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SI:  Simulation Details 

We have performed coarse-grained molecular dynamics simulations of adhesion of spherical and 

cylindrical nanoparticles on soft substrates (see Figures 2). Nanoparticles were modeled by spherically 

and cylindrically shaped assembly of beads arranged into hexagonal closed-packed (HCP) lattice.  The 

elastic substrates consisted of crosslinked bead-spring chains with the number of monomers N = 32. The 

elastic modulus of the substrate was controlled by changing degree of cross-linking between chains.  

In our simulations, the interactions between all beads in a system were modeled by the truncated-

shifted Lennard-Jones (LJ) potential
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where rij is the distance between the ith and jth beads and σ is the bead diameter. The values of the cutoff 

distance rcut and the value of the Lennard-Jones interaction parameter εLJ are summarized in TableSI1.  

The connectivity of the beads into polymer chains, the cross-link bonds and bonds belonging to beads 

forming nanoparticles were modeled by the finite extension nonlinear elastic (FENE) potential
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with the spring constant kspring = 30kBT/σ
2
 and the maximum bond length Rmax = 1.5σ. The repulsive part of 

the bond potential was modeled by the LJ-potential with rcut = (2)
1/6

σ and ԑLJ= 1.5kBT.  

The elastic substrate made of cross-linked polymer chains was placed on a solid substrate which 

was modeled by the external potential 
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where ԑw was set to 1.0kBT. The long-range attractive part of the potential z 
-3

 represents the effect of van 

der Waals interactions generated by the wall half-space.  

 

Table SI1 Interaction Parameters 

system 
Spherical Nanoparticles  Cylindrical Nanoparticles 

ԑ [kBT] rcut [σ]  ԑ [kBT] rcut [σ] 

NP-NP 1.5 2.5  1.5 2.5 

NP-Gel 1.5 2.5  1.5 2.5 

Gel-Gel 1.5 2.5  1.5 2.5 

Gel-Sub 1.0   1.0  

NP-Sub 1.0   1.0  

 

The system was periodic in x and y directions with system sizes listed in Table SI2.  

Table SI2 System Sizes 

Spherical Nanoparticles  Cylindrical Nanoparticles 

Rp [σ] Lx = Ly [σ] LZ [σ]  Rcyl [σ]  Lx = Ly [σ] LZ [σ] 

9.8 45.2 65.2  9.6 45.2 65.2 

14.3 65.6 85.6  14.8 65.6 85.6 

17.9 82.1 102.1  17.8 82.1 102.1 

23.3 106.9 126.9  22.9 106.9 126.9 

27.7 127.3 147.3  27.3 127.3 147.3 

31.4 143.9 163.9  31.4 143.9 163.9 

 

Simulations were carried out in a constant number of particles and temperature ensemble. The constant 

temperature was maintained by coupling the system to a Langevin thermostat
1
 implemented in 

LAMMPS.
3
 In this case, the equation of motion of the ith particle is 

)(F)()(F
d

)(d R

ttvt
t

tv
m iii

i
+−= ξ      (SI.4) 

where m is the bead mass set to unity for all particles in a system, )(tvi  is the bead velocity, and )(F ti  

denoted the net deterministic force acting on the ith bead. The stochastic force )(F
R

ti  had a zero 
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average value and δ-functional correlations )'(6)'(F)(F B

RR

ttTktt ii −=>< ξ . The friction coefficient ξ 

was set to ξ = m/τLJ, where τLJ is the standard LJ-time τLJ = σ(m/εLJ)
1/2

. The velocity-Verlet algorithm with 

a time step ∆t = 0.01τLJ was used for integration of the equation of motion. All simulations were 

performed using LAMMPS.
3
  

Nanoparticles: The crystal nanoparticles with cylindrical and spherical shapes were generated by 

arranging beads with diameter 1.0σ into HCP lattice and connecting them by elastic bonds with twelve 

closest neighbors. Nanoparticles were relaxed by performing MD simulation runs lasting 100τLJ. After 

equilibration the bond length between beads forming nanoparticles is equal to 0.97σ.  

Gel Substrate: To create an elastic substrate, polymer chains were placed inside a slab with thickness H0. 

After cross-linking, the system was equilibrated for 10
4
τLJ on the top of a rigid wall interacting with beads 

belonging to polymer chains through potential eq SI.3. The equilibrium thickness, H, of the elastic 

substrate is given in Table SI3.  It was calculated using the height distribution function of the gel.  

Table SI3 Equilibrium Thickness H [σσσσ] of the Elastic Substrate   

Rp [σ] 
G [kBT/σ

3
] 

0.024 0.072 0.162 0.254 0.501 0.842 

9.8 22.2 22.0 21.8 21.7 21.4 21.1 

14.3 33.1 22.1 21.9 21.8 21.5 21.2 

17.9 45.3 22.1 21.9 21.8 21.5 21.2 

23.2 45.3 22.1 21.9 21.8 21.5 21.2 

27.7 66.5 22.1 21.9 21.8 21.5 21.2 

31.4 -- 22.1 21.9 21.8 21.5 21.2 

 

Simulation of nanoparticle adhesion to the elastic substrate started with placing a nanoparticle at a 

distance of 2.0σ from the substrate. A harmonic spring with the spring constant Ksp = 100kBT/σ
2
 was 

applied to nanoparticle center of mass for 100τLJ to bring nanoparticle into contact with the gel substrate 

then the spring was removed. The system was equilibrated for 4×10
4
τLJ followed by production run 

lasting 10
4
τLJ.   
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Work of Adhesion: In order to evaluate the work of adhesion between nanoparticle and gel we have 

calculated the potential of mean force between a crystal slab and elastic substrate by using the weighted 
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Figure SI1 Potential of mean force as a function of the center of mass displacement along z-

axis for soft (G = 0.023kBT/σ
2
) (top figure) and hard (G = 0.857kBT/σ

2
) (bottom figure) elastic 

substrate and LJ-interaction parameter ԑ LJ = 1.5kBT. The insets show typical system 

configurations during simulation runs. 
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histogram analysis method (WHAM) 
4
. In these simulations, two slabs of crystal and gel with dimensions 

10σ × 10σ × 10σ were pushed toward each other. In these simulations we set z- component of the velocity 

of the crystal slab was set to zero thus fixing its location at the origin z = 0σ. The center of mass of the gel 

slab, zcm, was tethered to location z* by a harmonic spring 

2*

cmsp

*

cm )(
2

1
),( zzKzzU −=       (SI.5) 

with the value of the spring constant Ksp varying between 200kBT/σ
2
 and 500kBT/σ

2
. We have moved 

location of the tethering point with increment ∆z* = 0.1σ. For each location of the tethering point, we 

have performed the simulation runs lasting 5×10
3
τLJ, during which we have calculated distribution of the 

center of mass of the gel. WHAM method was applied to calculate potential of the mean force between a 

crystal slab and elastic substrate from distribution function of the center of mass. Figure SI1 shows the 

potential of mean force between a gel and a crystal slab calculated from simulations with the spring 

constant Ksp = 400kBT/σ
2
. Figure SI2 summarizes our results for work of adhesion, W = ∆F/A, as a 

 

Figure SI2 Dependence of the work of adhesion W between crystalline slab and elastic substrate on 

the substrate bulk density.  
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function of gel density, ρp.  

Surface Tension: The surface tension of an elastic substrate was evaluated by integrating the difference 

of the normal PN(z) and tangential PT(z) to the interface components of the pressure tensor.
5
 Note that in 

our simulations, the z direction was normal to the interface.  

zzPzP d))()(( NN −= ∫−

ξ

ξ
γ       (SI.6) 

where 2ξ is the thickness of the interface that was determined from the monomer density profile as an 

interval within which the monomer density changes from zero to its bulk value. The simulation results for 

surface tension of the elastic substrate are summarized in Figure SI3. 

 

Figure SI3  Dependence of the gel surface tension on the bulk density.  
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SI: Derivation of Eqs 1 and 12. 

Consider a rigid spherical nanoparticle in contact with soft substrate (see Figure 4). The surface 

free energy of this nanoparticle/substrate configuration can be written as follows 

( ) ( ) ( ) psppppssurf hRhRRaAhaF γπγπγπ ∆+∆−+−=∆ 222, 2
    (SI.7) 

where γp is the surface energy of the particle, γs is the surface tension of a substrate and γsp is the surface 

tension nanoparticle/substrate interface, and A is the area of the substrate. In obtaining eq SI.7 we used the 

expression for surface area of a spherical cup with height h, ( ) hRhA psp π2= .The change of the surface 

free energy due to nanoparticle adsorption is equal to 

( ) ( ) pspppssurfsurf hRhRaFhaFhaF γπγπγπ ∆+∆−−=−∆=∆∆ 22)0,0(,, 2
 (SI.8) 

Substituting into eq SI.8 relationship between contact radius a and indentation depth ∆h: 

2

p

2 -2 hhRa ∆∆= , we arrive at 

( ) pspppsps hRhRhRhhF γπγπγππγ ∆+∆−∆−∆=∆∆ 2222
   (SI.9) 

Introducing work of adhesion, W=γp+γs −γps, we obtain eq 1  

( ) hWRhhF ps ∆−∆=∆∆ ππγ 22
      (SI.10) 

In the case of the cylindrical nanoparticle the free energy per unit length of the cylindrical 

nanoparticle in contact with substrate is written as 

( ) ( )( ) ( ) psppppspsurf RRRRLF αγγαπγαα 222sin2 +−+−=    (SI.11) 

where L is the length of the substrate. The change in the surface free energy due to adsorption of the 

cylindrical nanoparticle is equal to 

( ) ( ) ( ) ( ) pspppspsurfsurfsurf RRRFFF αγγαγααα 22sin20 +−−=−=∆   (SI.12) 

Expanding ( ) 6/sin 3ααα −≈ and using expression for the work of adhesion W we obtain eq 12 

( ) 3

3

1
2 αγαα pspsurf RRWF +−≈∆       (SI.13) 
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