Supporting information

Bis(imidazolidine)pyridine- NiCl_{2} Catalyst for Nitro-Mannich Reaction of Isatin-derived N-Boc Ketimines: Asymmetric Synthesis of Chiral 3-Substituted 3-Amino-2-oxindoles

Takayoshi Arai,*, \dagger Eri Matsumura, ${ }^{\dagger}$ Hyuma Masu \ddagger
\dagger Department of Chemistry, Graduate School of Science, Chiba University
1-33 Yayoi, Inage, Chiba 263-8522, Japan
\#Center for Analytical Instrumentation, Chiba University, Inage, Chiba 263-8522, Japan

Contents

1. General S3
2. General procedure for enantioselective nitro-Mannich reaction S3
3. Optimization of reaction condition S4
4. Analytical data for product of nitro-Mannich reaction S5
5. X-ray crystallographic analysis of rac-2g S11
6. Reduction of nitro group S12
7. Deprotection of Boc group S13
8. ESI-MS spectra S14
9. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S16
10. HPLC data S32

1. General

Dry solvents were purchased from commercial suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230-400 mesh silica gel containing a fluorescent indicator (Merck, \#1.05715.0009). Silica gel column chromatography was performed on Kanto silica gel 60 (spherical, 100-210 $\mu \mathrm{m}$). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on JEOL ECS-400 (400 MHz), ECA-500 $(500 \mathrm{MHz})$ spectrometers. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR spectra were reported relative to tetramethylsilane $(\delta 0) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL ECS-400 (100 MHz), ECA-500 (125 MHz) spectrometers. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR spectra were reported relative to $\mathrm{CDCl}_{3}(\delta 77.0)$, acetone-d $\mathrm{d}_{6}(\delta 29.84)$ or DMSO-d ${ }_{6}(\delta 39.52)$. Splitting patterns were reported as s, singlet; d, doublet; t, triplet; q, quartet; dd, double doublet; m, multiplet; br, broad.
General experimental details for synthesis of PyBidine ligand have been described. ${ }^{1)}$ Substrates were synthesized according to known procedure. ${ }^{2,3)}$
(1) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
(2) Hara, N.; Nakamura, S.; Sano, M.; Tamura, R.; Funahashi, Y.; Shibata, N. Chem. Eur. J. 2012, 18, 9276.
(3) Matestic, L.; Locke, J. M.; Vine, K. L.; Ranson, M.; Bremner, J. B.; Skropeta, D. Tetrahedron 2012, 68, 6810.

2. General procedure for enantioselective nitro-Mannich reaction

PyBidine $(0.011 \mathrm{mmol})$ and $\mathrm{NiCl}_{2}(0.01 \mathrm{mmol})$ were added to a two-necked round-bottomed flask containing a stir bar under Ar. Dichloromethane $(2.00 \mathrm{~mL})$ was added to the flask and the mixture was stirred for 6 hours. After removal of the solvent under reduced pressure, toluene (1.00 mL) was added as a reaction solvent. To the resulting solution, nitromethane (2.00 mmol), DIPEA (0.02 $\mathrm{mmol})$ and N-Boc ketimine (0.20 mmol) were added at $30^{\circ} \mathrm{C}$. After being stirred for appropriate time, the reaction mixture was quenched by water, extracted with ethyl acetate, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the resulting crude mixture was purified by silica gel column chromatography to give the product. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC by using Daicel Chiralcel OD-H and Chiralpak AD-H columns.

3. Optimization of reaction condition

Table S1. Effect of base

4. Analytical data for product of nitro-Mannich reaction

(R)-tert-butyl (1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.32(\mathrm{~s}, 9 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.86,28.04,59.79,77.81,81.18,108.88,123.47,124.28,125.82,130.40,143.25$, 153.65, 172.64; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}-\mathrm{H})^{-}$320.1252: found 320.1259; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= $90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=10.1 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=15.4 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{18}=-6.0\left(c=1.0, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$.

(R)-tert-butyl (1-benzyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2b)

Bn
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 4.66(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.97-5.07 (m, 2H), $5.92(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.45$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.09,44.51,59.87,77.76,81.26,109.95$, $123.45,124.47,125.80,127.34,127.85,128.89,130.29,135.02,142.43,153.74,172.87$; HRMS (ESI+) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}-\mathrm{H})^{-}$396.1565: found 396.1572; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol=70:30, $1.0 \mathrm{ml} / \mathrm{min}, 254$ nm); minor enantiomer $\mathrm{Rt}=9.3 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=16.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-5.9\left(c=1.0, \mathrm{CHCl}_{3}\right.$, 84% ee).

(R)-tert-butyl (1-allyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2c)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 4.28-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=5.0,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.91(\mathrm{~m}$,
$2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 28.09,43.00,59.75,77.73,81.22,109.81,118.28,123.40,124.58$, 125.76, 130.29, 130.65, 142.54, 153.71, 172.54; HRMS (ESI+) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}-\mathrm{H})^{-}$ 346.1408: found 346.1421 ; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=8.6 \mathrm{~min}$, major enantiomer Rt= $10.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{21}=-4.8\left(c=1.0, \mathrm{CHCl}_{3}, 84 \% \mathrm{ee}\right)$.

(R)-tert-butyl (1-acetyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30(\mathrm{~s}, 9 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 26.60,27.95,60.19,78.19,81.98,117.04,122.98,125.06$, 125.87, 130.86, 139.88, 153.49, 170.40, 173.53; HRMS (ESI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~N}_{3}(\mathrm{M}-\mathrm{H})^{-}$ 348.1201: found 348.1210; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); major enantiomer $\mathrm{Rt}=13.5 \mathrm{~min}$, minor enantiomer $\mathrm{Rt}=23.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}=-11.5\left(c=0.5, \mathrm{CHCl}_{3}, 57 \%\right.$ ee $)$.

(R)-tert-butyl (5-fluoro-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=4.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.01,28.05,59.87,77.43,81.48,109.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}$), 112.97 (d, $J=24.8$ $\mathrm{Hz}), 116.75(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 127.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 139.31,153.67,159.41(\mathrm{~d}, J=242.2 \mathrm{~Hz}), 172.44$; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~F}(\mathrm{M}-\mathrm{H})^{-}$338.1158: found 338.1169; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= $80: 20,1.0 \mathrm{ml} / \mathrm{min}, 254$ $\mathrm{nm})$; major enantiomer $\mathrm{Rt}=12.4 \mathrm{~min}$, minor enantiomer $\mathrm{R} \mathrm{t}=14.9 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{19}=-2.5\left(c=1.0, \mathrm{CHCl}_{3}\right.$, 82% ee).

(R)-tert-butyl (5-chloro-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2f)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3} : $\delta 27.00,28.06,59.69,77.42,81.55,109.88,124.93,127.41,128.91,130.37,141.92,153.63$, 172.29; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{Cl}(\mathrm{M}-\mathrm{H})^{-}$354.0862: found 354.0873; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, 1.0 $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=14.4 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=20.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-19.4(c=$ $1.0, \mathrm{CHCl}_{3}, 88 \%$ ee).

(R)-tert-butyl (5-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 26.92,28.02,59.59,77.38,81.50,110.33,116.01,127.48,127.76,133.24,142.41,153.60$, 172.18; HRMS (ESI+ $)$ calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{Br}(\mathrm{M}-\mathrm{H})^{-}$398.0357: found 398.0367; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= 90:10, 1.0 $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm})$; major enantiomer $\mathrm{Rt}=25.5 \mathrm{~min}$, minor enantiomer $\mathrm{Rt}=29.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{18}=-27.8(c=$ $1.0, \mathrm{CHCl}_{3}, 80 \%$ ee).

(R)-tert-butyl (6-chloro-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2h)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=1.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.00,28.05,59.41,77.56,81.46,109.75,123.32,124.09,125.43$, 136.40, 144.55, 153.62, 172.66; HRMS (ESI +) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{Cl}(\mathrm{M}-\mathrm{H})^{-}$354.0862: found 354.0872; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column
(hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=13.3 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=20.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+5.7\left(c=1.0, \mathrm{CHCl}_{3}, 86 \%\right.$ ee $)$.

(R)-tert-butyl (6-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2i)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=1.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.00,28.05,59.47,77.48,81.48,112.52,124.27,124.64,125.70$, 126.28, 144.62, 153.61, 172.54; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{Br}(\mathrm{M}-\mathrm{H})^{-}$398.0357: found 398.0374; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol= $90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); major enantiomer $\mathrm{Rt}=16.3 \mathrm{~min}$, minor enantiomer $\mathrm{Rt}=18.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}=+9.3\left(c=1.0, \mathrm{CHCl}_{3}, 81 \% \mathrm{ee}\right)$.

(R)-tert-butyl (7-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2j)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.33(\mathrm{~s}, 9 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.96(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=1.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 28.04,30.61,59.35,77.84,81.52,103.25,122.95,124.55,128.97$, 136.07, 140.60, 153.49, 173.21; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{Br}(\mathrm{M}-\mathrm{H})^{-}$398.0357: found 398.0373; enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=22.5 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=40.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+18.2\left(c=1.0, \mathrm{CHCl}_{3}, 78 \% \mathrm{ee}\right)$.

(R)-tert-butyl (1,5-dimethyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2k)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.33(\mathrm{~s}, 9 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}): $\delta 21.07,26.87,28.05,59.89,77.86,81.10,108.63,124.93,125.83,130.64$, 133.18, 140.82, 153.67, 172.54; HRMS (ESI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{3}$ (M-H) 334.1408: found 334.1420; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=11.8 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=14.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{21}=-20.4\left(c=1.0, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$.

(R)-tert-butyl (5-methoxy-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2I)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.93(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.91(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 26.91,28.05,55.85,60.09,77.75,81.17,109.35,111.51,114.86,127.03$, 136.53, 153.68, 156.47, 172.32; HRMS (ESI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~N}_{3}$ (M-H) 350.1358: found 350.1368; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=18.6 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=21.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{21}=-22.6\left(c=1.0, \mathrm{CHCl}_{3}, 92 \%\right.$ ee $)$.

(R)-tert-butyl

(1-(nitromethyl)-2-oxo-2,4,5,6-tetrahydro-1H-pyrrolo[3,2,1-ij]quinolin-1-yl)carbamate
(2m)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.96-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.81(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.84(\mathrm{~m}$, $2 \mathrm{H}), 4.65$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.12$ (dd, $J=0.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.81,24.35,28.10,39.30$, $60.89,77.64,81.02,120.86,122.58,122.87,124.42,129.24,139.10,153.78,171.44$; HRMS (ESI+) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}-\mathrm{H})^{-} 346.1408$: found 346.1422 ; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol $=80: 20,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=7.7 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=13.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{23}=+13.0\left(c=1.0, \mathrm{CHCl}_{3}, 94 \% \mathrm{ee}\right)$.
tert-butyl (1-methyl-3-(1-nitroethyl)-2-oxoindolin-3-yl)carbamate (2n)

major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.26(\mathrm{~s}$, $3 \mathrm{H}), 4.66-4.68(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.34-7.40 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 80 / 20$ diastereomixture): $\delta 12.80,13.02,26.65$, $26.75,27.96,29.62,61.83,62.74,80.92,84.66,85.44,108.41,108.63,122.96,123.19,123.36$, 124.07, 126.92, 130.15, 130.25, 143.05, 144.00, 153.27, 153.78, 172.17, 173.11; HRMS (ESI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{3}(\mathrm{M}-\mathrm{H})^{-}$334.1408: found 334.1420; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=9.2 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=22.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}=-40.2\left(c=1.0, \mathrm{CHCl}_{3}, 80 / 20\right.$ diastereomixture, 90% ee).
minor diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.26(\mathrm{~s}$, $3 \mathrm{H}), 4.98-5.03(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.34-7.40 (m, 1H); enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= $90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=7.7 \mathrm{~min}$, major enantiomer $R \mathrm{t}=16.4 \mathrm{~min}$.

5. X-ray crystallographic analysis of rac-2g

Scheme S1. Recrystallization of nitro-Mannich product $\mathbf{2 g}$

Figure S1. X-ray structure of rac. nitro-Mannich product $\mathbf{2 g}$

6. Reduction of nitro group

Tert-butyl (1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate (2a, 0.19 mmol) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.19 \mathrm{mmol})$ were added to a two-necked round-bottomed flask containing a stir bar under Ar. Methanol $(1.90 \mathrm{~mL})$ was added to the flask and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$. Sodium borohydride (2.28 mmol) was added and stirred for 40 min at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq., extracted with dichloromethane, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to afford adduct. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC by using Daicel Chiralpak AS-H column.

(R)-tert-butyl (3-(aminomethyl)-1-methyl-2-oxoindolin-3-yl)carbamate

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24(\mathrm{~s}, 9 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.23,27.87,48.21$, $62.35,79.99,108.01,122.26,122.51,128.70,130.12,143.17,154.47,176.48$; HRMS (ESI +) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$292.1656: found 292.1651; enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); major enantiomer $\mathrm{Rt}=13.9 \mathrm{~min}$, minor enantiomer $\mathrm{Rt}=19.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{21}=-28.2\left(c=1.0, \mathrm{CHCl}_{3}, 97 \%\right.$ ee $)$.

7. Deprotection of Boc group

Tert-butyl (5-bromo-1-methyl-3-(nitromethyl)-2-oxoindolin-3-yl)carbamate ($\mathbf{2 g}, 0.17 \mathrm{mmol}$) was added to a round-bottomed flask containing a stir bar under air. Dichloromethane (3.40 mL) was added to the flask and the mixture was stirred at $0^{\circ} \mathrm{C}$. TFA $(1.70 \mathrm{~mL})$ was added and stirred for 30 \min at $0^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure and azeotroped with toluene. The resulting crude mixture was purified by silica gel column chromatography to give the product. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC by using Daicel Chiralcel OD-H column.

(R)-3-amino-5-bromo-1-methyl-3-(nitromethyl)indolin-2-one

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.25(\mathrm{~s}, 3 \mathrm{H}), 4.78-4.78(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.80(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.53(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 26.69,58.93,79.11,110.45,115.92,127.24,129.29,133.37$, 142.82, 176.09; HRMS (ESI+) calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}$299.9978: found 299.9978; enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol= $70: 30,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{Rt}=19.6 \mathrm{~min}$, major enantiomer $\mathrm{Rt}=29.7 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{19}=-60.4\left(c=1.0, \mathrm{CHCl}_{3}, 81 \%\right.$ ee $)$.

8. ESI-MS spectra

ESI-MS of PyBidine-NiCl $\mathbf{2}_{\mathbf{2}}$ complex

HRMS (ESI+) calcd for [PyBidine-NiCl] ${ }^{+}\left(\mathrm{C}_{49} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{ClNi}\right) 796.2711$: found 796.2708.

C49H45N5CINi: C49 H45 N5 Cl1 Ni1 pa Chrg 1

ESI-MS of PyBidine-NiCl $\mathbf{2}_{\mathbf{2}}$ complex with isatin-derived \boldsymbol{N}-Boc ketimine

HRMS (ESI+) calcd for [PyBidine-NiCl + ketimine] ${ }^{+}\left(\mathrm{C}_{63} \mathrm{H}_{61} \mathrm{O}_{3} \mathrm{~N}_{7} \mathrm{ClNi}\right)$ 1056.3872: found 1056.3870.

WHhhhemjldatak... $131128: 131128 _3697 _04 \quad$ 11/28/2013 1:15:28 PM

131128_3697_04 \#9 RT: 0.13 AV: 1 NL: 1.07E
T: FTMS $\{1.1\}+p$ ESI Full ms [150.00-2000.00]

C63H6103N7CINi: C63 H61 03 N7 CI1 Ni1 pa Chrg 1

9. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

Product obtained by reduction of 2a (Scheme 3)

Product obtained by deprotection of Boc group from $\mathbf{2 g}$ (Scheme 3)

10. HPLC spectra

Chiralcel OD-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak AD-H column (hexane:2-propanol $=70: 30,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak AD-H column (hexane:2-propanol $=80: 20,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol= $90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak AD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak AD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak AD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol= 90:10, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol= 80:20, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Product obtained by reduction of 2a (Scheme 3)

Chiralpak AS-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

Product obtained by deprotection of Boc group from $\mathbf{2 g}$ (Scheme 3)

Chiralcel OD-H column (hexane:2-propanol= 70:30, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$)

