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Figure S1. Tar reforming at 923 — 1073 K with Fe/Ce3/La/Al. Feed: H,O 9.1%, CO
54.5%, CH4 4.1%, H, 30.9%, N, 1.07%, C;oHs 0.33%, H,S 40 ppm. Turnovers are
calculated with respect to C;oHg only.
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Figure S2. Tar reforming at 923 — 1073 K with Ni2/Ca/Mg2/Al. Feed: H,0 9.1%, CO
54.5%, CH4 4.1%, H, 30.9%, N, 1.07%, C;oHs 0.33%, H,S 40 ppm. Turnovers are
calculated with respect to C;oHg only.
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Figure S3. Tar reforming at 923 — 1073 K with Nil5/K/Mg4/Al. Feed: H,O 9.1%, CO
54.5%, CHy4 4.1%, H; 30.9%, N, 1.07%, CjoHs 0.33%, H,S 40 ppm. Turnovers are
calculated with respect to C;oHg only.
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Figure S4. Tar reforming at 923 — 1073 K with Ni0.008/Mn0.003/Al. Feed: H,O 9.1%,
CO 54.5%, CH4 4.1%, H; 30.9%, N, 1.07%, CioHg 0.33%, H,S 40 ppm. Turnovers are
calculated with respect to C;oHg only.
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Figure S5. Weight loss in hydrogen temperature-programmed reduction of as-calcined
(fresh) Mn1/Ce4 and CeO,. The hold at 630°C was for 2 h, and at 740 and 770°C, 1 h.

The weight loss for Mn1/Ce4 is equivalent to ~17% reduction on an oxygen atom basis
(O lost/all O in the sample), much higher than that of CeO, (~2.7%).



Table S1. Results of regression analysis for Ce Lyj-edge XAFS of reduced Fe/Ce3

Ce-O Ce-Ce/Fe

N 6.7 9.3/2.7
R(A) | 227  3.773.75

o’(A) 10.014  0.009/0.009
R-factor | 0.06

Table S2. Results of regression analysis for Fe K-edge XAFS of reduced Fe/Ce3

Fe-O Fe-Fe/Ce Fe-Fe
N 6.4 2.6/9.3 8
R (A) 227 3.7/3.74 2.47
o’ (A) 0.07 0.019/0.01 0.004
R-factor | 0.06




Table S3. Results of regression analysis for Ce Ljj-edge XAFS of Mn1/Ce4, Ce-
anion and Ce-cation shells

sulfided Ce-O (S)' Ce-Ce (Mn) | Ce-O(S)

N 6.4 12 17.8

R (A) 2.33+0.02 3.86+0.02 4.37+0.08
5'(A) 0.010+0.002 | 0.006+0.002 | 0.016+0.031
reduced Ce-O (S) Ce-Ce (Mn) | Ce-O(S)

N 6 12 15

R (A) 2.33£0.03 | 3.88+0.02 4.39+0.04
c°(A) 0.015+0.004 | 0.004+0.003 | 0.003+0.021
as calcined Ce-O (S) Ce-Ce (Mn) | Ce-O(S)

N 6.8 12 18.2

R (A) 2.33£0.02 | 3.86+0.02 4.38+0.09
c°(A) 0.009+0.002 | 0.006+0.002 | 0.020+0.04




