Supporting information Bis(imidazolidine)pyridine-NiCl₂ Catalyst for Nitro-Mannich Reaction of Isatin-derived *N*-Boc Ketimines: Asymmetric Synthesis of Chiral 3-Substituted 3-Amino-2-oxindoles Takayoshi Arai,*,† Eri Matsumura,† Hyuma Masu‡ [†]Department of Chemistry, Graduate School of Science, Chiba University 1-33 Yayoi, Inage, Chiba 263-8522, Japan [‡]Center for Analytical Instrumentation, Chiba University, Inage, Chiba 263-8522, Japan # Contents | 1. General | S3 | |--|-----| | 2. General procedure for enantioselective nitro-Mannich reaction | S3 | | 3. Optimization of reaction condition | S4 | | 4. Analytical data for product of nitro-Mannich reaction | S5 | | 5. X-ray crystallographic analysis of <i>rac-</i> 2g | S11 | | 6. Reduction of nitro group | S12 | | 7. Deprotection of Boc group | S13 | | 8. ESI-MS spectra | S14 | | 9. ¹ H NMR and ¹³ C NMR spectra | S16 | | 10. HPLC data | S32 | #### 1. General Dry solvents were purchased from commercial suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230-400 mesh silica gel containing a fluorescent indicator (Merck, #1.05715.0009). Silica gel column chromatography was performed on Kanto silica gel 60 (spherical, 100-210 μm). ¹H NMR spectra were recorded on JEOL ECS-400 (400 MHz), ECA-500 (500 MHz) spectrometers. Chemical shifts of ¹H NMR spectra were reported relative to tetramethylsilane (δ 0). ¹³C NMR spectra were recorded on JEOL ECS-400 (100 MHz), ECA-500 (125 MHz) spectrometers. Chemical shifts of ¹³C NMR spectra were reported relative to CDCl₃ (δ 77.0), acetone-d₆ (δ 29.84) or DMSO-d₆ (δ 39.52). Splitting patterns were reported as s, singlet; d, doublet; t, triplet; q, quartet; dd, double doublet; m, multiplet; br, broad. General experimental details for synthesis of PyBidine ligand have been described.¹⁾ Substrates were synthesized according to known procedure.^{2, 3)} - (1) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338. - (2) Hara, N.; Nakamura, S.; Sano, M.; Tamura, R.; Funahashi, Y.; Shibata, N. Chem. Eur. J. 2012, 18, 9276. - (3) Matestic, L.; Locke, J. M.; Vine, K. L.; Ranson, M.; Bremner, J. B.; Skropeta, D. *Tetrahedron* **2012**, *68*, 6810. ### 2. General procedure for enantioselective nitro-Mannich reaction PyBidine (0.011 mmol) and NiCl₂ (0.01 mmol) were added to a two-necked round-bottomed flask containing a stir bar under Ar. Dichloromethane (2.00 mL) was added to the flask and the mixture was stirred for 6 hours. After removal of the solvent under reduced pressure, toluene (1.00 mL) was added as a reaction solvent. To the resulting solution, nitromethane (2.00 mmol), DIPEA (0.02 mmol) and N-Boc ketimine (0.20 mmol) were added at 30 °C. After being stirred for appropriate time, the reaction mixture was quenched by water, extracted with ethyl acetate, dried with Na₂SO₄. After removal of the solvent under reduced pressure, the resulting crude mixture was purified by silica gel column chromatography to give the product. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC by using Daicel Chiralcel OD-H and Chiralpak AD-H columns. # 3. Optimization of reaction condition Table S1. Effect of base | entry | base | yield (%) | ee (%) | |-------|--------------------------------|-----------|--------| | 1 | DIPEA | 99 | 95 | | 2 | TEA | 99 | 95 | | 3 | K ₂ CO ₃ | 92 | 79 | | 4 | - | 31 | 90 | ### 4. Analytical data for product of nitro-Mannich reaction ### (R)-tert-butyl (1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2a) ¹H NMR (400 MHz, CDCl₃): δ 1.32 (s, 9H), 3.28 (s, 3H), 4.60 (d, J= 12.2 Hz, 1H), 4.92 (d, J= 12.5 Hz, 1H), 5.96 (s, 1H), 6.90 (d, J= 7.0 Hz, 1H), 7.08-7.12 (m, 1H), 7.36-7.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 26.86, 28.04, 59.79, 77.81, 81.18, 108.88, 123.47, 124.28, 125.82, 130.40, 143.25, 153.65, 172.64; HRMS (ESI+) calcd for $C_{15}H_{18}O_5N_3$ (M-H) 320.1252: found 320.1259; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 10.1 min, major enantiomer Rt= 15.4 min; $[\alpha]_D^{18}$ = -6.0 (c= 1.0, CHCl₃, 94% ee). ### (R)-tert-butyl (1-benzyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2b) ¹H NMR (400 MHz, CDCl₃): δ 1.36 (s, 9H), 4.66 (d, J= 12.2 Hz, 1H), 4.88 (d, J= 15.4 Hz, 1H), 4.97-5.07 (m, 2H), 5.92 (s, 1H), 6.77 (d, J= 7.9 Hz, 1H), 7.04-7.08 (m, 1H), 7.23-7.38 (m, 6H), 7.45 (d, J= 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 28.09, 44.51, 59.87, 77.76, 81.26, 109.95, 123.45, 124.47, 125.80, 127.34, 127.85, 128.89, 130.29, 135.02, 142.43, 153.74, 172.87; HRMS (ESI+) calcd for $C_{21}H_{22}O_5N_3$ (M-H)⁻ 396.1565: found 396.1572; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= 70:30, 1.0 ml/min, 254 nm); minor enantiomer Rt= 9.3 min, major enantiomer Rt= 16.4 min; $[\alpha]_D^{20}$ = -5.9 (c= 1.0, CHCl₃, 84% ee). ### (R)-tert-butyl (1-allyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2c) ¹H NMR (400 MHz, CDCl₃): δ 1.35 (s, 9H), 4.28-4.33 (m, 1H), 4.47 (dd, J= 5.0, 16.3 Hz, 1H), 4.64 (d, J= 12.5 Hz, 1H), 5.00 (d, J= 12.5 Hz, 1H), 5.25-5.29 (m, 1H), 5.32-5.38 (m, 1H), 5.80-5.91 (m, 2H), 6.89 (d, J= 7.7 Hz, 1H), 7.06-7.11 (m, 1H), 7.32-7.36 (m, 1H), 7.47 (d, J= 7.5 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ 28.09, 43.00, 59.75, 77.73, 81.22, 109.81, 118.28, 123.40, 124.58, 125.76, 130.29, 130.65, 142.54, 153.71, 172.54; HRMS (ESI+) calcd for $C_{17}H_{20}O_5N_3$ (M-H) 346.1408: found 346.1421; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 8.6 min, major enantiomer Rt= 10.9 min; $[\alpha]_D^{21}$ = -4.8 (c= 1.0, CHCl₃, 84% ee). ### (R)-tert-butyl (1-acetyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2d) ¹H NMR (400 MHz, CDCl₃): δ 1.30 (s, 9H), 2.71 (s, 3H), 4.68 (d, J= 12.5 Hz, 1H), 4.81 (d, J= 12.5 Hz, 1H), 6.18 (s, 1H), 7.22-7.26 (m, 1H), 7.33-7.35 (m, 1H), 7.41-7.46 (m, 1H), 8.28 (d, J= 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 26.60, 27.95, 60.19, 78.19, 81.98, 117.04, 122.98, 125.06, 125.87, 130.86, 139.88, 153.49, 170.40, 173.53; HRMS (ESI+) calcd for C₁₆H₁₈O₆N₃ (M-H)⁻¹ 348.1201: found 348.1210; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); major enantiomer Rt= 13.5 min, minor enantiomer Rt= 23.7 min; $[\alpha]_D^{-22}$ = -11.5 (c= 0.5, CHCl₃, 57% ee). ### (R)-tert-butyl (5-fluoro-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2e) ¹H NMR (400 MHz, CDCl₃): δ 1.35 (s, 9H), 3.27 (s, 3H), 4.62 (d, J= 12.5 Hz, 1H), 4.96 (d, J= 12.5 Hz, 1H), 5.90 (s, 1H), 6.84 (dd, J= 4.1, 8.6 Hz, 1H), 7.07-7.12 (m, 1H), 7.24-7.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.01, 28.05, 59.87, 77.43, 81.48, 109.53 (d, J= 7.6 Hz), 112.97 (d, J= 24.8 Hz), 116.75 (d, J= 22.9 Hz), 127.29 (d, J= 6.7 Hz), 139.31, 153.67, 159.41 (d, J= 242.2 Hz), 172.44; HRMS (ESI+) calcd for C₁₅H₁₇O₅N₃F (M-H)⁻ 338.1158: found 338.1169; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= 80:20, 1.0 ml/min, 254 nm); major enantiomer Rt= 12.4 min, minor enantiomer Rt= 14.9 min; $[\alpha]_D^{19}$ = -2.5 (c= 1.0, CHCl₃, 82% ee). ### (R)-tert-butyl (5-chloro-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2f) ¹H NMR (400 MHz, CDCl₃): δ 1.36 (s, 9H), 3.27 (s, 3H), 4.60 (d, J= 12.7 Hz, 1H), 4.93 (d, J= 12.7 Hz, 1H), 5.87 (s, 1H), 6.83 (d, J= 8.2 Hz, 1H), 7.35-7.38 (m, 1H), 7.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.00, 28.06, 59.69, 77.42, 81.55, 109.88, 124.93, 127.41, 128.91, 130.37, 141.92, 153.63, 172.29; HRMS (ESI+) calcd for C₁₅H₁₇O₅N₃Cl (M-H)⁻ 354.0862: found 354.0873; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 14.4 min, major enantiomer Rt= 20.4 min; [α]_D²⁰= -19.4 (c= 1.0, CHCl₃, 88% ee). ### (R)-tert-butyl (5-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2g) ¹H NMR (400 MHz, CDCl₃): δ 1.35 (s, 9H), 3.26 (s, 3H), 4.62 (d, J= 12.5 Hz, 1H), 4.92 (d, J= 12.7 Hz, 1H), 6.01 (s, 1H), 6.79 (d, J= 8.2 Hz, 1H), 7.49-7.52 (m, 1H), 7.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 26.92, 28.02, 59.59, 77.38, 81.50, 110.33, 116.01, 127.48, 127.76, 133.24, 142.41, 153.60, 172.18; HRMS (ESI+) calcd for $C_{15}H_{17}O_5N_3Br$ (M-H)⁻ 398.0357: found 398.0367; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); major enantiomer Rt= 25.5 min, minor enantiomer Rt= 29.5 min; [α]_D¹⁸= -27.8 (c= 1.0, CHCl₃, 80% ee). ### (R)-tert-butyl (6-chloro-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2h) ¹H NMR (400 MHz, CDCl₃): δ 1.34 (s, 9H), 3.27 (s, 3H), 4.57 (d, J= 12.2 Hz, 1H), 4.94 (d, J= 12.5 Hz, 1H), 5.87 (s, 1H), 6.91 (d, J= 1.6 Hz, 1H), 7.07 (dd, J= 1.8, 7.9 Hz, 1H), 7.36 (d, J= 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.00, 28.05, 59.41, 77.56, 81.46, 109.75, 123.32, 124.09, 125.43, 136.40, 144.55, 153.62, 172.66; HRMS (ESI+) calcd for $C_{15}H_{17}O_5N_3Cl$ (M-H)² 354.0862: found 354.0872; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 13.3 min, major enantiomer Rt= 20.7 min; $\lceil \alpha \rceil_D^{20} = +5.7$ (c = 1.0, CHCl₃, 86% ee). ### (R)-tert-butyl (6-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2i) ¹H NMR (400 MHz, CDCl₃): δ 1.34 (s, 9H), 3.26 (s, 3H), 4.57 (d, J= 12.5 Hz, 1H), 4.94 (d, J= 12.5 Hz, 1H), 5.92 (s, 1H), 7.06 (d, J= 1.6 Hz, 1H), 7.23 (dd, J= 1.6, 7.9 Hz, 1H), 7.30 (d, J= 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.00, 28.05, 59.47, 77.48, 81.48, 112.52, 124.27, 124.64, 125.70, 126.28, 144.62, 153.61, 172.54; HRMS (ESI+) calcd for $C_{15}H_{17}O_5N_3Br$ (M-H) 398.0357: found 398.0374; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); major enantiomer Rt= 16.3 min, minor enantiomer Rt= 18.4 min; $\lceil \alpha \rceil_D^{22} = +9.3$ (c= 1.0, CHCl₃, 81% ee). ### (R)-tert-butyl (7-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2j) ¹H NMR (400 MHz, CDCl₃): δ 1.33 (s, 9H), 3.66 (s, 3H), 4.54 (d, J= 12.5 Hz, 1H), 4.87 (d, J= 12.5 Hz, 1H), 6.03 (s, 1H), 6.92-6.96 (m, 1H), 7.30 (d, J= 7.3 Hz, 1H), 7.49 (dd, J= 1.1, 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 28.04, 30.61, 59.35, 77.84, 81.52, 103.25, 122.95, 124.55, 128.97, 136.07, 140.60, 153.49, 173.21; HRMS (ESI+) calcd for $C_{15}H_{17}O_5N_3Br$ (M-H)⁻ 398.0357: found 398.0373; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 22.5 min, major enantiomer Rt= 40.7 min; $[\alpha]_D^{20} = +18.2$ (c= 1.0, CHCl₃, 78% ee). ### (R)-tert-butyl (1,5-dimethyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2k) ¹H NMR (400 MHz, CDCl₃): δ 1.33 (s, 9H), 2.33 (s, 3H), 3.26 (s, 3H), 4.58 (d, J= 12.5 Hz, 1H), 4.90 (d, J= 12.5 Hz, 1H), 5.91 (s, 1H), 6.79 (d, J= 7.9 Hz, 1H), 7.16-7.19 (m, 1H), 7.22 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.07, 26.87, 28.05, 59.89, 77.86, 81.10, 108.63, 124.93, 125.83, 130.64, 133.18, 140.82, 153.67, 172.54; HRMS (ESI+) calcd for $C_{16}H_{20}O_5N_3$ (M-H) 334.1408: found 334.1420; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 11.8 min, major enantiomer Rt= 14.7 min; $[\alpha]_D^{21}$ = -20.4 (c= 1.0, CHCl₃, 95% ee). ### (R)-tert-butyl (5-methoxy-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (21) ¹H NMR (400 MHz, CDCl₃): δ 1.34 (s, 9H), 3.26 (s, 3H), 3.78 (s, 3H), 4.59 (d, J= 12.5 Hz, 1H), 4.93 (d, J= 12.2 Hz, 1H), 5.89 (s, 1H), 6.81 (d, J= 8.4 Hz, 1H), 6.89-6.91 (m, 1H), 7.06 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 26.91, 28.05, 55.85, 60.09, 77.75, 81.17, 109.35, 111.51, 114.86, 127.03, 136.53, 153.68, 156.47, 172.32; HRMS (ESI+) calcd for $C_{16}H_{20}O_6N_3$ (M-H)⁻ 350.1358: found 350.1368; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 18.6 min, major enantiomer Rt= 21.0 min; $[\alpha]_D^{21} = -22.6$ (c= 1.0, CHCl₃, 92% ee). ### (R)-tert-butyl # (1-(nitromethyl)-2-oxo-2,4,5,6-tetrahydro-1H-pyrrolo[3,2,1-ij]quinolin-1-yl)carbamate (2m) ¹H NMR (400 MHz, CDCl₃): δ 1.35 (s, 9H), 1.96-2.13 (m, 2H), 2.78-2.81 (m, 2H), 3.69-3.84 (m, 2H), 4.65 (d, J= 12.5 Hz, 1H), 4.99 (d, J= 12.2 Hz, 1H), 5.84 (s, 1H), 6.96-6.99 (m, 1H), 7.12 (dd, J= 0.7, 7.7 Hz, 1H), 7.24-7.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 20.81, 24.35, 28.10, 39.30, 60.89, 77.64, 81.02, 120.86, 122.58, 122.87, 124.42, 129.24, 139.10, 153.78, 171.44; HRMS (ESI+) calcd for $C_{17}H_{20}O_5N_3$ (M-H)⁻ 346.1408: found 346.1422; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 80:20, 1.0 ml/min, 254 nm); minor enantiomer Rt= 7.7 min, major enantiomer Rt= 13.4 min; $[\alpha]_D^{23}$ = +13.0 (c= 1.0, CHCl₃, 94% ee). ### tert-butyl (1-methyl-3-(1-nitroethyl)-2-oxoindolin-3-yl)carbamate (2n) major diastereomer: 1 H NMR (400 MHz, CDCl₃): δ 1.28 (s, 9H), 1.74 (d, J= 6.8 Hz, 3H), 3.26 (s, 3H), 4.66-4.68 (m, 1H), 6.11 (s, 1H), 6.88 (d, J= 7.9 Hz, 1H), 7.04-7.11 (m, 1H), 7.15-7.18 (m, 1H), 7.34-7.40 (m, 1H); 13 C NMR (100 MHz, CDCl₃, 80/20 diastereomixture): δ 12.80, 13.02, 26.65, 26.75, 27.96, 29.62, 61.83, 62.74, 80.92, 84.66, 85.44, 108.41, 108.63, 122.96, 123.19, 123.36, 124.07, 126.92, 130.15, 130.25, 143.05, 144.00, 153.27, 153.78, 172.17, 173.11; HRMS (ESI+) calcd for $C_{16}H_{20}O_{5}N_{3}$ (M-H) $^{-}$ 334.1408: found 334.1420; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 9.2 min, major enantiomer Rt= 22.8 min; $[\alpha]_{D}^{22}$ = -40.2 (c= 1.0, CHCl₃, 80/20 diastereomixture, 90% ee). minor diastereomer: ¹H NMR (400 MHz, CDCl₃): δ 1.29 (s, 9H), 1.74 (d, *J*= 6.8 Hz, 3H), 3.26 (s, 3H), 4.98-5.03 (m, 1H), 6.11 (s, 1H), 6.88 (d, *J*= 7.9 Hz, 1H), 7.04-7.11 (m, 1H), 7.15-7.18 (m, 1H), 7.34-7.40 (m, 1H); enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); minor enantiomer Rt= 7.7 min, major enantiomer Rt= 16.4 min. ### 5. X-ray crystallographic analysis of rac-2g Scheme S1. Recrystallization of nitro-Mannich product 2g Figure S1. X-ray structure of rac. nitro-Mannich product 2g ### 6. Reduction of nitro group Tert-butyl (1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (**2a**, 0.19 mmol) and NiCl₂·6H₂O (0.19 mmol) were added to a two-necked round-bottomed flask containing a stir bar under Ar. Methanol (1.90 mL) was added to the flask and the mixture was stirred at 0 °C. Sodium borohydride (2.28 mmol) was added and stirred for 40 min at 0 °C. The reaction mixture was quenched by saturated NH₄Cl aq., extracted with dichloromethane, dried with Na₂SO₄. The resulting solution was concentrated under reduced pressure to afford adduct. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC by using Daicel Chiralpak AS-H column. ### (R)-tert-butyl (3-(aminomethyl)-1-methyl-2-oxoindolin-3-yl)carbamate ¹H NMR (400 MHz, CDCl₃): δ 1.24 (s, 9H), 2.95 (s, 2H), 3.24 (s, 3H), 5.96 (s, 1H), 6.85 (d, J= 7.7 Hz, 1H), 7.05-7.09 (m, 1H), 7.26-7.33 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 26.23, 27.87, 48.21, 62.35, 79.99, 108.01, 122.26, 122.51, 128.70, 130.12, 143.17, 154.47, 176.48; HRMS (ESI+) calcd for C₁₅H₂₂O₃N₃ (M+H)⁺ 292.1656: found 292.1651; enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm); major enantiomer Rt= 13.9 min, minor enantiomer Rt= 19.6 min; $[\alpha]_D^{21}$ = -28.2 (c= 1.0, CHCl₃, 97% ee). ### 7. Deprotection of Boc group Tert-butyl (5-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (**2g**, 0.17 mmol) was added to a round-bottomed flask containing a stir bar under air. Dichloromethane (3.40 mL) was added to the flask and the mixture was stirred at 0 °C. TFA (1.70 mL) was added and stirred for 30 min at 0 °C. The reaction mixture was concentrated under reduced pressure and azeotroped with toluene. The resulting crude mixture was purified by silica gel column chromatography to give the product. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC by using Daicel Chiralcel OD-H column. ### (R)-3-amino-5-bromo-1-methyl-3-(nitromethyl)indolin-2-one $$\begin{array}{c|c} & H_2 \underbrace{N}_{NO_2} \\ & NO_2 \\ & N \\ & Me \end{array}$$ ¹H NMR (400 MHz, CDCl₃): δ 3.25 (s, 3H), 4.78-4.78 (m, 2H), 6.78-6.80 (m, 1H), 7.50-7.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 26.69, 58.93, 79.11, 110.45, 115.92, 127.24, 129.29, 133.37, 142.82, 176.09; HRMS (ESI+) calcd for $C_{10}H_{11}O_3N_3Br$ (M+H)⁺ 299.9978: found 299.9978; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 70:30, 1.0 ml/min, 254 nm); minor enantiomer Rt= 19.6 min, major enantiomer Rt= 29.7 min; $[\alpha]_D^{19}$ = -60.4 (c= 1.0, CHCl₃, 81% ee). ### 8. ESI-MS spectra ### ESI-MS of PyBidine-NiCl₂ complex HRMS (ESI+) calcd for [PyBidine-NiCl]⁺ (C₄₉H₄₅N₅ClNi) 796.2711: found 796.2708. \\HhhhwGj\data\...\131119_3697_2_01 11/19/2013 10:10:30 AM ### ESI-MS of PyBidine-NiCl₂ complex with isatin-derived N-Boc ketimine HRMS (ESI+) calcd for $[PyBidine-NiCl + ketimine]^+$ ($C_{63}H_{61}O_3N_7ClNi$) 1056.3872: found 1056.3870. \\Hhhhw@j\data\...\131128\131128_3697_04 11/28/2013 1:15:28 PM # 9. ¹H NMR and ¹³C NMR spectra # Product obtained by reduction of 2a (Scheme 3) # Product obtained by deprotection of Boc group from 2g (Scheme 3) # 10. HPLC spectra Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralpak AD-H column (hexane:2-propanol= 70:30, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralpak AD-H column (hexane:2-propanol= 80:20, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralpak AD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralpak AD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralpak AD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 80:20, 1.0 ml/min, 254 nm) Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) # Product obtained by reduction of 2a (Scheme 3) Chiralpak AS-H column (hexane:2-propanol= 90:10, 1.0 ml/min, 254 nm) # Product obtained by deprotection of Boc group from 2g (Scheme 3) Chiralcel OD-H column (hexane:2-propanol= 70:30, 1.0 ml/min, 254 nm)