Efficient Asymmetric Syntheses of 1-Phenyl-phosphindane, Derivatives, and 2- or 3-Oxa Analogs: Mission Accomplished

Slavko Rast, Barbara Mohar,* and Michel Stephan*, ${ }^{\dagger}$
National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
barbara.mohar@ki.si; mstephan@phosphoenix.com

Contents

1. Preparation of Compounds S1
2. Organolithiums reaction with 2 under various explored conditions (Table S1) S6
3. Continued References from "Reference 3" of the Main Document S7
4. X-Ray Crystal Structures Determination S8
5. HPLC Chromatograms S10
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR Spectra S18

1. Preparation of Compounds

Materials and methods

The following compounds were prepared according to literature procedures: $(2 S, 4 R, 5 S)-(-)-3,4-$ dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine-2-borane ((-)-oxazaPB; derived from ($1 S, 2 R$)-(+)ephedrine) and its enantiomer $(2 R, 4 S, 5 R)-(+)$-oxazaPB (derived from $(1 R, 2 S)$-(-)-ephedrine). ${ }^{1}\left(R_{\mathrm{P}}\right)$ and $\left(S_{\mathrm{P}}\right)$-(o-hydroxyphenyl)(methyl)(phenyl)phosphine- P-boranes (10) were prepared from (-)oxazaPB and (+)-oxazaPB, respectively. ${ }^{2}$
Reactions were conducted under an inert atmosphere using anhydrous solvents when required. Analytical thin layer chromatography (TLC) was performed on Silica Gel 60F 254 plates. Chromatography over silica gel was carried out using Silica Gel $60(40-63 \mu \mathrm{~m})$. Melting points were determined on a Kofler apparatus and are uncorrected. Optical rotations were measured on a PerkinElmer 341 polarimeter. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right),{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}\right.$, internal $\left.\mathrm{CDCl}_{3}\right)$, and ${ }^{31} \mathrm{P}$ NMR (120 MHz , external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) were recorded for solutions in CDCl_{3} if not stated otherwise. HRMS measurements were obtained on an Agilent 6224 Accurate Mass TOF LC/MS instrument coupled with an Agilent 1260 HPLC Infinity module and a dual ESI interface, and with a Waters Micromass QTOF Premier instrument equipped with orthogonal Z-spray ESI interface, respectively.
$\left(S_{\mathrm{P}}\right)$-[(1R,2S)-N-Ephedrino](2-hydroxymethyl-phenyl)(phenyl)phosphine-P-borane $\left(\left(S_{\mathrm{P}}\right)\right.$-1): To a
 cold $\left(-70^{\circ} \mathrm{C}\right)$ solution of 2-bromobenzyl alcohol $(12.80 \mathrm{~g}, 68.4 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(500$ mL) was added s - $\mathrm{BuLi}(1.25 \mathrm{M}, 108 \mathrm{~mL}, 135 \mathrm{mmol})$. After stirring at $-70^{\circ} \mathrm{C}$ for 1 h , crystalline (+)-oxazaPB $(15.00 \mathrm{~g}, 52.6 \mathrm{mmol})$ was added in one portion and the mixture allowed to warm up to rt with overnight stirring. Water (50 mL) and EtOAc $(50 \mathrm{~mL})$ were added, the organic layer separated, washed with brine, filtered through a short path of silica $\mathrm{gel} / \mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Recrystallization (25.4 g) from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene afforded a white crystalline powder (17.93 g, 86.8\%): mp $118-119{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}$ +49.4 (c 1.0, $\left.\mathrm{CHCl}_{3}\right)\left(>99.9 \%\right.$ de by ${ }^{1} \mathrm{H}$ NMR); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.68-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.18(\mathrm{~m}, 13 \mathrm{H})$, $4.92(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{q}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.14(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.54-$ $2.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-0.52(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.8(\mathrm{~d}, J=$ $13 \mathrm{~Hz}), 142.4,132.7(\mathrm{~d}, J=7 \mathrm{~Hz}), 132.6,131.7(\mathrm{~d}, J=8 \mathrm{~Hz}), 131.7,131.1,130.9,128.6(\mathrm{~d}, J=10$

[^0]$\mathrm{Hz}), 128.4(\mathrm{~d}, J=61 \mathrm{~Hz}), 128.3,127.5,127.4,126.0,78.9(\mathrm{~d}, J=3 \mathrm{~Hz}), 62.6(\mathrm{~d}, J=5 \mathrm{~Hz}), 58.1(\mathrm{~d}, J$ $=10 \mathrm{~Hz}), 31.6(\mathrm{~d}, J=3 \mathrm{~Hz}), 11.7(\mathrm{~d}, J=4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta+68.9(\mathrm{br} m) ;$ HRMS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BNO}_{2} \mathrm{P}\left[M^{+}+\mathrm{H}\right]$ 394.2107, found 394.2113.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-[(1S,2R)-N-Ephedrino](2-hydroxymethyl-phenyl)(phenyl)phosphine-P-borane $\quad\left(\left(\boldsymbol{R}_{\mathbf{P}}\right)\right.$-1):

$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BNO}_{2} \mathrm{P}$ (393.27) Following a similar procedure as for $\left(S_{\mathrm{P}}\right)-\mathbf{1}$ starting from (-)-oxazaPB, a crystalline material ($>99.9 \%$ de by ${ }^{1} \mathrm{H}$ NMR) was obtained with identical characteristics as described above.
Absolute configuration determination: single X-ray crystal structure analysis revealed its (R_{P})-configuration.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-1-Phenyl-2-oxa-1-phosphindane- \boldsymbol{P}-borane $\left(\left(\boldsymbol{R}_{\mathbf{P}}\right)\right.$-2): To a solution of $\left(S_{\mathrm{P}}\right)$ - $\mathbf{1}(5.40 \mathrm{~g}, 13.05$ $\mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added at rt under stirring a solution of $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}(1.28$

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BOP}$ (228.03) $\mathrm{g}, 13.05 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$. After stirring for 1.5 h , the reaction mixture was filtered through a bed of silica gel and concentrated. Purification on silica gel eluting with toluene afforded the title compound as a white powder ($2.85 \mathrm{~g}, 96 \%$): mp $44-46^{\circ} \mathrm{C}$; 97.5% ee by HPLC (see below). The ee was upgraded by single recrystallization from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4{ }^{\circ} \mathrm{C}$, and the enriched product was collected from the recrystallization filtrate. After concentration, the title compound was obtained as white crystals ($2.2 \mathrm{~g}, 75 \%$ total yield): $[\alpha]_{\mathrm{D}}{ }^{25}-50.5$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)\left(99.8 \%\right.$ ee by HPLC, see below); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.69-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.36(\mathrm{~m}, 5 \mathrm{H})$, $5.80-5.28(\mathrm{~m}, 2 \mathrm{H}), 1.82-0.39(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 142.6(\mathrm{~d}, J=12 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=47 \mathrm{~Hz}), 132.4$ $(\mathrm{d}, J=2 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=2 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=12 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=59 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=10 \mathrm{~Hz})$, $128.7(\mathrm{~d}, J=10 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=14 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=9 \mathrm{~Hz}), 76.1(\mathrm{~d}, J=10 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta+125.4$ (br m); HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{OP}\left[M^{+}+\mathrm{H}-\mathrm{BH}_{3}\right]$ 215.062, found 215.0621.
($\boldsymbol{S}_{\mathbf{P}}$)-1-Phenyl-2-oxa-1-phosphindane-P-borane $\left(\left(S_{\mathrm{P}}\right)\right.$-2): Following a similar procedure as for $\left(R_{\mathrm{P}}\right)$-2
 starting from $\left(R_{\mathrm{P}}\right) \mathbf{- 1}$, a crystalline material (99.9% ee by HPLC, see below) was obtained with identical characteristics as described above.
Absolute configuration determination: single X-ray crystal structure analysis revealed its $\left(S_{\mathrm{P}}\right)$-configuration.
HPLC determination of enantiomeric excess of 2: a quasi-racemic mixture was prepared by mixing $\left(R_{\mathrm{P}}\right)-2$ and $\left(S_{\mathrm{P}}\right)-\mathbf{2}$. HPLC analysis was carried out on a Daicel Chiralcel OD column (25 cm) conjugated with a Daicel Chiralcel OD-H column $(15 \mathrm{~cm})$: hexane $/ 2-\mathrm{PrOH} 98: 2,1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=230 \mathrm{~nm}), t_{\mathrm{R}}=21.4 \mathrm{~min}\left(S_{\mathrm{P}}\right), 22.6 \min \left(R_{\mathrm{P}}\right)$.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-(2-Hydroxymethyl-phenyl)(methyl)(phenyl)phosphine-P-borane ($\left(\boldsymbol{R}_{\mathbf{P}}\right)$-3): To a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ BH_{3} suspension of $\left(R_{\mathrm{P}}\right)-\mathbf{2}(99.8 \%$ ee; $2.85 \mathrm{~g}, 12.5 \mathrm{mmol})$ in cumene $(300 \mathrm{~mL})$ was added

$\xrightarrow{\mathrm{CO}}$ stirred at $-78^{\circ} \mathrm{C}$ for 3 h then quenched with $\mathrm{MeOH}(2 \mathrm{ml})$. Water (100 mL) and $\mathrm{Et}_{2} \mathrm{O}(150$
mL) were added and the product extracted. The organic layer was washed with brine (40 mL), filtered through a bed of silica gel $/ \mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated affording a colourless oil $(2.96 \mathrm{~g}, 97 \%) .[\alpha]_{578}{ }^{25}-23.97$ (c 1.0, CHCl_{3}) $\left(97.7 \%\right.$ ee by HPLC, see below); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.71-7.51$ $(\mathrm{m}, 5 \mathrm{H}), 7.51-7.33(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-0.47(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.7(\mathrm{~d}, J=9 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=1 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=$ $7 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=3 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=52 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=8 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=$ $10 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=9 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=53 \mathrm{~Hz}), 62.6(\mathrm{~d}, J=6 \mathrm{~Hz}), 13.3(\mathrm{~d}, J=42 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: δ +13.3 (br m); HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OP}\left[M^{+}+\mathrm{H}-\mathrm{BH}_{3}\right]$ 231.0933, found 231.0935.
$\left(S_{\mathrm{P}}\right)$-(2-Hydroxymethyl-phenyl)(methyl)(phenyl)phosphine- P-borane $\left(\left(S_{\mathrm{P}}\right)\right.$-3: To a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$

BH_{4}
$\xrightarrow[(244.08)]{\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BOP}}$

HPLC determination of enantiomeric excess of 3: a quasi-racemic mixture was prepared by mixing $\left(S_{\mathrm{P}}\right)-\mathbf{3}$ and $\left(R_{\mathrm{P}}\right)-\mathbf{3}$. HPLC analysis was carried out on a Daicel Chiralcel OD column (25 cm) conjugated with a Chiralcel OD-H column (15 cm): hexane $/ 2-\mathrm{PrOH} 95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=230 \mathrm{~nm}), t_{\mathrm{R}}=31.4 \min \left(S_{\mathrm{P}}\right), 33.8 \min \left(R_{\mathrm{P}}\right)$.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-(2-Hydroxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-P-borane $\left(\left(\boldsymbol{R}_{\mathrm{P}}\right)\right.$-4),
TMS

Route A: To a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\left(R_{\mathrm{P}}\right)-2(2.51 \mathrm{~g}, 11 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and (-)-sparteine $(4.13 \mathrm{~g}, 17.6 \mathrm{mmol})$ was added dropwise $\mathrm{TMSCH}_{2} \mathrm{Li}(1.0 \mathrm{M}$ in pentane, $16.5 \mathrm{~mL}, 16.5 \mathrm{mmol}$) during 10 min . The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h then allowed to warm up to $0{ }^{\circ} \mathrm{C}$ over 6 h and quenched with $\mathrm{MeOH}(2 \mathrm{ml})$. Water (100 mL) was added and the product extracted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The organic layer was washed with brine $(40 \mathrm{~mL})$, filtered through a bed of silica $\mathrm{gel} / \mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude was purified by column chromatography eluting with petroleum ether 40-60/EtOAc (9:1). Colourless oil $(2.8 \mathrm{~g}, 80 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=-14.5\left(c=1.0, \mathrm{CHCl}_{3}\right)(90.2 \%$ ee by HPLC analysis of its Ms derivative 5 , see below); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.89-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.57-0.41(\mathrm{~m}, 3 \mathrm{H}),-0.02(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.5(\mathrm{~d}, J=8 \mathrm{~Hz}), 132.94(\mathrm{~d}, J=55 \mathrm{~Hz}), 132.58(\mathrm{~d}, J=9 \mathrm{~Hz}) 131.70(\mathrm{~d}, J=2 \mathrm{~Hz})$, $131.56(\mathrm{~d}, J=10 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=2 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=8 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=51 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=10$ $\mathrm{Hz}), 127.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 62.8(\mathrm{~d}, J=6 \mathrm{~Hz}), 13.8(\mathrm{~d}, J=26 \mathrm{~Hz}), 0.5(\mathrm{~d}, J=3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta+13.1$ (br m); HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OPSi}\left[M^{+}+\mathrm{H}-\mathrm{BH}_{3}\right]$ 303.1329, found 303.1326.
Route B: To a cold $\left(-40^{\circ} \mathrm{C}\right)$ solution of $\left(R_{\mathrm{P}}\right)-\mathbf{3}(97.7 \%$ ee; $2.93 \mathrm{~g}, 12 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was added s - $\mathrm{BuLi}(1.3 \mathrm{M}, 20.3 \mathrm{~mL}, 26.4 \mathrm{mmol})$. The resulting mixture was left to stir at $-40{ }^{\circ} \mathrm{C}$ for 1 h then $\mathrm{TMSCl}(4.57 \mathrm{ml}, 36 \mathrm{mmol})$ was added and allowed to warm up to $0^{\circ} \mathrm{C}$ during 1 h . The reaction mixture was quenched with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$, stirred at rt for 3 h then extracted with $\mathrm{Et}_{2} \mathrm{O}(100$ $\mathrm{ml})$. The organic layer was washed with brine $(40 \mathrm{~mL})$, filtered through a bed of silica gel $/ \mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated affording a colourless oil ($3.72 \mathrm{~g}, 98 \%$) with identical characteristics as described above: $[\alpha]_{\mathrm{D}}{ }^{25}-15.9\left(c 1.0, \mathrm{CHCl}_{3}\right)(97.7 \%$ ee by HPLC analysis of its Ms derivative 5, see below).
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-(2-Mesyloxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-P-borane ($\left(\boldsymbol{R}_{\mathbf{P}}\right)$-5): To a
 cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\left(R_{\mathrm{P}}\right)-4(97.7 \%$ ee; $3.76 \mathrm{~g}, 11.9 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.2 \mathrm{~mL}, 15.4$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added dropwise mesyl chloride ($1.1 \mathrm{~mL}, 14.3 \mathrm{mmol}$). After stirring for 1 h at $-20^{\circ} \mathrm{C}$, the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ then brine (80 mL), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification by column chromatography on silica gel eluting with toluene/EtOAc $4: 1$ afforded a colourless oil ($4.52 \mathrm{~g}, 96 \%$): 97.7% ee by HPLC (see below). Recrystallization from MeOH at $-15{ }^{\circ} \mathrm{C}$ yielded the title compound as a white crystalline powder ($3.6 \mathrm{~g}, 78 \%$): mp $92-94{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-15.0\left(c 1.0, \mathrm{CHCl}_{3}\right)(>99.9 \%$ ee by HPLC, see below); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.86(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 4 \mathrm{H}), 5.25(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.54-0.43(\mathrm{~m}, 3 \mathrm{H}),-0.03(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR: $\delta 137.1(\mathrm{~d}, J=7 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=54 \mathrm{~Hz}), 131.688(\mathrm{~d}, J=2$ $\mathrm{Hz}), 131.685(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=2 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=7 \mathrm{~Hz}), 130.96(\mathrm{~d}, J=7 \mathrm{~Hz}), 130.94(\mathrm{~d}, J$ $=48 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=10 \mathrm{~Hz}), 68.5(\mathrm{~d}, J=5 \mathrm{~Hz}), 37.4,13.5(\mathrm{~d}, J=25 \mathrm{~Hz}), 0.4(\mathrm{~d}, J=3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta+14.7$ (br m); HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BNaO}_{3} \mathrm{PSSi}\left[M^{+}+\mathrm{Na}\right]$ 417.1257, found 417.1249.

HPLC determination of enantiomeric excess of 5: a quasi-racemic mixture was prepared by mixing $\left(S_{\mathrm{P}}\right)-5$ and $\left.\left(R_{\mathrm{P}}\right)-5 . S_{\mathrm{P}}\right)-5$ was prepared via $\left(S_{\mathrm{P}}\right)-\mathbf{3}$ following Scheme 1 starting from (-)-oxazaPB. HPLC analysis was carried out on a Daicel Chiralcel AD-H column (25 cm): hexane/2-PrOH 95:5, 1.0 $\mathrm{mL} / \mathrm{min}$, UV detection $(\lambda=220 \mathrm{~nm}), t_{\mathrm{R}}=15.1 \mathrm{~min}\left(S_{\mathrm{P}}\right), 17.1 \mathrm{~min}\left(R_{\mathrm{P}}\right)$.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-(2-Bromomethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-P-borane $\left(\left(\boldsymbol{R}_{\mathbf{P}}\right)-\mathbf{6}\right)$: To а solution of $\left(R_{\mathrm{P}}\right)-5(>99.9 \%$ ee; $3.40 \mathrm{~g}, 8.6 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ was added a solution
 of $\mathrm{LiBr}(2.95 \mathrm{~g}, 34.4 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ and the mixture heated at $55^{\circ} \mathrm{C}$ for 2.5 h . after cooling to $\mathrm{rt}, \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added and the organic layer separated and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The concentrated residue was taken in toluene and filtered through a bed of silica gel affording a colourless oil $(3.09 \mathrm{~g}, 95 \%)$: $[\alpha]_{\mathrm{D}}{ }^{25}-18.3$ (c $\left.1.0, \mathrm{CHCl}_{3}\right)\left(>99.9 \%\right.$ ee by HPLC analysis of $\left(R_{\mathrm{P}}\right)-7$ prepared from $\left.\left(R_{\mathrm{P}}\right)-6\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$: $\delta 7.92-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 4 \mathrm{H}), 4.72-4.25(\mathrm{~m}, 2 \mathrm{H})$,
$1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.79-0.72(\mathrm{~m}, 3 \mathrm{H}),-0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 141.4(\mathrm{~d}, J=5$ $\mathrm{Hz}), 133.7(\mathrm{~d}, J=12 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=7 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=55 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=$ $10 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=2 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=49 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=10 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=10 \mathrm{~Hz}), 31.4(\mathrm{~d}, J$ $=5 \mathrm{~Hz}), 12.8(\mathrm{~d}, J=25 \mathrm{~Hz}), 0.5(\mathrm{~d}, J=3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta+11.2(\mathrm{br} \mathrm{m}) ;$ HRMS $(\mathrm{ESI}): m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BBrPSi}\left[M^{+}-\mathrm{H}\right]$ 377.0661, found 377.0666.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-1-Phenyl-phosphindane- \boldsymbol{P}-borane $\left(\left(\boldsymbol{R}_{\mathbf{P}}\right)\right.$-7): To a mixture of $\mathrm{CsF}(3.50 \mathrm{~g}, 23.5 \mathrm{mmol})$ and $4 \AA$

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BP}$
(226.06) molecular sieves ${ }^{3}(2 \mathrm{~g})$ in N, N-dimethylacetamide $(100 \mathrm{~mL})$ was added a solution of $\left(R_{\mathrm{P}}\right)$ 6 ($>99.9 \%$ ee; $3.09 \mathrm{~g}, 8.15 \mathrm{mmol}$) in the same solvent (50 mL) also containing $4 \AA$ molecular sieves (2 g). After stirring at rt for 3 h , the mixture was cooled on an ice-bath chromatography eluting with hexane/EtOAc (99:1 to 98:2). Colourless oil (1.44 g, 78\%); $[\alpha]_{\mathrm{D}}{ }^{25}$ $+17.36\left(c 1.0, \mathrm{CHCl}_{3}\right)\left(>99.9 \%\right.$ ee by HPLC, see below); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.66-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.29$ $(\mathrm{m}, 8 \mathrm{H}), 3.57-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.48-0.41(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 148.4(\mathrm{~d}, J=15 \mathrm{~Hz})$, $131.643(\mathrm{~d}, J=10 \mathrm{~Hz}), 131.643(\mathrm{~d}, J=2 \mathrm{~Hz}),{ }^{4} 131.2(\mathrm{~d}, J=3 \mathrm{~Hz}), 130.80(\mathrm{~d}, J=7 \mathrm{~Hz}), 130.17(\mathrm{~d}, J$ $=12 \mathrm{~Hz}), 130.2(\mathrm{~d}, 8 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=10 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=10 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=8 \mathrm{~Hz}), 31.7(\mathrm{~d}, J=$ 4 Hz), 25.9 (d, $J=38 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR: $\delta+37.5$ (br m); HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{P}\left[M^{+}+\mathrm{H}-\right.$ BH_{3}] 213.0828, found 213.0828; ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data are in accordance with the literature. ${ }^{5}$
HPLC determination of enantiomeric excess of 7: a mixture with 38% ee was prepared by mixing $\left(S_{\mathrm{P}}\right)-7$ and $\left(R_{\mathrm{P}}\right)-7\left(\left(R_{\mathrm{P}}\right)-7\right.$ in excess $)$. $\left(S_{\mathrm{P}}\right)$ - 7 was prepared from $\left(S_{\mathrm{P}}\right)-6$ via $\left(S_{\mathrm{P}}\right)$ - 3 following Scheme 1 starting from (-)-oxazaPB. HPLC analysis was carried out using a Daicel Chiralcel OJ-H column (25 $\mathrm{cm})$: hexane/2-PrOH 95:5, $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=230 \mathrm{~nm})$, $t_{\mathrm{R}}=20.8 \mathrm{~min}\left(S_{\mathrm{P}}\right), 24.6 \mathrm{~min}\left(R_{\mathrm{P}}\right)$.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-1-Phenyl-phosphindane $\left(\left(\boldsymbol{R}_{\mathbf{P}}\right) \mathbf{- 8}\right)$: A solution of $\left(R_{\mathrm{P}}\right)-7(>99.9 \% \mathrm{ee} ; 300 \mathrm{mg}, 1.33 \mathrm{mmol})$ in
 $\mathrm{Et}_{2} \mathrm{NH}(5 \mathrm{~mL})$ and toluene $(10 \mathrm{ml})$ was stirred at rt for 16 h . After concentration, the residue was filtered through a SiO_{2} plug eluting with toluene. Colorless oil ($276 \mathrm{mg}, 98 \%$). The

Ph
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{P}$ (212.23) product can be recrystallized from MeOH at $-15^{\circ} \mathrm{C}$ and filtering cold; white plates ($\mathrm{mp}<10$ $\left.{ }^{\circ} \mathrm{C}\right) .[\alpha]_{\mathrm{D}}{ }^{25}+193.9\left(c 1.0, \mathrm{CHCl}_{3}\right)\left(>99.9 \%\right.$ ee by HPLC analysis of $\left(R_{\mathrm{P}}\right)-7$ prepared from $\left(R_{\mathrm{P}}\right) \mathbf{- 8}$ by complexation with $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{BH}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\left.0{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.79-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.11$ (m, 8H), 3.34-3.00 (m, 2H), 2.44-2.24 (m, 1H), 2.18-2.05 (m, 1H); ${ }^{13} \mathrm{C}$ NMR: $\delta 149.4(\mathrm{~d}, J=2 \mathrm{~Hz})$, $140.0(\mathrm{~d}, J=7 \mathrm{~Hz}), 139.6(\mathrm{~d}, J=23 \mathrm{~Hz}),)^{2} 131.5(\mathrm{~d}, J=8 \mathrm{~Hz}), 131.2,129.0,128.2(\mathrm{~d}, J=6 \mathrm{~Hz}), 128.0$, $126.7(\mathrm{~d}, J=8 \mathrm{~Hz}), 124.9(\mathrm{~d}, J=2 \mathrm{~Hz}), 34.3(\mathrm{~d}, J=6 \mathrm{~Hz}), 27.6(\mathrm{~d}, J=8 \mathrm{~Hz}),{ }^{31} \mathrm{P}$ NMR: $\delta-3.5(\mathrm{~s})$. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data are in accordance with the literature. ${ }^{5}$
$\left(S_{\mathbf{P}}\right)$-1-Phenyl-phosphindane-P-oxide $\left(\left(S_{\mathbf{P}}\right)-9\right)$: To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\left(R_{\mathrm{P}}\right)-\mathbf{8}(>99.9 \%$ ee; 95 Ng, 0.45 mmol$)$ in acetone was added 60% aq $\mathrm{H}_{2} \mathrm{O}_{2}(100 \mu \mathrm{~L})$ under stirring. After 10 min , the mixture was concentrated and the residual crude partitioned between $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$. Filtration of the organic layer through a bed of $\mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{MgSO}_{4}$ and concentration, afforded
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OP}$ a colorless oil $(97 \mathrm{mg}, 95 \%):[\alpha]_{\mathrm{D}}{ }^{25}-36.5\left(c 1.0, \mathrm{CHCl}_{3}\right)(>99.9 \%$ ee by HPLC, see below); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.92-7.32(\mathrm{~m}, 9 \mathrm{H}), 3.53-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 147.6(\mathrm{~d}, J=31 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=36 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=2 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=41 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=3$ $\mathrm{Hz}), 130.5(\mathrm{~d}, J=10 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=12 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=10 \mathrm{~Hz}), 126.4(\mathrm{~d}, J$ $=11 \mathrm{~Hz}), 28.2(\mathrm{~d}, J=4 \mathrm{~Hz}), 28.0(\mathrm{~d}, J=71 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $(243 \mathrm{MHz}): \delta+56.5(\mathrm{~s})$.
NMR data were consistent with those reported in the literature. ${ }^{6}$
HPLC determination of enantiomeric excess of 9: a mixture with 37% ee was prepared by mixing $\left(S_{\mathrm{P}}\right)-9$ and $\left(R_{\mathrm{P}}\right)-9\left(\left(S_{\mathrm{P}}\right)-9\right.$ in excess $) .\left(R_{\mathrm{P}}\right)-9$ was prepared from $\left(S_{\mathrm{P}}\right)-7$ via $\left(S_{\mathrm{P}}\right)-3$ following Scheme 1 starting from (-)-oxazaPB. HPLC analysis was carried out on a Daicel Chiralcel AD-H column (25 $\mathrm{cm})$: hexane $/ 2-\mathrm{PrOH} 95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=230 \mathrm{~nm}), t_{\mathrm{R}}=44.3 \mathrm{~min}\left(R_{\mathrm{P}}\right), 51.2 \mathrm{~min}\left(S_{\mathrm{P}}\right)$.
Absolute configuration: This was determined by comparison with the literature ${ }^{6}$ of HPLC elution on Chiralpak IA column: heptane/EtOH 90:10, $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=230 \mathrm{~nm}): t_{\mathrm{R}}=20.5 \mathrm{~min}$ $\left(\left(R_{\mathrm{P}}\right)-9\right), 22.2 \min \left(\left(S_{\mathrm{P}}\right)-9\right)$.
(3) Activated powdered molecular sieves were used.
(4) Two separate doublets with different coupling constants but with identical chemical shifts.
(5) Brunker, T. J.; Anderson, B. J.; Blank, N. F.; Glueck, D. S.; Rheingold, A. L. Org. Lett. 2007, 9, 1109-1112.
(6) Carr, D. J.; Kudavalli, J. S.; Dunne, K. S.; Müller-Bunz, H.; Gilheany, D. G. J. Org. Chem. 2013, 78, 10500-10505.
$\left(\boldsymbol{R}_{\mathbf{P}}\right)$-1-Phenyl-3-oxa-1-phosphindane- \boldsymbol{P}-borane $\left(\left(\boldsymbol{R}_{\mathbf{P}}\right)\right.$-11): To a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\left(\boldsymbol{R}_{P}\right)$ - $\mathbf{1 0}$
 ($>99.9 \%$ ee, $1.00 \mathrm{~g}, 4.34 \mathrm{mmol}$) in THF (50 ml) was added dropwise s-BuLi $(6.67 \mathrm{ml}$, 8.46 mmol) in 5 min . The mixture was stirred at that temperature for 1 h . After cooling to $-78{ }^{\circ} \mathrm{C}$, a solution of iodine ($1.10 \mathrm{~g}, 4.34 \mathrm{mmol}$) in THF (30 ml) was added dropwise maintaining the temperature below $-75^{\circ} \mathrm{C}$ then allowed to reach rt over 3 h . Quenching with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ followed by brine (40 ml), extraction with $\mathrm{Et}_{2} \mathrm{O}(2 \times 70 \mathrm{~mL})$, drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentration afforded the crude product. Purification by column chromatography eluting with hexane/toluene ($9: 1$ to $7: 3$) yielded the title compound as a colorless syrup ($0.81 \mathrm{~g}, 82 \%$); $[\alpha]_{\mathrm{D}}{ }^{25}-2.02$ (c 1.0, CHCl_{3}) ($>99.9 \%$ ee by HPLC, see below); ${ }^{1} \mathrm{H}$ NMR: $\delta 7.65-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.20-6.96(\mathrm{~m}, 2 \mathrm{H})$, 4.87 (dd, $J=12.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (dd, $J=12.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-0.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 164.2$ (d, $J=8 \mathrm{~Hz}$), $134.1(\mathrm{~d}, J=2 \mathrm{~Hz}), 132.1,132.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=11 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=10$ $\mathrm{Hz}), 129.0(\mathrm{~d}, J=45 \mathrm{~Hz}), 122.9(\mathrm{~d}, J=10 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=61 \mathrm{~Hz}), 112.8(\mathrm{~d}, J=5 \mathrm{~Hz}), 71.6(\mathrm{~d}, J=$ 29 Hz); ${ }^{31}$ P NMR: $\delta 15.4(\mathrm{br} \mathrm{m})$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{OP}\left[M^{+}+\mathrm{H}-\mathrm{BH}_{3}\right] 215.062$, found 215.0619.

HPLC determination of enantiomeric excess of 11: a quasi-racemic mixture was prepared by mixing $\left(S_{\mathrm{P}}\right)-\mathbf{1 1}$ and $\left(R_{\mathrm{P}}\right)$ - $\mathbf{1 1}$. $\left(S_{\mathrm{P}}\right)$ - $\mathbf{1 1}$ was prepared following Scheme 2 starting from (+)-oxazaPB. HPLC analysis was carried out on homoconjugated Daicel Chiralcel OD-H columns ($25 \mathrm{~cm}+15 \mathrm{~cm}$): hexane $/ 2-\mathrm{PrOH} 99: 1,1.0 \mathrm{~mL} / \mathrm{min}$, UV detection $(\lambda=230 \mathrm{~nm}), t_{\mathrm{R}}=12.1 \mathrm{~min}\left(S_{\mathrm{P}}\right), 13.3 \mathrm{~min}\left(R_{\mathrm{P}}\right)$.
2. Organolithiums reaction with $\left(R_{P}\right)-2$ under various explored conditions (Table S1) ${ }^{\text {a }}$

RLi ${ }^{\text {b }}$	Solvent	T ${ }^{\circ} \mathrm{C}$	Additive ${ }^{\text {c }}$ (equiv/RLi)	$\begin{gathered} 3 \text { or } 4 \\ \% \text { ee (Conf.) d } \\ \hline \end{gathered}$
TMSCH2Li	THF	-78	-	13 (R_{P})
TMSCH2Li	$\mathrm{Et}_{2} \mathrm{O}$	-40	-	77 (R_{P})
$\mathrm{TMSCH}_{2} \mathrm{Li}$	$\mathrm{Et}_{2} \mathrm{O}$	-78	TMEDA (1.1)	87 (R_{P})
TMSCH2Li	$\mathrm{Et}_{2} \mathrm{O}$	-78	TMCDA (1.1)	Not Analyzed (4 in 60\% yield + byproducts)
TMSCH2Li	$\mathrm{Et}_{2} \mathrm{O}$	-78	(-)-Sparteine (1.1)	90 (R_{P})
TMSCH2Li	Toluene	-60	-	20 (R_{P})
MeLi	THF	-30	-	43 (SP_{P})
MeLi	THF	-78	-	35 (SP_{P})
MeLi	$\mathrm{Et}_{2} \mathrm{O}$	-78	-	68 (R_{P})
MeLi	$\mathrm{Et}_{2} \mathrm{O}$	-78	TMEDA (1.1)	85 ($\mathrm{SP}^{\text {) }}$
MeLi	$\mathrm{Et}_{2} \mathrm{O}$	-78	LiBr (2.2)	$9\left(R_{\mathrm{P}}\right)$
MeLi	MTBE	-78	-	67 (R_{P})
MeLi	$\mathrm{Bu}_{2} \mathrm{O}$	-78	-	86 (R_{P})
MeLi	Toluene	0	-	$69\left(R_{\mathrm{P}}\right)$
MeLi	Toluene	-78	-	89 (R_{P})
MeLi	Toluene	-78	HMPA (1.1)	85 (R_{P})
MeLi	Toluene	-78	TMEDA (1.1)	67 (S_{P})
MeLi	Toluene	-78	TMEDA (2.2)	83 (S_{P})
MeLi	Toluene	-78	TMEDA (4.4)	83 (SP)
MeLi	Toluene	-78	TMCDA (2.2) ${ }^{\text {e }}$	95 (S_{P})
MeLi	Toluene	-78	(-)-Sparteine (2.2)	46 ($\mathrm{SP}^{\text {) }}$
MeLi	Et-PhH	-78		90 (R_{P})
MeLi	Cumene	-78	-	91 (R_{P})
MeLi	Cumene	-78	TMCDA (2.2)	92 (SP_{P})
MeLi-LiBr	$\mathrm{Et}_{2} \mathrm{O}$	-78	-	12 (R_{P})
MeLi-LiBr	Hexane	-78	-	No reaction
MeLi-LiBr	Toluene	-78	-	$94\left(R_{\mathrm{P}}\right)$
MeLi-LiBr	Toluene	-78	TMCDA (2.2)	90 ($\mathrm{SP}^{\text {) }}$
MeLi -LiBr	Cumene	-78	-	97 (R_{P})
MeLi-LiBr	Cumene	-78	TMCDA (2.2)	94 (SP)
$\mathrm{Me}_{3} \mathrm{MgLi} \cdot \mathrm{LiCl}{ }^{\dagger}$	$\mathrm{Et}_{2} \mathrm{O}$	-40	TMCDA (2.2)	65 (R_{P})

[^1]- For 1,1'-bisphospholanoferrocene, see: Burk, M. J.; Gross, M. F. Tetrahedron Lett. 1994, 35, 93639366.
- For Ph-Quinox, see: Fox, M. E.; Jackson, M.; Lennon, I. C.; Klosin, J.; Abboud, K. A. J. Org. Chem. 2008, 73, 775-784.
- For sugars- and mannitol-derived phospholanes, see:
- RoPHOS: Holz, J.; Quirmbach, M.; Schmidt, U.; Heller, D.; Stürmer, R.; Börner, A. J. Org. Chem. 1998, 63, 8031-8034.
- BASPHOS: Holz, J.; Stürmer, R.; Schmidt, U.; Drexler, H.-J.; Heller, D.; Krimmer, H.-P.; Börner, A. Eur. J. Org. Chem. 2001, 24, 4615-4624.
- Yan, Y.-Y.; RajanBabu, T. V. Org. Lett. 2002, 2, 199-202.
- R-KetalPhos (R = Me, Et): Li W.; Zhang Z.; Xiao D.; Zhang X. J. Org. Chem. 2000, 65, 3489-3496.
- Me-f-KetalPhos: Liu, D.; Li, W.; Zhang, X. Org. Lett. 2002, 4, 4471-4474.
- For bicyclic phospholanes, see: MacKay, J. A.; Vedejs, E. J. Org. Chem. 2006, 71, 498-503. Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 2003, 125, 4166-4173.
- For α-functionalized phospholanes, see: Huang, K.; Zhang, X.; Emge, T. J.; Hou, G.; Cao, B.; Zhang, X. Chem. Commun. 2010, 46, 8555-8557. Tang, W.; Wang, W.; Zhang, X. Angew. Chem. Int. Ed. 2003, 42, 943-946.
- For POPs, see: Tang, W.; Capacci, A. G.; White, A.; Ma, S.; Rodriguez, S.; Qu, B.; Savoie, J.; Patel, N. D.; Wei, X.; Haddad, N.; Grinberg, N.; Yee, N. K.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2010, 12, 1104-1107.
- For oxa-monophosphorous ligands, see: Tang, W.; Patel, N. D.; Xu, G.; Xu, X.; Savoie, J.; Ma, S.; Hao, M.-H.; Keshipeddy, S.; Capacci, A. G.; Wei, X.; Zhang, Y.; Gao, J. J.; Li, W.; Rodriguez, S.; Lu, B. Z.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2012, 14, 2258-2261;
- For diazaphospholanes, see: Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud, K. A. J. Am. Chem. Soc. 2005, 127, 5040-5042.

4. X-Ray Crystal Structures Determination

Data for $\left(R_{\mathrm{P}}\right) \mathbf{- 1}$ and $\left(S_{\mathrm{P}}\right)$ - $\mathbf{2}$ were collected on Agilent SuperNova diffractometer using monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $\left(\lambda=0.71073 \AA\right.$) (crystal of $\left.\left(R_{\mathrm{P}}\right)-\mathbf{1}\right)$ or $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA$) (crystal of $\left(S_{\mathrm{P}}\right)$-2). The coordinates of some or all of the non-hydrogen atoms were found via direct methods using the structure solution SHELXS-97 program. ${ }^{7}$ Positions of the remaining non-hydrogen atoms were located by using a combination of least-squares refinement and difference Fourier maps in the SHELXL-97 program. ${ }^{7}$ Except hydrogen atoms, all atoms were refined anisotropically. The absolute configurations were determined by refinement of the completed models together with the Flack x parameters, ${ }^{8}$ which refined to values of $-0.12(12)$ and $-0.02(2)$ for $\left(R_{\mathrm{P}}\right)-\mathbf{1}$ and $\left(S_{\mathrm{P}}\right)-\mathbf{2}$, respectively, and thereby confirmed that the refined coordinates for each structure represent the true enantiomorph. Figures depicting the structures were prepared by Ortep3. ${ }^{9}$ The supplementary crystallographic data (atomic coordinates, anisotropic displacement parameters, and extended lists of interatomic distances and angles) are contained in the cif files.

Figure S1. ORTEP drawing at the 50% probability level of $\left(R_{\mathrm{P}}\right)-\mathbf{1}$ derived from (+)-ephedrine. Selected bond lengths (A) and angles $\left({ }^{\circ}\right): \mathrm{P}-\mathrm{B} 1.930(4) ; \mathrm{P}-\mathrm{N} 11.657(2) ; \mathrm{P}-\mathrm{C} 211.810(3)$; P-C31 $1.840(3) ; \mathrm{B}-\mathrm{P}-\mathrm{N} 1113.7(2)$; N1-P-C21 107.1(2), C21-P-C31 103.5(1); C31-P-B 118.4(2).
$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BNO}_{2} \mathrm{P}, M_{\mathrm{r}}=393.25$, monoclinic, space group $P 2_{1}$ (No. 4), $a=9.1640(16), b=14.0102(17)$, $c=9.5202(18) \AA, \alpha=90, \beta=117.23(2), \gamma=90^{\circ}, V=1086.8(3) \AA^{3}, Z=2, T=293(2) \mathrm{K}, d_{\text {calcd }}=1.202$ $\mathrm{g} \mathrm{cm}^{-3}, \mu=0.144 \mathrm{~mm}^{-1}, 10885$ measured reflections, 4980 unique reflections ($R_{\text {int }}=0.0555$), 272 refined parameters, $R_{1}[I>2 \sigma(I)]=0.0582, w R 2$ [all data] $=0.1584$.

[^2]

Figure S2. ORTEP drawings at the 50% probability level of both molecules found in the asymmetric unit of $\left(S_{\mathrm{P}}\right)$-2. Selected bond lengths $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$ for the left molecule: P1-O1 1.599(2); P1-B1 1.880(4); P1-C11 1.804(3); P1-C21 1.813(3); C1-O1 1.492(7); O1-P1-C21 106.6(2); C21-P1-B1 114.8(2); B1-P1-C11 114.9(2); C11-P1-O1 95.2(2). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the right molecule: P2-O2 1.613(2); P2-B2 1.891(4); P2-C31 1.788(2); P2-C41 1.800(2); C2-O2 $1.445(4)$; O2-P2-C41 104.6(1); C41-P2-B2 113.9(2); B2-P2-C31 116.5(1); C31-P2-O2 94.7(1).
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BOP}, M_{\mathrm{r}}=228.02$, monoclinic, space group $P 2_{1}$ (No. 4), $a=11.8787(2), b=8.9358$ (2), $c=12.7533(3) \AA, \alpha=90, \beta=108.685(2), \gamma=90^{\circ}, V=1282.36(5) \AA^{3}, Z=4, T=293(2) \mathrm{K}$, $d_{\text {calcd }}=1.181 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=1.685 \mathrm{~mm}^{-1}, 14321$ measured reflections, 5239 unique reflections $\left(R_{\text {int }}=0.0347\right), 289$ refined parameters, $R_{1}[I>2 \sigma(I)]=0.0459, w R 2[$ all data $]=0.1376$.

Figure S3. An overlay of the two molecules belonging to the asymmetric unit in $\left(S_{\mathrm{P}}\right)$-2. The pair does not differ significantly in geometric parameters. The main difference is in the relative orientation of phenyl ring.

5. HPLC Chromatograms

Quasi-rac-1-Phenyl-2-oxa-1-phosphindane-P-borane (rac-2)

$\left(R_{\mathrm{P}}\right)$-1-Phenyl-2-oxa-1-phosphindane- P-borane $\left(\left(R_{\mathrm{P}}\right)-2\right), 99.8 \%$ ee; prepared from (-)-ephedrine

Quasi-rac-(2-Hydroxymethyl-phenyl)(methyl)(phenyl)phosphine-P-borane (rac-3)

$\left(R_{\mathrm{P}}\right)$-(2-Hydroxymethyl-phenyl)(methyl)(phenyl)phosphine-P-borane $\left(\left(R_{\mathrm{P}}\right)-\mathbf{3}\right), 97.7 \%$ ee

	Ret. Time	Area	Area \%	Height	Height \%
1	31,383	31656	1,169	592	1,464
2	33,767	2675673	98,831	39844	98,536

Quasi-rac-(2-Mesyloxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine- P-borane (rac-5)

$\left(R_{\mathrm{P}}\right)$-(2-Mesyloxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine- P-borane $\left(\left(R_{\mathrm{P}}\right)-5\right), 97.5 \%$ ee

$\left(R_{\mathrm{P}}\right)$-(2-Mesyloxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine- P-borane $\left(\left(R_{\mathrm{P}}\right)-5\right),>99.9 \%$ ee

1-Phenyl-phosphindane- P-borane $\left(\left(R_{\mathrm{P}}\right)-7\right), 38 \%$ ee

$\left(R_{\mathrm{P}}\right)$-1-Phenyl-phosphindane- P-borane $\left(\left(R_{\mathrm{P}}\right)-7\right),>99.9 \%$ ee

1-Phenyl-phosphindane- P-oxide (($\left(_{\mathrm{P}}\right)$-9), 37\% ee
Chiralpak IA column

	Ret. Time	Area	Area \%	Height	Height \%
1	20,967	11157612	30,823	276538	34,561
2	22,867	25040957	69,177	523598	65,439

Chiralcel AD-H column

	Ret. Time	Area	Area \%	Height	Height \%
1	44,25	10943186	31,377	93883	34,357
2	51,167	23916767	68,576	178295	65,249

$\left(S_{\mathrm{P}}\right)$-1-Phenyl-phosphindane- P-oxide $\left(\left(S_{\mathrm{P}}\right)-\mathbf{9}\right),>99.9 \%$ ee

	Ret. Time	Area	Area \%	Height	Height \%
1	53,133	8235642	100	58114	100

Quasi-rac-1-Phenyl-3-oxa-1-phosphindane- P-borane (rac-11)

$\left(R_{\mathrm{P}}\right)$-1-Phenyl-3-oxa-1-phosphindane- P-borane $\left(\left(R_{\mathrm{P}}\right)-11\right),>99.9 \%$ ee

	Ret. Time	Area	Area \%	Height	Height \%
1	13,3	5822522	100	359397	100

6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz})-\mathrm{CDCl}_{3} / \mathrm{TMS}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{31} \mathrm{P}$ NMR $(120 \mathrm{MHz})-\mathrm{CDCl}_{3}$

3
${ }^{31} \mathrm{P} \operatorname{NMR}(120 \mathrm{MHz})-\mathrm{CDCl}_{3}$

> 4
> ${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz})-\mathrm{CDCl}_{3} / \mathrm{TMS}$

4
${ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz})-\mathrm{CDCl}_{3}$

4
${ }^{31} \mathrm{P} \operatorname{NMR}(120 \mathrm{MHz})-\mathrm{CDCl}_{3}$

H NMR (300 MHz) $-\mathrm{CDCl}_{3} /$ TMS

TMS
${ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz})-\mathrm{CDCl}_{3}$

5
${ }^{31} \mathrm{P} \operatorname{NMR}(120 \mathrm{MHz})-\mathrm{CDCl}_{3}$

6
${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz})-\mathrm{CDCl}_{3} / \mathrm{TMS}$

6
${ }^{31} \mathrm{P}$ NMR(120 MHz) $-\mathrm{CDCl}_{3}$

1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
220	210	200	190	180	170	160	150	140	130	120	11	100	90	80	70	60	50	40	30	20	10	0	-10

7
${ }^{31} \mathrm{P}$ NMR $(120 \mathrm{MHz})-\mathrm{CDCl}_{3}$

8
${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz})-\mathrm{CDCl}_{3} / \mathrm{TMS}$

	T	T	1		1		1		1	1	1		1	1	1	1	1	1	1		1		
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

Chice
${ }^{13} \mathrm{C}$ apt $\operatorname{NMR}(75 \mathrm{MHz})-\mathrm{CDCl}_{3}$

${ }^{31} \mathrm{P} \operatorname{NMR}(243 \mathrm{MHz})-\mathrm{CDCl}_{3}$

11
${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz})-\mathrm{CDCl}_{3} / \mathrm{TMS}$

${ }^{13} \mathrm{C}$ apt $\mathrm{NMR}(75 \mathrm{MHz})-\mathrm{CDCl}_{3}$

${ }^{31} \mathrm{P} \operatorname{NMR}(243 \mathrm{MHz})-\mathrm{CDCl}_{3}$

س.

[^0]: ${ }^{\dagger}$ Present address: PhosPhoenix SARL, 115, rue de l'Abbé Groult, 75015 Paris, France.
 (1) Jugé, S.; Stephan, M.; Laffitte, J. A.; Genêt, J. P. Tetrahedron Lett. 1990, 31, 6357-6360.
 (2) Stephan, M.; Modec, B.; Mohar, B. Tetrahedron Lett. 2011, 52, 1086-1089.

[^1]: ${ }^{a} \operatorname{RLi}$ (2 equiv to $\mathbf{2}$) was added at the indicated temperature to $\left(R_{\mathrm{P}}\right) \mathbf{- 2}(99.8 \%$ ee) premixed with the optional additive and the reaction was quenched with water after $2-3 \mathrm{~h}$. This protocol was adopted due to convenience and to inconsistent results with preformed RLi -additive.
 ${ }^{\text {b }} \mathrm{TMSCH}_{2} \mathrm{Li}\left(1 \mathrm{M}\right.$ in pentane); $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{MeLi} \cdot \mathrm{LiBr}\left(1.5 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{Me}_{3} \mathrm{MgLi} \cdot \mathrm{LiCl}$ prepared at $0^{\circ} \mathrm{C}$ from 1 equiv $\mathrm{MeMgCl}\left(3 \mathrm{M}\right.$ in THF) and 2 equiv $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$.
 ${ }^{c}$ TMEDA: $N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine; TMCDA: trans- $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-1,2-cyclohexanediamine; HMPA: Hexamethylphosphoramide.
 ${ }^{\text {d }}$ Ee was determined by chiral HPLC (for details, see above).
 ${ }^{\mathrm{e}}(R, R)$ - or (S, S)-TMCDA used.
 ${ }^{\mathrm{f}}$ Note that 60% ee was obtained with MeMgBr in THF at $60^{\circ} \mathrm{C}$ while no reaction occurred at rt.

[^2]: (7) Sheldrick, G. M. SHELX-97. Programs for Crystal Structure Analysis; University of Göttingen: Göttingen, Germany, 1998.
 (8) Flack, H. D. Acta Crystallogr. 1983, A39, 876-881.
 (9) Farrugia, L. J. Appl. Crystallogr. 1997, 30, 565.

