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S1. Derivation of the master equation  

 We start by considering an isolated spin pair (see below) formed by an NV center (S=1) 

and a nuclear spin (I=1/2). We use the index i=1,2,…6 to respectively label the energy levels Ei 

corresponding to the set of eigenstates ����, ���� 	 
�0,  ��� , �0, � ��� , ��1, ��� , ��1,� ��� , 
�1, ��� , �1,� ����, and write the detailed equilibrium equations 
																																																																����� 	������� � ����

���   �	,                                          (S1)	
where Ni represents the population (i.e., the fractional number of NV/nuclear spin pairs) in 

energy level i, and Ci is a constant. Wij is the transition probability between energy levels i and j 

due to the dipolar interaction and is given by 

																																																	��� 	 〈 1�#� $% &'()*�+��′�(-./0�12345��′4
6 $�〉 ,																																				�S2� 

where 9�� 	 �:� � :�� #⁄ , and the outer brackets indicate ensemble average. )*�+���  is the 
(time-dependent) dipolar Hamiltonian given by  

																																																				)*�+ 	 <64> ?�?�@A �B ∙ D � 3�D ∙ FG��B ∙ FG��																																													�S3� 
where r is the vector separating spins S and I and ?�, ?�  are the corresponding gyromagnetic 
ratios; # denotes, as usual, Planck’s constant divided by 2π. To derive the Solomon equation 
governing the relaxation of nuclear spins in the presence of polarized NVs, we introduce the 

following definitions 

		〈H〉 ≡ 12 ��� � ��  �A � �J  �K � ���	;																																																																																																	 
			〈M6,0�〉 ≡ 12 ��� �� � �A � �J�	; 															N6 ≡ �� ��	; 																	〈H6〉 ≡ 12 ��� � ���	;										 
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			〈M6,O�〉 ≡ 12 ��� �� � �K � ���	; 														N0� ≡ �A  �J	; 														 〈H0�〉 ≡ 12 ��A � �J�	; 
			〈M0�,O�〉 ≡ 12 ��A  �J ��K � ���	; 												NO� ≡ �K  ��	; 														〈HO�〉 ≡ 12 ��K � ���	. 
Multiplying the even-indexed equations in (S1) by -1 and summing over all values of i, a lenghty 

calculation yields 

�〈H〉�� 	 �〈H〉 �2���1 � N6�  ��� �6��1 � NO��  ��Q� �Q6��1 � N0��� 
																																																																											�〈M6,0�〉��� ��6� � 〈M6,O�〉��Q6 ��Q��          (S4) 
where C is a constant and we use the notation �� ≡ ��J, �6 ≡ ��A, �Q� ≡ ��K, �Q6 ≡ ���, 
�� ≡ �AJ 	 �K� as described in Fig. 1b. In calculating (S4) we use the identities ��� 	 ���, 
���6� ≡ ��� 	 0, and �QQA ≡ �JK 	 0 	 �A� ≡ �QQ�R. We also assume that inter-nuclear couplings 
thermalize the nuclear spin bath so that 〈H�〉 	 N�〈H〉 for j=-1,0,+1. We find C by demanding that  
*〈�〉*4  be zero at equilibrium (a condition we identify via the superindex e); the Solomon equation 
then reads 

�〈H〉�� 	 ��〈H〉 � H�S�� �2���1 � N6�  ��� �6��1 � NO��  ��Q� �Q6��1 � N0��� 
																																											��〈M6,0�〉 � M6,0��S� ���� ��6� � �〈M6,O�〉 � M6,O��S� ���Q6 ��Q��          (S5) 

≅ �〈H〉 �2���1 � N6�  ��� �6��1 � NO��  ��Q� �Q6��1 � N0��� 
																																											�〈M6,0�〉��� ��6� � 〈M6,O�〉��Q6 ��Q�� , 
where the last expression is valid in the limit of low magnetic fields (B<500 mT) considered 

here.  

When the NV is continously pumped into a given state mS, the derivative in (S5) vanishes 

and the nuclear spin magnetization takes the stationary value 〈H〉UV. When mS=0, we have N6 	
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1, NO� 	 N0� 	 0 and 〈M6,0�〉6 	 〈M6,O�〉6 	 1 2⁄ ; the corresponding steady-state nuclear spin 

magnetization is then given by  

																																													〈H〉6 	 �12 ���� ��6� � ��Q� ��Q6����� �6 �Q� �Q6� 	.																																																�S6� 
By the same token, when mS=-1 we have N0� 	 1 , NO� 	 N6 	 0 , 〈M6,0�〉0� 	 �1 2⁄ , 

〈M6,O�〉0� 	 0, and thus we obtain from (S5) 
																																																									〈H〉0� 	 12 ��� ��6����  2�� �6�		.																																																						�S7� 
Finally, when mS=+1, then NO� 	 1 , N0� 	 N6 	 0 , 〈M6,O�〉O� 	 �1 2⁄ , 〈M6,0�〉O� 	 0 , which 
yields 

																																																							〈H〉O� 	 �12 ��Q� ��Q6���Q�  2�� �Q6�		.																																																			�S8� 
When the nuclear spin interacts with two NVs rather than just one as assumed above, the 

transition probabilities in Eq. (S2) simply take the form 

��R�R 	 〈 �4#Z [\ ]'′[)*�+�����′�  )*�+�����′�[-′^/0�12345��′46 [�〉 where the subscripts 1,2 refer to each NV 
and |-′`, |'′` indicate the states of the three-particle system. These transition probabilities reduce 
to the sum of transition probabilities corresponding to each NV-nuclear spin pair plus a cross 

term of the form ��R�Rabcdd 	 〈 �4#Z [\ ]'′[)*�+�����′�[-′^/0�12345��′46 [ e [\ ]'′[)*�+�����′�[-′^/0�12345��′46 [〉. It 
is simple to see that these cross terms are null except for the case where the NV states remain 

unchanged and the nuclear spin flips. Since Eq. (S6) does not depend on ��, we conclude that 
the polarization dynamics upon direct optical illumination (in the absence of microwave) is less 

sensitive to NV ‘clustering’.    
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S2. Derivation of the transition probabilities 

Explicit expressions for the transitions probabilities can be obtained via Eqs. (S2) and 

(S3) by assuming that nuclear spins adsorbed on the diamond surface hop randomly from one 

position to the next with a correlation time τc. Following Solomon’s notation
1
,  we first rewrite 

the dipolar interaction (Eq. (S3)) in the more convenient form 

								)*�+��� 	 f6��� gHhMh � 14 �HOM0  HOM0�i  f�����HOMh  HhMO� 																																													 
																																																									f�∗����H0Mh  HhM0�  f����HOMO  f�∗���H0M0		,																			�S9� 
with  

					f6��� 	 l@A �1 � 3mno�p�	; 
																																																																		f���� 	 �32 l@A o-qp	mnop	/�r	; 																																									�S10� 

						f���� 	 �34 l@A o-q�p	/��r	. 
In the equations above the spherical coordinates �@, p, s� of the interspin vector are assumed to 
be random functions of time, and l ≡ <6?�?� 4>⁄ . Assuming, as usual, that 〈f����f�∗��  t�〉 	
〈(f�(�〉 /0|u| uv⁄  for j=0,1,2 we find the transition probabilities 

				�6 	 w6�xy�ta
1  z�9xy�0�� � 9��ta{� 	 ; 																�Q6 	

w6�xy�ta
1  z�9xy�O�� � 9��ta{� 		 ;													 

															�� 	 w��xy�ta1  �9�ta�� 	 ; 																																																																																																														�S11� 
				�� 	 w��xy�ta

1  z�9xy�0��  9��ta{� 	 ; 												 				�Q� 	
w��xy�ta

1  z�9xy�O��  9��ta{� 		 ;													 
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where 	w6�xy� 	 #�〈|f6|�〉 4⁄ , w��xy� 	 2#�〈|f�|�〉 , w��xy� 	 4#�〈|f�|�〉 , 9xy�|�� 	 (9ab}d | |?�|~(, 
9ab}d 	 2>	 e 	2.87 GHz, and 9� 	 ?�~. 
 The exact value of 〈(f�(�〉 (and thus of 
w��xy� ), j=0,1,2, depends on the geometry 

governing the interaction between the diamond-

hosted NV and the nuclear spin adsorbed on the 

crystal surface. As an illustration we consider 

the surface topography in Fig. S1: An NV is a 

distance l+d below a cylindrical protrusion of 

diameter 2w and height l. Assuming a diamond 

surface A characterized by a radius o� ≫ � , a direct calculation of w6�xy� yields 
		w6�xy� 	 #�l�4� % �� �1 � 3mno�p��@�		

��b� 																													 
																																																			 >#�l�2� ���6��U� � �6�0����  ��J � �6��UR ��J �	,																																							�S12� 
where  

�6��� 	 � 14�1  ����  1�1  ���A � 98�1  ���J	, 
and �U 	 � ��  ��⁄ , �UR 	 � �⁄ . By the same token, we obtain 

												w��xy� 	 9#�l�2� % �� o-q�p	mno�p@�		
��b� 	 9>#�l�� ������U� � ���0����  ��J � ����UR ��J �	,					�S13� 

																	w��xy� 	 9#�l�4� % �� o-qJp	@�		
��b� 	 9>#�l�2� ������U� � ���0����  ��J � ����UR ��J �	,												�S14� 

with 

 
Fig. S1: NV center a distance d below a cylindrical 

protrusion of radius w  and height l on the diamond 

surface.  
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����� 	 � 16�1  ���A  18�1  ���J	,	 
and  

����� 	 � 14�1  ����  13�1  ���A � 18�1  ���J	. 
Combining  (S12) and (S14) we get  

																													w��xy� � w6�xy� 	 >#�l���� � 1���  ���A � 1���  ��� ���A�	.																					�S15� 
An immediate consequence is that in the case of an NV beneath a flat surface (l=0), we obtain  

																																																																			�w��xy� � w6�xy��[��� 	 0	.																																																				�S16� 
From Eq. (S16) we calculate   

																																											z�� ��6�� �6{���� 	 9�9xy�0�� �
2	�ta9xy�0����
1  �9xy�0��ta��� ≪ 1																																		�S17� 

so long as 9xy�0�� ≫ 9� (the typical case in practice). Since, even for moderate fields �Q� ≪ ��, 
j=0, 2, we surmise from Eqs (S6)-(S8) that in the case of a flat surface the resulting nuclear 

polarization of surface spins must be low, a conclusion in agreement with the exact numerical 

calculations
2
 of Fig. 2.   

 Next we consider the case of a cylindrical protrusion on the diamond surface where w~l 

and d=0 (i.e., the NV sits at the center of its base, on the plane coincident with the rest of the 

diamond surface). Eq. (S15) then yields 

																																																												�w��xy� � w6�xy��[���� ~	>#�l���J ,																																															�S18� 



 8 

where � 	 �~� denotes the NV distance to the crystal surface. It is interesting to compare the 
above expression with that resulting from the opposite geometry, namely, the case where the NV 

sits below a pit of depth � 	 �� 2⁄ . Taking �~� 2⁄  we get  

																																																					�w��xy� � w6�xy��[����� � �0.12>#�l���J 	,																																								�S19� 
with �~� representing as before the distance to the surface. Thus, relative to the geometry in Eq. 
(S18), a pit on the crystal surface leads to a sign reversal and a significant reduction of the 

difference between the transition rate amplitudes. A summary for the different geometries 

including the case of a dome is presented in Table S1. 

 Finally, we consider the case of an inclined plane, i.e., the geometry where the direction 

normal to the surface forms an angle pxy with the NV axis. As shown in Fig. S2, the angle p  
between the NV direction and the vector  F � F�� 	 �o	mno�, o	o-q�,��� connecting the NV 
center at Fxy 	 �0,0, ��� an the nuclear spin on the diamond surface is given by  
																																																						mnop 	 o	o-q�	o-qpxy  �	mnopxy�o�  ���� �� 	.																																											�S20� 
Combining (S20) with formulas (S12) and (S14), we find the generalized expressions for the 

transition rate constants 

Geometry w6 �⁄  w� �⁄  w� �⁄  

Flat surface 0.1875 0.3750 0.1875 

Cylindrical dome 0.5250 1.2000 3.5250 

Cylindrical pit 0.1682 0.1494 0.0203 

 
 

Table S1: Transition rate constants for different geometries. The constant � is given by � 	 >l�#�� �J⁄  and � ≡ 1 �⁄  is the NV surface density 
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																														w6�xy��pxy� 	 3�32 �2 � 8	o-q�pxy  32 o-q�2pxy  274 o-qJpxy�,														�S21� 
																														w��xy��pxy� 	 9�32 �43  4	o-q�pxy � o-q�2pxy � 92 o-qJpxy� 	,																			�S22� 
and  

																												w��xy��pxy� 	 3�32 �2  32 o-q�2pxy  274 	o-qJpxy�	,																																					�S23� 
where we define � ≡ �#Z�Z�h�  and � ≡ ��. A plot of w6�xy�, w��xy�, and w��xy� as a function of pxy as 
calculated from formulas (S21)-(S23) is shown in Fig. S3. For pxy=90, we find that �w��xy� �
w6�xy��[� ¡�¢6 � 2� 3⁄ ~0.5 e 10£	s� for NVs 3 nm below the surface. Comparison with, for 
example, the central plot in Fig. 3 of the main narrative shows that this value is much smaller 

than that obtained with a roughened surface.  

It is worth emphasizing that the integrals involved in calculating w� (Eqs. (S12)-(S14), 
(S21)-(S23)) result from taking ensemble average over all possible configurations between an 

NV center and a nuclear spin adsorbed on the diamond surface at a given time. The use of an 

 

Fig. S2: Schematics of a shallow NV center 

whose axis forms an angle pxy with the surface 
normal. 

 

Fig. S3: Dependence of the transition rate constants w6 , w� , and w�  on the angle pxy  with the surface 
normal as calculated from formulas (S21)-(S23). 
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integral, therefore, does not reflect on assumptions regarding the detailed molecular trajectories 

on the surface. In particular, the present treatment remains valid even if molecules move from 

one position to the next via discrete jumps. This is because the condition of an exponentially-

decaying time correlation function has no direct implications on how a molecule moves from one 

point in space to another (e.g., long-distance single hops versus short-distance multiple hops) or 

what the set of allowed positions is (e.g., discrete lattice versus a continuum). Correspondingly, 

our formulas are applicable to both liquids and gases, regardless the presumably different 

microscopic dynamics characterizing each case. 

 

S3. The influence of other nuclear spin relaxation channels 

Assuming that 1 ¥���¦�⁄  is the nuclear spin relaxation rate due to mechanisms other than 

the interaction with NV centers, we rewrite Eq. (S5) in the form 

�〈H〉�� ≅ �〈H〉 �2���1 � N6�  ��� �6��1 � NO��  ��Q� �Q6��1 � N0��� 
																																																																	� 〈H〉¥���¦� � 〈M6,0�〉��� ��6� � 〈M6,O�〉��Q6 ��Q��,										�S24� 
 where, as before, we assume negligible nuclear spin polarization in equilibrium. For NVs 

continuously pumped into mS=0, the steady state nuclear magnetization is given by  

								〈H〉6 	 �12 ���� ��6� � ��Q� ��Q6��
g�� �6 �Q� �Q6  1¥���¦�i

	 �12 §6 ���� ��6� � ��Q� ��Q6����� �6 �Q� �Q6� 								�S25� 

where  §6 	 1 �1  1 ¨6⁄ �⁄  is called the ‘leakage factor’, and ¨6 	 ��� �6 �Q� �Q6�¥���¦� 
is the relative transition rate. Obviously, greater values of  |〈H〉6| are obtained as §6 approaches 
unity, which corresponds to larger values of  ¨6. To gauge the influence of unpolarized spin-1/2 
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defects (such as P1 centers) on the nuclear spin pumping efficiency we write    

																																																						 1¥���¦�~
1¥©���ª�� 	 ����ª��  2���ª�� �6�ª���																																	�S26� 

where the expression for 
�«©¬�®� is that derived by Solomon for nuclear spins interacting with spin-

1/2 paramagnetic centers
1
. For nuclear spins adsorbed on the diamond surface and interacting 

dipolarly with shallow paramagnetic impurities (PIs), a derivation similar to that presented in 

Section II yields the transition probabilities  

�6�ª�� 	 w6�ª��ta1  ��9ª� � 9��ta�� 	 ; 	���ª�� 	 w��ª��ta1  �9�ta�� 	 ; 	���ª�� 	 w��ª��ta1  ��9ª�  9��ta�� 	 ; 	�S27� 
where w6�ª�� 	 #�〈|f6|�〉 8⁄ , w��ª�� 	 #�〈|f�|�〉 2⁄ , w��xy� 	 2#�〈|f�|�〉, and 9ª� 	 ?�~.  

In Fig. S4a we plot the PI-induced leakage factor §6�~, ta� for an NV optically pumped 
into mS=0 in the geometry of case (ii) (NV at the base of a dome) assuming that the NV and PI 

surface densities are identical. We find that nuclear spin relaxation is immune to paramagnetic 

impurities precisely where NV-induced DNP is most efficient. The leakage factor inevitably 

diminishes, though, as the concentration of PIs increases to values much larger than that of the 

 
Fig. S4: (a) Leakage factor §6�~, ta� due to spin-1/2 PIs for the case of NVs pumped onto �� 	 0 assuming 
that both NVs and PIs act on nuclear spins from under a dome-like interface. The surface concentrantions �xy, �ª� are the same. (b) Same as in (a) but for the case �ª� 	 10�xy.  
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NV (Fig. S4b).  

 

S4. Calculating bulk nuclear spin polarization in the fluid 

 To account for molecular diffusion and flow throughout the microfluidic channel, we 

rewrite Eq. (S5) in the form 

										�〈H〉��, ¯, ���� 	 �〈H〉��, ¯, �� ° 1¥©���xy���, ¯� 
1¥���¦���, ¯� 

1¥���±�² �
〈M6〉¥���xy����																												 

																																																																				�³��� ⋅ µ〈H〉��, ¯, ��  µ ⋅ �¶���µ〈H〉��, ¯, ���,											�S28� 
where we neglect electron and nuclear spin equilibrium polarization and assume that the NVs are 

continously pumped onto �� 	 0  (i.e., the stationary NV polarization is approximately 
〈M6,0�〉6 	 〈M6,O�〉6 ≡ 〈M6〉 � 1 2⁄ ). In Eq. (S28) we define 1 ¥���xy���, ¯�⁄ ≡ ��xy�·���p�|¯| �
¯¸ 2⁄ � and 1 ¥©���xy���, ¯�⁄ ≡ �¹ �xy�·���p�|¯| � ¯¸ 2⁄ � where p�¯� is the Heaviside function, ¯¸ 
is the length of the implanted section of the the channel, 

·��� ≡ ��6J ��6  ��J ⁄ �6J ��6  �º � ��J⁄ �  and �6  is 
the NV distance to the surface, �º is the channel width, 
and � represents the position across the channel (in the 
»0, �º¼  interval); ��xy� ≡ ���� ��6� � ��Q� �
�Q6��[h½  and �¹ �xy� ≡ ��� �6 �Q� �Q6�(h½ 
calculated for NVs at a depth �6. By the same token, we 
write 1 ¥���¦����⁄ ≡ ��ª��·���p�|¯| � ¯¸ 2⁄ � where ��ª�� 
represents the surface relaxation rate due to paramagnetic impurities other than the NV as 

discussed in Section S3. Finally, ¥���±� is the longitudinal relaxation time of nuclear spins within 

 
Fig. S5: Schematics of the microfluidic 

geometry.   



 13

the fluid, and ³���, ¶��� respectively denote the fluid velocity and self-diffusion coefficient, in 
general, functions of the relative position across the microfluidic channel.  

 To get an estimate of the fluid nuclear spin polarization, we start by considering the 

simpler case where ³ 	 0 and the fluid is confined to a channel-like volume of length ¯¸ ≫ �º; 
we also assume that the NV-implanted side walls  extending infinitely along the x-axis, 

perpendicular to the drawing in Fig. S5  are homogeneously illuminated. Imposing, for 

simplicity, the condition ¶��� 	 ¶ , constant throughout the volume, and assuming that the 
channel width �º  is sufficiently small  (e.g., �º ¾ 1 µm), we have for a fluid such as water 
¥���±� ¿ ���xy��0�~��¹ �xy��0� ≫ tº , where tº 	 �º� ¶⁄  is the molecular self-diffusion time 

across the channel (about 100 µs for water in 0.5-µm-wide channel). In this limit it follows that 

〈H〉��, ¯, �� ≅ 〈H〉̅�¯, ��, i.e., the nuclear magnetization does not depend on the distance to the 
channel wall. On the other hand, and assuming that the length of the implanted region ¯¸ is much 
longer than the diffusion length ¯Á 	 Â¶¥���±�, molecules remain confined within the optically 
pumped region of the channel during the time required to reach a steady-state regime of dynamic 

polarization (of order ¥���±�). In this latter case, nuclear spin order builds up uniformly throughout 
the illuminated region (i.e., 〈H〉�¯, �� 	 〈H〉��� ) and the dynamics can be modelled via the 
equation  

																													�〈H〉����� 	 �〈H〉��� °���¹ �xy� ��ª���  1¥���±�² � ���xy�〈M6〉,																			�S29� 
where the factor � ≡ t¦ �t¦  t±�⁄ ≅ t¦ t±⁄  is the fractional time spent by molecules on the 

surface relative to that in the bulk of the fluid. In the stationary state (i.e., when 
*〈�〉�4�*4 	 0) we 

find the bulk nuclear spin polarization given by  
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																																																	�N��±��¸�U 	 2〈H〉 ≅ �2���xy�¥���±�〈M6〉	,																																								�S30� 
where we used that � ≪ 1 so that 			�¥���±���¹ �xy� ��ª��� ≪ 1. In thermal equilibium we must 
have at the interface q¦ t¦⁄ 	 q± t±⁄ , where q¦  and q±  respectively denote the number of 
molecules adsorbed on the solid or in the bulk fluid; in the case of a 500-nm-wide channel we 

then get � 	 q¦ q±~2 e 100A⁄ . Thus, for ��xy� 	 1 s-1, ¥���±� 	 10 s, and 〈M6〉 	 0.5, we obtain 
	�N��±��¸�U ≅ �2 e 100�.  

We note that for a fluid such as water (modelled in Fig. 5) ¯Á~150  µm, which is 
comparable to (if not larger than) the length ¯¸ one can reasonably expect to pump with a laser 
(at least in the absence of ancillary cavity-like structures). Therefore, part of the nuclear 

polarization ‘leaks’ outside of the illuminated region during the pumping process, which 

correspondingly leads to lower peak values of �N��±��¸�U, as illustrated in Fig. 5a of the main text. 
To tackle the more general case where ¯¸ ¯Á⁄  takes an arbitrary value, we return to Eq. (S28) and 

take the average across the channel under the assumption 〈H〉��, ¯, �� ≅ 
〈H〉̅�¯, �� ≡ �1 �º⁄ � \ 〈H〉��, ¯, ����hÃ6  to get  

�〈H〉̅�� �¯, �� 	 �〈H〉̅�¯, �� °�S����¹ �xy� ��ª���p�|¯| � ¯¸ 2⁄ �  1¥���±�²																	 
																																						��S����xy�p�|¯| � ¯¸ 2⁄ �〈M6〉 � 2Ä3 Å〈H〉̅Å¯ �¯, ��  ¶ Å�〈H〉̅Å¯� �¯, ��		,							�S31� 
where we imposed a parabolic flow profile Ä}��� 	 Ä ���º � �� �º�⁄ , dropped terms proportional 

to the gradient along � , and used the notation �S�� ≡ �1 �º⁄ � \ ·�����hÃ6  	 �h½AhÃ �1 �
�6A ��º  �6�A⁄ � to indicate the effective fraction of molecules experiencing a non-negligible 
coupling with the paramagnetic centers on the diamond surface. Note that with the 
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correspondence �S�� ↔ � , Eq. (S31) generalizes Eq. (S29) for arbitrary flow velocity Ä  and 
implantation length ¯¸. The steady-state solution to Eq. (S31) in the absence of flow (Ä 	 0) is 
given by formula (6) of the main text. 
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