\mathrm{dd}, J=7.35,5.09 \mathrm{~Hz}, 1 \mathrm{H}) 7.17(\mathrm{~d}, J=8.48 \mathrm{~Hz}, 1 \mathrm{H}) 7.42$ (d, $J=8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.73$ (dd, $J=7.16,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 7.79$ (dd, $J=8.10,2.26 \mathrm{~Hz}, 1 \mathrm{H}) 8.24$ (dd, $J=5.09,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 8.50(\mathrm{~d}, J=1.70 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 421.7 (M+1); HRMS calcd. For $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} ; 422.2074$ found $(\mathrm{M}+1) 422.2072 ; \mathrm{HPLC}_{\mathrm{R}}=5.854$ min. Purity $=99 \%$.
(3-hydroxypyrrolidin-1-yl)(2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl) methoxy)pyridin-3-yl)methanone (15c)

1H NMR (300 MHz , DMSO-d6) $\delta \mathrm{ppm} 1.70-1.97$ (m, 2 H) 2.22 (s, 3 H) 3.32 (s, 3 H) 3.37 3.47 (m, 2 H) 3.48-3.60 (m, 2 H) 3.67 (dd, $J=5.46,3.77 \mathrm{~Hz}, 2$ H) 4.07-4.15 (m, 2 H) 4.24 (br. s., 1 H) 4.33 (br. s., 1 H) 5.00 (dd, $J=11.68,3.20 \mathrm{~Hz}, 1 \mathrm{H}) 5.54$ (s, 2 H$) 6.87$ (dd, $J=8.57$, $2.54 \mathrm{~Hz}, 1 \mathrm{H}) 6.93$ (d, $J=2.45 \mathrm{~Hz}, 1 \mathrm{H}) 7.11$ (dd, $J=6.88,5.37 \mathrm{~Hz}, 1 \mathrm{H}) 7.17$ (d, $J=8.48 \mathrm{~Hz}, 1$ H) $7.48(\mathrm{dd}, J=10.74,8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.69-7.83(\mathrm{~m}, 2 \mathrm{H}) 8.25(\mathrm{dt}, J=4.99,1.84 \mathrm{~Hz}, 1 \mathrm{H}) 8.49$ (s, 1 H); ESMS found: $463.7(\mathrm{M}+1)$; HRMS calcd. For $(\mathrm{M}+1) \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$, 464.2179, found: 464.2176; HPLC: $\mathrm{t}_{\mathrm{R}}=5.15$, purity 99%

N-(2-hydroxyethyl)-2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy) nicotinamide (15d)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ ppm 2.23 (s, 3 H) 3.32 (br. s., 3 H) $3.38-3.45$ (m, 2 H) $3.54(\mathrm{q}, J=5.69 \mathrm{~Hz}, 2 \mathrm{H}) 3.64-3.70(\mathrm{~m}, 2 \mathrm{H}) 4.10-4.16(\mathrm{~m}, 2 \mathrm{H}) 4.77(\mathrm{t}, J=5.52 \mathrm{~Hz}, 1 \mathrm{H})$ $5.66(\mathrm{~s}, 2 \mathrm{H}) 6.88(\mathrm{dd}, J=8.78,2.26 \mathrm{~Hz}, 1 \mathrm{H}) 6.94(\mathrm{~s}, 1 \mathrm{H}) 7.14-7.22(\mathrm{~m}, 2 \mathrm{H}) 7.58(\mathrm{~d}, J=8.03$ $\mathrm{Hz}, 1 \mathrm{H}) 7.81$ (dd, $J=8.03,2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.23$ (dd, $J=7.53,1.51 \mathrm{~Hz}, 1 \mathrm{H}) 8.28-8.35(\mathrm{~m}, 1 \mathrm{H})$ $8.54(\mathrm{~s}, 1 \mathrm{H}) 8.74(\mathrm{t}, J=5.77 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: $438(\mathrm{M}+1)$; HRMS calcd. For (M+1) $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}, 438.2023$ found: 438.2017 ; HPLC: $\mathrm{t}_{\mathrm{R}}=5.416$, purity 98%.

2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)-N-(1-methyl piperidin-4-yl)nicotinamide (15e)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 1.41-1.55(\mathrm{~m}, 2 \mathrm{H}) 1.73-1.84(\mathrm{~m}, 2 \mathrm{H}) 1.98(\mathrm{t}$, $J=10.54 \mathrm{~Hz}, 2 \mathrm{H}) 2.13$ (s, 3 H) 2.24 (s, 3 H) 2.58 - 2.67 (m, 2 H) 3.33 (br. s., 3 H) 3.68 (dd, $J=5.27,3.76 \mathrm{~Hz}, 2 \mathrm{H}) 3.71-3.83(\mathrm{~m}, 1 \mathrm{H}) 4.13$ (dd, $J=5.77,3.76 \mathrm{~Hz}, 2 \mathrm{H}) 5.61(\mathrm{~s}, 2 \mathrm{H}) 6.89$ (dd, $J=8.28,2.76 \mathrm{~Hz}, 1 \mathrm{H}) 6.95(\mathrm{~d}, J=2.51 \mathrm{~Hz}, 1 \mathrm{H}) 7.19(\mathrm{dt}, J=7.78,2.38 \mathrm{~Hz}, 2 \mathrm{H}) 7.62$ (d, $J=8.03 \mathrm{~Hz}, 1 \mathrm{H}) 7.85$ (dd, $J=8.03,2.51 \mathrm{~Hz}, 1 \mathrm{H}) 8.19$ (dd, $J=7.53,2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.34$ (dd, $J=5.02,2.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.52(\mathrm{~d}, J=7.53 \mathrm{~Hz}, 1 \mathrm{H}) 8.55(\mathrm{~d}, J=1.51 \mathrm{~Hz}, 1 \mathrm{H})$; ESMS found: 490.7
$(\mathrm{M}+)$; HRMS calcd. For $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} ; 491.2652$ found $(\mathrm{M}+1) 491.2659$; HPLC tR $=5.779$, Purity 98 \%.

2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)-N-methylpyridine-3sulfonamide (15f).

${ }^{1} \mathrm{H}$ NMR (300 MHz, CHLOROFORM- d) $\delta \mathrm{ppm} 2.19$ (s, 3 H) 2.49-2.57 (m, 3 H) 3.40 (s, 3 H) 3.66-3.75 (m, 2 H) 4.06-4.13(m, 2 H) 5.68(s, 2 H) 6.74-6.85 (m, 2 H) 7.00-7.10 (m, 2 H) 7.41 (d, $J=8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.66(\mathrm{~d}, J=6.41 \mathrm{~Hz}, 1 \mathrm{H}) 8.17$ (dd, $J=7.54,1.88 \mathrm{~Hz}, 1 \mathrm{H}) 8.29$ (dd, $J=4.99,1.79 \mathrm{~Hz}, 1 \mathrm{H}) 8.48$ (s, 1 H); ESMS found: 444.1 (M+1); HRMS calcd. For $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S} ; 444.1587$ found (M+1) 444.1579; HPLC $\mathrm{t}_{\mathrm{R}}=6.281$, Purity 99%.

3-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy)pyrazine-2carboxamide (15g).

1H NMR (300 MHz , DMSO-d6) $\delta \mathrm{ppm} 2.23$ (s, 3 H) 3.32 (s, 3 H) 3.63-3.70(m, 2 H) 4.08 4.15 (m, 2 H) 5.57 (s, 2 H) 6.87 (dd, $J=8.48,2.26 \mathrm{~Hz}, 1 \mathrm{H}) 6.93$ (d, $J=2.26 \mathrm{~Hz}, 1 \mathrm{H}) 7.18$ (d, $J=8.48 \mathrm{~Hz}, 1 \mathrm{H}) 7.59$ (d, $J=8.10 \mathrm{~Hz}, 1 \mathrm{H}) 7.73$ (br. s., 1 H$) 7.81$ (dd, $J=8.10,2.26 \mathrm{~Hz}, 1 \mathrm{H})$ 8.07 (br. s., 1 H$) 8.28$ (d, $J=2.64 \mathrm{~Hz}, 1 \mathrm{H}) 8.36$ (d, $J=2.64 \mathrm{~Hz}, 1 \mathrm{H}) 8.51$ (d, $J=1.70 \mathrm{~Hz}, 1 \mathrm{H}$); ESMS found: $395.4(\mathrm{M}+1)$; HRMS calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4} ; 395.1713$ found ($\mathrm{M}+1$) 395.1720; HPLC $\mathrm{t}_{\mathrm{R}}=5.169$, Purity 98%.

4-methoxy-2-((5-(4-(2-methoxyethoxy)-2-methylphenyl)pyridin-2-yl)methoxy) nicotinamide (15h).

1H NMR (300 MHz, DMSO- $d 6$) $\delta \mathrm{ppm} 2.20-2.24$ (m, 3 H) 3.32 (s, 3 H) 3.64-3.70(m, 2 H)
3.85 (s, 3 H) $4.07-4.16(\mathrm{~m}, 2 \mathrm{H}) 5.48$ (s, 2 H) 6.82 -6.90 (m, 2 H) 6.92 (s, 1 H) 7.17 (d, $J=8.29 \mathrm{~Hz}, 1 \mathrm{H}) 7.48(\mathrm{~d}, J=8.67 \mathrm{~Hz}, 2 \mathrm{H}) 7.72-7.82(\mathrm{~m}, 2 \mathrm{H}) 8.07(\mathrm{~d}, J=6.03 \mathrm{~Hz}, 1 \mathrm{H}) 8.48$ (s, 1 H); ESMS found: 424.2 (M+1); HRMS calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} ; 424.1866$ found(M+1) 424.1865; HPLC $\mathrm{t}_{\mathrm{R}}=5.340$ min., Purity 99%.

Materials and Methods :

Determination of Minimal inhibitory concentration (MIC) of APCs against

M.tuberculosis

Mycobacterium tuberculosis (Mtu) H37Rv ATCC 27294 used for MIC determination was grown as reported earlier. ${ }^{1}$ All test compound stocks and dilutions were prepared in DMSO. Mtb MICs of test compounds were determined by the standard microdilution method ${ }^{2}$ in 7 H 9 broth containing 0.2% glycerol, 0.05% Tween 80 and $10 \% \mathrm{v} / \mathrm{v}$ ADC with some modifications in a total volume of 40μ l. Briefly, $1 \mu \mathrm{l}$ of serial two-fold dilutions of test compound was dispensed in a 384 well microtitre plate (Corning 3702), at final concentrations ranging from $100 \mu \mathrm{M}-0.19 \mu \mathrm{M}$. Control wells included media and culture controls. $40 \mu \mathrm{l}\left(3-7 \times 10^{5}\right.$ $\mathrm{CFU} / \mathrm{ml}$) of the bacterial culture was added to all the wells except the media control wells. The plates were packed in gas permeable polythene bags and incubated at $37^{\circ} \mathrm{C}$ for 5 days. Following this incubation period, $8 \mu \mathrm{l}$ of a freshly prepared $1: 1$ mixture of Resazurin $(0.02 \%$
in water), and 10% Tween 80 was added to all the wells. The plates were re-incubated for an additional 24 hours at $37^{\circ} \mathrm{C}$ and the colour conversion of all wells recorded. Absorbance at $575 \mathrm{~nm} \& 610 \mathrm{~nm}$ was monitored and their ratio calculated. The media control and the no inhibitor / culture controls were considered equivalent to 100% and 0% inhibition respectively. The least concentration which yielded 80% inhibition was considered as MIC. In all the assays Isoniazid MIC values was generated in parallel to ensure the validity of the assay conditions.

Determination of MICs against various M.tuberculosis isolates (sensitive and single drug resistant-SDR)

This assay is set up using the same protocol as above, however the incubation period is extended to 2-3 weeks. The duration is dependent on the growth rate of the clinical isolate and the incubation period is continued until the no compound control show growth/turbidity. Growth is monitored visually or turbidometrically and the least concentration which shows no growth was identified as MIC. With the single drug resistant strains, the respective resistance marker drug is also included as an additional reference.

Method for MIC determination for other bacteria (Gram positives \& Gram negatives)

 Minimum inhibitory concentration (MIC) values for different bacterial strains (Staphylococcus aureus ARC517, Streptococcus pneumoniae ARC548, Haemophilus influenzae ARC446, H. influenzae ARC158, Escherichia coli ARC523, E. coli ARC524, Pseudomonas aeruginosa ARC545, Peudomonas aeruginosa ARC546, Klebsiella pneumoniae ARC1865, Mycobacterium smegmatis ATCC607, M. smegmatis $\mathrm{mc}^{2} 155$ and Candida albicans ARC526 were determined according to Clinical Laboratory Standards Institute (CLSI) guidelines (3) using 384 well format in cation adjusted Muller Hinton broth media. Media control, culture control and appropriate reference drug controls were included.Growth is monitored by checking absorbance at 600 nm . Minimum inhibitory concentration (MIC) was taken as the concentration that resulted in growth inhibition of $\geq 80 \%$.

Reference:

1. R. Jayaram, S. Gaonkar, P. Kaur, B.L. Suresh, B.N. Mahesh, R. Jayashree, V. Nandi, S. Bharat, R.K. Shandil, E. Kantharaj, V. Balasubramanian, Antimicrob. Agents Chemother. 2003, 47: 2118-2124.
2. Balganesh M, Kuruppath S,Marcel N,Sharma S, Nair A, Sharma U Antimicrob. Agents Chemother. 2010, 54: 5167-5172.
3. National Committee for Clinical Laboratory Standards. 2009. Volume 29, Number 2. National Committee for Clinical Laboratory Standards, Wayne, PA.

Method for determination of Cytotoxicity on THP-1 cell lines.

THP-1 cells were cultured in RPMI growth medium supplemented with 1% (v/v) 2 mM Glutamine and $10 \%(\mathrm{v} / \mathrm{v})$ heat inactivated foetal bovine serum. Cultures were maintained at $37^{\circ} \mathrm{C}$ in a 95% humidified atmosphere of $5 \%(\mathrm{v} / \mathrm{v}) \mathrm{CO} 2 / 95 \%(\mathrm{v} / \mathrm{v})$ air [standard cell culture conditions). Fresh THP-1 cells were centrifuged at 300 g for 5 minutes and re-suspended into growth medium at the required cell density $(4.0 \times 105 / \mathrm{ml})$. Cell should not be grown at a density above 1×10^{6} cells $/ \mathrm{ml}$. THP-1 cells were seeded at $40,000 /$ well in growth medium $(95 \mu \mathrm{l})$ and $5 \mu \mathrm{l}$ compound added immediately at the indicated concentrations (see Plate format below). $5 \mu \mathrm{l}$ of solvent $(5 \%(\mathrm{v} / \mathrm{v}) \mathrm{DMSO}$ in growth medium) was used in the control wells giving a final $0.5 \% \mathrm{v} / \mathrm{v}$ DMSO. All stock compounds in 50 mM neat DMSO were diluted in growth medium to $10 \%(\mathrm{v} / \mathrm{v}) \mathrm{DMSO}$ and $5 \mu \mathrm{l}$ used in the assay, giving a final $0.5 \% \mathrm{v} / \mathrm{v}$ DMSO (final assay volume $100 \mu \mathrm{l}$). Menadione, the standard cytotoxic agent, was used in each experiment for quality control at a top test concentration of $125 \mu \mathrm{M}$. 96 well plates containing THP-1 cells with compounds or solvent were incubated for 24 hr under standard
cell culture conditions. $11 \mu \mathrm{l}$ of stock resazurin solution $(450 \mu \mathrm{M}$, dissolve 11.3 mg in 100 ml PBS) was added to all wells, mixed and incubated under standard cell culture conditions for a further 2 hr . Plates were read on the Envision reader using an excitation λ of 560 nm and emission λ of 590 nm .

Method for identification of CYP inhibition:

This study was conducted using specific substrates for 5 major human CYP isozymes. These substrates were used as a cocktail (phenacetin, diclofenac, S-mephenytoin, bufuralol and midazolam which are predominantly metabolised by CYP 1A2, 2C9, 2C19, 2 D 6 and 3A4/5, respectively) at concentrations equivalent to their respective Km values. LC-MS-MS (MRM mode) was used to follow the formation of the CYP specific metabolites. A decrease in the formation of the metabolites in peak area to vehicle control was used to calculate the IC50 value. In addition, as a positive control, a cocktail of five standard inhibitors, specific for an individual CYP (α-naphthoflavone, sulphaphenazole, N-3-benzylnirvanol, quinidine and ketoconazole, which specifically inhibit CYP 1A2, 2C9, 2C19, 2D6 and 3A4/5, respectively) was incubated. Test compound was used at 6 different concentrations ($20,10,3,1,0.3,0.1$ $\mu \mathrm{M})$ to estimate IC50.

The incubation was carried out in 96 deep well plates. Mixture of $180 \mu \mathrm{~L}$ of $20 \mathrm{mg} / \mathrm{mL}$ HLM and $90 \mu \mathrm{~L}$ of substrates cocktail solution was added to $15840 \mu \mathrm{~L}$ of phosphate buffer and 179 μ Lof this mixture was mixed with $1 \mu \mathrm{~L}$ of the test compound, inhibitor cocktail solution or vehicle in each well. The final concentration of DMSO: ACN in the assaymix was 0.3:0.7 \% v / v. The incubation plate was placed into the water bath and pre-warmed at $37^{\circ} \mathrm{C}$ for 5 minutes before the reactions were started by the addition of $20 \mu \mathrm{~L}$ of $10 \mathrm{mmol} / \mathrm{L}$ NADPH
solution in phosphate buffer. After the addition of NADPH, the incubation plate was incubated at $37^{\circ} \mathrm{C}$ for a further 5 minutes. The reaction was quenched by the addition of 1
volume ($200 \mu \mathrm{~L}$) of cold ACN containing 3% formic acid and $40 \mathrm{nmol} / \mathrm{L}$ verapamil. The plates were kept on ice for 20 minutes and then centrifuged at 4000 rpm for 30 minutes to precipitate protein. The supernatant $180 \mu \mathrm{~L}$ was transferred to the analysis plate for LC/MS/MS analysis.

Materials used for CYP assay:

Phenacetin is purchased from Jince Analysis Technology Co. Ltd. Tianjin, China. The diclofenac sodium and bufuralol hydrochloride are purchased from Sigma Aldrich, Shanghai, China. S-Mephenytoin is purchased from Toronto Research Chemicals, Tornto, Canada. Midazolam is purchased from International Laboratory USA, South San Francisco, USA. Human liver microsomes (HLM) were obtained from BD Gentest UltraPool 150 donor (Lot no. 38289) at a concentration of $20 \mathrm{mg} / \mathrm{mL}$ protein. HLMs were stored in a $-80^{\circ} \mathrm{C}$. Prior to use, the pooled HLM were allowed to thaw in a $37^{\circ} \mathrm{C}$ water bath and then stored on wet ice.

Solubility, Human Plasma Protein Binding, Mouse Clearance and LogD

For a detailed experimental procedure please refer to the supporting information part of

1. J Med. Chem. 2013, 56(23) 9701-9708.
