Efficient Asymmetric Syntheses of 1-Phenyl-phosphindane, Derivatives, and 2- or 3-Oxa Analogs: Mission Accomplished

Slavko Rast, Barbara Mohar,* and Michel Stephan*,[†]

National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia

barbara.mohar@ki.si; mstephan@phosphoenix.com

Contents

1. Preparation of Compounds	S1
2. Organolithiums reaction with 2 under various explored conditions (Table S1)	
3. Continued References from "Reference 3" of the Main Document	S7
4. X-Ray Crystal Structures Determination	S8
5. HPLC Chromatograms	S10
6. ¹ H, ¹³ C, and ³¹ P NMR Spectra	S18

1. Preparation of Compounds

Materials and methods

The following compounds were prepared according to literature procedures: (2S,4R,5S)-(-)-3,4dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine-2-borane ((-)-oxazaPB; derived from (1S,2R)-(+)ephedrine) and its enantiomer (2R,4S,5R)-(+)-oxazaPB (derived from (1R,2S)-(-)-ephedrine).¹ (R_P)and (S_P)-(o-hydroxyphenyl)(methyl)(phenyl)phosphine-P-boranes (**10**) were prepared from (-)oxazaPB and (+)-oxazaPB, respectively.²

Reactions were conducted under an inert atmosphere using anhydrous solvents when required. Analytical thin layer chromatography (TLC) was performed on Silica Gel $60F_{254}$ plates. Chromatography over silica gel was carried out using Silica Gel 60 (40–63 µm). Melting points were determined on a Kofler apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. ¹H (300 MHz, internal Me₄Si), ¹³C (75 MHz, internal CDCl₃), and ³¹P NMR (120 MHz, external 85% H₃PO₄) were recorded for solutions in CDCl₃ if not stated otherwise. HRMS measurements were obtained on an Agilent 6224 Accurate Mass TOF LC/MS instrument coupled with an Agilent 1260 HPLC Infinity module and a dual ESI interface, and with a Waters Micromass Q-TOF Premier instrument equipped with orthogonal Z-spray ESI interface, respectively.

(S_P)-[(1R,2S)-N-Ephedrino](2-hydroxymethyl-phenyl)(phenyl)phosphine-P-borane ((S_P)-1): To a

cold (-70 °C) solution of 2-bromobenzyl alcohol (12.80 g, 68.4 mmol) in Et₂O (500 mL) was added *s*-BuLi (1.25 M, 108 mL, 135 mmol). After stirring at -70 °C for 1 h, crystalline (+)-oxazaPB (15.00 g, 52.6 mmol) was added in one portion and the mixture allowed to warm up to rt with overnight stirring. Water (50 mL) and EtOAc (50 mL) were added, the organic layer separated, washed with brine, filtered through

a short path of silica gel/Na₂SO₄, and concentrated. Recrystallization (25.4 g) from hexane/CH₂Cl₂/toluene afforded a white crystalline powder (17.93 g, 86.8%): mp 118–119 °C; $[\alpha]_D^{25}$ +49.4 (*c* 1.0, CHCl₃) (>99.9% de by ¹H NMR); ¹H NMR: δ 7.68–7.58 (m, 1H), 7.58–7.18 (m, 13H), 4.92 (d, *J* = 3.7 Hz, 1H), 4.62 (q, *J* = 13.1 Hz, 2H), 4.42–4.14 (m, 1H), 2.64 (d, *J* = 7.7 Hz, 3H), 2.54–2.23 (br s, 1H), 1.92 (br s, 1H), 1.24 (d, *J* = 6.9 Hz, 3H), 1.77–0.52 (m, 3H); ¹³C NMR: δ 144.8 (d, *J* = 13 Hz), 142.4, 132.7 (d, *J* = 7 Hz), 132.6, 131.7 (d, *J* = 8 Hz), 131.7, 131.1, 130.9, 128.6 (d, *J* = 10)

[†] Present address: PhosPhoenix SARL, 115, rue de l'Abbé Groult, 75015 Paris, France.

⁽¹⁾ Jugé, S.; Stephan, M.; Laffitte, J. A.; Genêt, J. P. Tetrahedron Lett. 1990, 31, 6357-6360.

⁽²⁾ Stephan, M.; Modec, B.; Mohar, B. Tetrahedron Lett. 2011, 52, 1086-1089.

Hz), 128.4 (d, J = 61 Hz), 128.3, 127.5, 127.4, 126.0, 78.9 (d, J = 3 Hz), 62.6 (d, J = 5 Hz), 58.1 (d, = 10 Hz), 31.6 (d, J = 3 Hz), 11.7 (d, J = 4 Hz); ³¹P NMR: δ +68.9 (br m); HRMS (ESI): m/z calcd for C₂₃H₃₀BNO₂P [*M*⁺+H] 394.2107, found 394.2113.

 $(R_{\rm P})$ -[(1S,2R)-N-Ephedrino](2-hydroxymethyl-phenyl)(phenyl)phosphine-P-borane $((R_{\rm P})-1)$: Following a similar procedure as for (S_P) -1 starting from (–)-oxazaPB, a crystalline HO material (>99.9% de by ¹H NMR) was obtained with identical characteristics as described above. Me

BH₃

Absolute configuration determination: single X-ray crystal structure analysis revealed its $(R_{\rm P})$ -configuration.

 (R_P) -1-Phenyl-2-oxa-1-phosphindane-P-borane $((R_P)$ -2): To a solution of (S_P) -1 (5.40 g, 13.05 mmol) in MeOH (100 mL) was added at rt under stirring a solution of 96% H₂SO₄ (1.28 g, 13.05 mmol) in MeOH (20 mL). After stirring for 1.5 h, the reaction mixture was filtered through a bed of silica gel and concentrated. Purification on silica gel eluting with Ph BH toluene afforded the title compound as a white powder (2.85 g, 96%): mp 44–46 °C; C₁₃H₁₄BOP 97.5% ee by HPLC (see below). The ee was upgraded by single recrystallization from (228.03)

MeOH/CH₂Cl₂ at 4 °C, and the enriched product was collected from the recrystallization filtrate. After concentration, the title compound was obtained as white crystals (2.2 g, 75% total yield): $\left[\alpha\right]_{D}^{25}$ -50.5 (c 1.0, CHCl₃) (99.8% ee by HPLC, see below); ¹H NMR: δ 7.69–7.54 (m, 4H), 7.54–7.36 (m, 5H), 5.80–5.28 (m, 2H), 1.82–0.39 (m, 3H); ¹³C NMR: δ 142.6 (d, J = 12 Hz), 132.7 (d, J = 47 Hz), 132.4 (d, J = 2 Hz), 132.0 (d, J = 2 Hz), 131.0 (d, J = 12 Hz), 130.4 (d, J = 59 Hz), 129.1 (d, J = 10 Hz), 128.7 (d, J = 10 Hz), 128.3 (d, J = 14 Hz), 121.6 (d, J = 9 Hz), 76.1 (d, J = 10 Hz); ³¹P NMR: $\delta + 125.4$ (br m); HRMS (ESI): m/z calcd. for C₁₃H₁₂OP [M^+ +H–BH₃] 215.062, found 215.0621.

 (S_P) -1-Phenyl-2-oxa-1-phosphindane-*P*-borane ((S_P)-2): Following a similar procedure as for (R_P)-2 starting from $(R_{\rm P})$ -1, a crystalline material (99.9% ee by HPLC, see below) was obtained with identical characteristics as described above.

Absolute configuration determination: single X-ray crystal structure analysis revealed its $(S_{\rm P})$ -configuration.

HPLC determination of enantiomeric excess of 2: a quasi-racemic mixture was prepared by mixing $(R_{\rm P})$ -2 and $(S_{\rm P})$ -2. HPLC analysis was carried out on a Daicel Chiralcel OD column (25 cm) conjugated with a Daicel Chiralcel OD-H column (15 cm): hexane/2-PrOH 98:2, 1.0 mL/min, UV detection ($\lambda = 230 \text{ nm}$), $t_{\text{R}} = 21.4 \text{ min}$ (S_{P}), 22.6 min (R_{P}).

 (R_P) -(2-Hydroxymethyl-phenyl)(methyl)(phenyl)phosphine-P-borane ((R_P) -3): To a cold (-78 °C) suspension of (R_P) -2 (99.8% ee; 2.85 g, 12.5 mmol) in cumene (300 mL) was added BH_3 MeLi·LiBr (1.5 M in Et₂O, 16.7 mL, 25 mmol) dropwise during 15 min. The mixture was "**'**Ph Me stirred at -78 °C for 3 h then quenched with MeOH (2 ml). Water (100 mL) and Et₂O (150 HO mL) were added and the product extracted. The organic layer was washed with brine (40 C₁₄H₁₈BOP (244.08) mL), filtered through a bed of silica gel/Na₂SO₄, and concentrated affording a colourless oil (2.96 g, 97%). [α]₅₇₈²⁵ -23.97 (*c* 1.0, CHCl₃) (97.7% ee by HPLC, see below); ¹H NMR: δ 7.71–7.51 (m, 5H), 7.51-7.33 (m, 4H), 4.67 (d, J = 13.4 Hz, 1H), 4.35 (d, J = 13.4 Hz, 1H), 2.46 (s, 1H), 1.86 (d, J = 9.9 Hz, 3H), 1.75–0.47 (m, 3H); ¹³C NMR: δ 144.7 (d, J = 9 Hz), 131.9 (d, J = 1 Hz), 131.8 (d, J = 17 Hz), 131.4 (d, J = 10 Hz), 131.2 (d, J = 3 Hz), 130.9 (d, J = 52 Hz), 130.3 (d, J = 8 Hz), 128.9 (d, J = 10 Hz), 127.7 (d, J = 9 Hz), 127.3 (d, J = 53 Hz), 62.6 (d, J = 6 Hz), 13.3 (d, J = 42 Hz); ³¹P NMR: δ +13.3 (br m); HRMS (ESI): m/z calcd. for C₁₄H₁₆OP [M^+ +H–BH₃] 231.0933, found 231.0935.

 (S_P) -(2-Hydroxymethyl-phenyl)(methyl)(phenyl)phosphine-*P*-borane ((S_P)-3: To a cold (-78 °C) solution of (R_P)-2 (99.8% ee; 2.85 g, 12.5 mmol) and (1R,2R)-N,N,N',N'-₿H₃ tetramethylcyclohexane-1,2-diamine (6.38 g, 37.5 mmol) in toluene (300 mL) was added . Me Ph_OH dropwise MeLi (1.6 M in Et₂O, 11.7 mL, 18.75 mmol) during 15 min. The mixture was C14H10BOP stirred at -78 °C for 3 h then guenched with MeOH (2 ml). Water (50 mL) was added and (244.08) the product extracted with Et₂O (100 mL). The organic layer was washed with 1 M HCl

(3×25 mL) then brine (40 mL), filtered through a bed of silica gel/Na₂SO₄, and concentrated affording a colourless oil (2.89 g, 94%) with identical characteristics as described above: $[\alpha]_{578}^{25}$ +23.07 (c 1.0, CHCl₃) (95.3% ee by HPLC, see hereafter).

HPLC determination of enantiomeric excess of 3: a quasi-racemic mixture was prepared by mixing (S_P) -3 and (R_P) -3. HPLC analysis was carried out on a Daicel Chiralcel OD column (25 cm) conjugated with a Chiralcel OD-H column (15 cm): hexane/2-PrOH 95:5, 1.0 mL/min, UV detection ($\lambda = 230$ nm), $t_R = 31.4$ min (S_P) , 33.8 min (R_P) .

(*R*_P)-(2-Hydroxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-*P*-borane ((*R*_P)-4),

BH₃ **TMS** $\stackrel{\text{P}}{\xrightarrow{}}$ $\stackrel{\text{P$

with brine (40 mL), filtered through a bed of silica gel/Na₂SO₄, and concentrated. The crude was purified by column chromatography eluting with petroleum ether 40-60/EtOAc (9:1). Colourless oil (2.8 g, 80%). $[\alpha]_D^{25} = -14.5$ (c = 1.0, CHCl₃) (90.2% ee by HPLC analysis of its Ms derivative **5**, see below); ¹H NMR: δ 7.89–7.68 (m, 1H), 7.65–7.51 (m, 4H), 7.47–7.35 (m, 4H), 4.62 (d, J = 13.2 Hz, 1H), 4.37 (d, J = 13.2 Hz, 1H), 1.76–1.63 (m, 1H), 1.61–1.47 (m, 1H), 1.57–0.41 (m, 3H), -0.02 (s, 9H); ¹³C NMR: δ 144.5 (d, J = 8 Hz), 132.94 (d, J = 55 Hz), 132.58 (d, J = 9 Hz) 131.70 (d, J = 2 Hz), 131.56 (d, J = 10 Hz), 130.9 (d, J = 2 Hz), 130.6 (d, J = 8 Hz), 129.6 (d, J = 51 Hz), 128.9 (d, J = 10 Hz), 127.6 (d, J = 10 Hz), 62.8 (d, J = 6 Hz), 13.8 (d, J = 26 Hz), 0.5 (d, J = 3 Hz); ³¹P NMR: δ +13.1 (br m); HRMS (ESI): m/z calcd. for C₁₇H₂₄OPSi [M^+ +H–BH₃] 303.1329, found 303.1326.

Route B: To a cold (-40 °C) solution of (R_P)-**3** (97.7% ee; 2.93 g, 12 mmol) in THF (100 mL) was added *s*-BuLi (1.3 M, 20.3 mL, 26.4 mmol). The resulting mixture was left to stir at -40 °C for 1 h then TMSCI (4.57ml, 36mmol) was added and allowed to warm up to 0 °C during 1 h. The reaction mixture was quenched with satd. aq. NH₄Cl (80 mL), stirred at rt for 3 h then extracted with Et₂O (100 ml). The organic layer was washed with brine (40 mL), filtered through a bed of silica gel/Na₂SO₄, and concentrated affording a colourless oil (3.72 g, 98%) with identical characteristics as described above: $[\alpha]_D^{25}$ -15.9 (*c* 1.0, CHCl₃) (97.7% ee by HPLC analysis of its Ms derivative **5**, see below).

(R_P) -(2-Mesyloxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-*P*-borane ((R_P)-5): To a

^{BH3} ^{TMS} P_{n}^{Ph} $P_{$

HPLC (see below). Recrystallization from MeOH at -15 °C yielded the title compound as a white crystalline powder (3.6 g, 78%): mp 92–94 °C; $[α]_D^{25}$ –15.0 (*c* 1.0, CHCl₃) (>99.9% ee by HPLC, see below); ¹H NMR: δ 7.86 (m, 1H), 7.67–7.54 (m, 4H), 7.52–7.40 (m, 4H), 5.25 (d, *J* = 12.1 Hz, 1H), 5.05 (d, *J* = 12.2 Hz, 1H), 2.77 (s, 3H), 1.70 (m, 1H), 1.64–1.51 (m, 1H), 1.54–0.43 (m, 3H), -0.03 (s, 9H); ¹³C NMR: δ 137.1 (d, *J* = 7 Hz), 133.0 (d, *J* = 10 Hz), 132.2 (d, *J* = 54 Hz), 131.688 (d, *J* = 2 Hz), 131.685 (d, *J* = 10 Hz), 131.2 (d, *J* = 2 Hz), 131.0 (d, *J* = 7 Hz), 130.96 (d, *J* = 7 Hz), 130.94 (d, *J* = 48 Hz), 128.9 (d, *J* = 10 Hz), 68.5 (d, *J* = 5 Hz), 37.4, 13.5 (d, *J* = 25 Hz), 0.4 (d, *J* = 3 Hz); ³¹P NMR: δ +14.7 (br m); HRMS (ESI): *m/z* calcd for C₁₈H₂₈BNaO₃PSSi [*M*⁺+Na] 417.1257, found 417.1249.

HPLC determination of enantiomeric excess of 5: a quasi-racemic mixture was prepared by mixing (S_P) -5 and (R_P) -5. $S_P)$ -5 was prepared via (S_P) -3 following Scheme 1 starting from (–)-oxazaPB. HPLC analysis was carried out on a Daicel Chiralcel AD-H column (25 cm): hexane/2-PrOH 95:5, 1.0 mL/min, UV detection ($\lambda = 220$ nm), $t_R = 15.1$ min (S_P) , 17.1 min (R_P) .

 (R_P) -(2-Bromomethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-P-borane ((R_P)-6): To a

BH₃ TMS P, WPh Br C₁₇H₂₅BBrPSi (379.15)

of LiBr (2.95 g, 34.4 mmol) in THF (40 mL) and the mixture heated at 55 °C for 2.5 h. after cooling to rt, H₂O (20 mL) and Et₂O (50 mL) were added and the organic layer separated and dried (Na₂SO₄). The concentrated residue was taken in toluene and filtered through a bed of silica gel affording a colourless oil (3.09 g, 95%): $[\alpha]_D^{25}$ –18.3 (*c* 1.0, CHCl₃) (>99.9% ee by HPLC analysis of (*R*_P)-7 prepared from (*R*_P)-6); ¹H NMR:

solution of $(R_{\rm P})$ -5 (>99.9% ee; 3.40 g, 8.6 mmol) in THF (70 mL) was added a solution

 δ 7.92–7.79 (m, 1H), 7.65–7.55 (m, 2H), 7.55–7.49 (m, 2H), 7.49–7.34 (m, 4H), 4.72–4.25 (m, 2H),

1.90–1.75 (m, 1H), 1.72–1.44 (m, 1H),1.79–0.72 (m, 3H), –0.13 (s, 9H); ¹³C NMR: δ 141.4 (d, J = 5 Hz), 133.7 (d, J = 12 Hz), 133.2 (d, J = 7 Hz), 132.5 (d, J = 55 Hz), 131.9 (d, J = 2 Hz), 131.4 (d, J = 10 Hz), 130.9 (d, J = 2 Hz), 130.4 (d, J = 49 Hz), 128.9 (d, J = 10 Hz), 128.3 (d, J = 10 Hz), 31.4 (d, J = 5 Hz), 12.8 (d, J = 25 Hz), 0.5 (d, J = 3 Hz); ³¹P NMR: δ +11.2 (br m); HRMS (ESI): m/z calcd for C₁₇H₂₄BBrPSi [M^+ –H] 377.0661, found 377.0666.

 (R_P) -1-Phenyl-phosphindane-P-borane $((R_P)$ -7): To a mixture of CsF (3.50 g, 23.5 mmol) and 4 Å molecular sieves³ (2 g) in N,N-dimethylacetamide (100 mL) was added a solution of (R_p)-6 (>99.9% ee; 3.09 g, 8.15 mmol) in the same solvent (50 mL) also containing 4 Å BH₃ Ph molecular sieves (2 g). After stirring at rt for 3 h, the mixture was cooled on an ice-bath C₁₄H₁₆BP and ice-water (100 mL) was added. Extraction with Et₂O (2×150 mL), filtration through a (226.06) bed of silica gel/Na₂SO₄ and concentration afforded the crude product which was purified by column chromatography eluting with hexane/EtOAc (99:1 to 98:2). Colourless oil (1.44 g, 78%); $[\alpha]_D^{25}$ +17.36 (c 1.0, CHCl₃) (>99.9% ee by HPLC, see below); ¹H NMR: δ 7.66–7.58 (m, 1H), 7.54–7.29 (m, 8H), 3.57-3.17 (m, 2H), 2.69-2.28 (m, 2H), 1.48-0.41 (m, 3H); ¹³C NMR: δ 148.4 (d, J = 15 Hz), 131.643 (d, J = 10 Hz), 131.643 (d, J = 2 Hz), ⁴ 131.2 (d, J = 3 Hz), 130.80 (d, J = 7 Hz), 130.17 (d, J= 12 Hz), 130.2 (d, 8 Hz), 128.7 (d, J = 10 Hz), 127.9 (d, J = 10 Hz), 125.6 (d, J = 8 Hz), 31.7 (d, J = 4 Hz), 25.9 (d, J = 38 Hz); ³¹P NMR: δ +37.5 (br m); HRMS (ESI): m/z calcd. for C₁₄H₁₄P [M^+ +H– BH₃] 213.0828, found 213.0828; ¹H and ³¹P NMR data are in accordance with the literature.⁵

HPLC determination of enantiomeric excess of 7: a mixture with 38% ee was prepared by mixing (S_P) -7 and (R_P) -7 ((R_P) -7 in excess). (S_P) -7 was prepared from (S_P) -6 via (S_P) -3 following Scheme 1 starting from (–)-oxazaPB. HPLC analysis was carried out using a Daicel Chiralcel OJ-H column (25 cm): hexane/2-PrOH 95:5, 1.0 mL/min, UV detection ($\lambda = 230$ nm), $t_R = 20.8$ min (S_P) , 24.6 min (R_P) .

(*R*_P)-1-Phenyl-phosphindane ((*R*_P)-8): A solution of (*R*_P)-7 (>99.9% ee; 300 mg, 1.33 mmol) in Et₂NH (5 mL) and toluene (10 ml) was stirred at rt for 16 h. After concentration, the residue was filtered through a SiO₂ plug eluting with toluene. Colorless oil (276 mg, 98%). The product can be recrystallized from MeOH at -15 °C and filtering cold; white plates (mp <10 °C). $[\alpha]_D^{25}$ +193.9 (*c* 1.0, CHCl₃) (>99.9% ee by HPLC analysis of (*R*_P)-7 prepared from (*R*_P)-8 by complexation with Me₂S·BH₃ in CH₂Cl₂ at 0 °C); ¹H NMR: δ 7.79–7.60 (m, 1H), 7.43–7.11 (m, 8H), 3.34–3.00 (m, 2H), 2.44–2.24 (m, 1H), 2.18–2.05 (m, 1H); ¹³C NMR: δ 149.4 (d, *J* = 2 Hz), 140.0 (d, *J* = 7 Hz), 139.6 (d, *J* = 23 Hz),)131.5 (d, *J* = 8 Hz), 131.2, 129.0, 128.2 (d, *J* = 6 Hz), 128.0, 126.7 (d, *J* = 8 Hz), 124.9 (d, *J* = 2 Hz), 34.3 (d, *J* = 6 Hz), 27.6 (d, *J* = 8 Hz); ³¹P NMR: δ –3.5 (s). ¹H and ³¹P NMR data are in accordance with the literature.⁵

(*S*_P)-1-Phenyl-phosphindane-*P*-oxide ((*S*_P)-9): To a cold (0 °C) solution of (*R*_P)-8 (>99.9% ee; 95 mg, 0.45 mmol) in acetone was added 60% aq H₂O₂ (100 μL) under stirring. After 10 min, the mixture was concentrated and the residual crude partitioned between EtOAc/H₂O. Filtration of the organic layer through a bed of Na₂SO₄/MgSO₄ and concentration, afforded a colorless oil (97 mg, 95%): $[\alpha]_D^{25}$ –36.5 (*c* 1.0, CHCl₃) (>99.9% ee by HPLC, see below); ¹H NMR: δ 7.92–7.32 (m, 9H), 3.53–3.33 (m, 1H), 3.28–3.09 (m, 1H), 2.58–2.33 (m, 2H); ¹³C NMR: δ 147.6 (d, *J* = 31 Hz), 133.5 (d, *J* = 36 Hz), 132.8 (d, *J* = 2 Hz), 132.1 (d, *J* = 41 Hz), 131.8 (d, *J* = 3 Hz), 130.5 (d, *J* = 10 Hz), 129.0 (d, *J* = 10 Hz), 128.5 (d, *J* = 12 Hz), 127.8 (d, *J* = 10 Hz), 126.4 (d, *J* = 11 Hz), 28.2 (d, *J* = 4 Hz), 28.0 (d, *J* = 71 Hz); ³¹P NMR (243 MHz): δ +56.5 (s).

NMR data were consistent with those reported in the literature.⁶

HPLC determination of enantiomeric excess of 9: a mixture with 37% ee was prepared by mixing (S_P) -9 and (R_P) -9 ((S_P) -9 in excess). (R_P) -9 was prepared from (S_P) -7 via (S_P) -3 following Scheme 1 starting from (–)-oxazaPB. HPLC analysis was carried out on a Daicel Chiralcel AD-H column (25 cm): hexane/2-PrOH 95:5, 1.0 mL/min, UV detection ($\lambda = 230$ nm), $t_R = 44.3 \min (R_P)$, 51.2 min (S_P) . **Absolute configuration:** This was determined by comparison with the literature⁶ of HPLC elution on Chiralpak IA column: heptane/EtOH 90:10, 1.0 mL/min, UV detection ($\lambda = 230$ nm): $t_R = 20.5$ min ((R_P) -9), 22.2 min ((S_P) -9).

⁽³⁾ Activated powdered molecular sieves were used.

⁽⁴⁾ Two separate doublets with different coupling constants but with identical chemical shifts.

⁽⁵⁾ Brunker, T. J.; Anderson, B. J.; Blank, N. F.; Glueck, D. S.; Rheingold, A. L. Org. Lett. 2007, 9, 1109–1112.

⁽⁶⁾ Carr, D. J.; Kudavalli, J. S.; Dunne, K. S.; Müller-Bunz, H.; Gilheany, D. G. J. Org. Chem. 2013, 78, 10500–10505.

(R_P)-1-Phenyl-3-oxa-1-phosphindane-*P*-borane ((R_P)-11): To a cold (-20 °C) solution of (R_P)-10 (>99.9% ee, 1.00 g, 4.34 mmol) in THF (50 ml) was added dropwise *s*-BuLi (6.67 ml, 8.46 mmol) in 5 min. The mixture was stirred at that temperature for 1 h. After cooling to -78 °C, a solution of iodine (1.10 g, 4.34 mmol) in THF (30ml) was added dropwise maintaining the temperature below -75 °C then allowed to reach rt over 3 h. Quenching

with H₂O (20 ml) followed by brine (40 ml), extraction with Et₂O (2×70 mL), drying (Na₂SO₄), and concentration afforded the crude product. Purification by column chromatography eluting with hexane/toluene (9:1 to 7:3) yielded the title compound as a colorless syrup (0.81 g, 82%); $[\alpha]_D^{25}$ –2.02 (*c* 1.0, CHCl₃) (>99.9% ee by HPLC, see below); ¹H NMR: δ 7.65–7.33 (m, 7H), 7.20–6.96 (m, 2H), 4.87 (dd, *J* = 12.7, 5.2 Hz, 1H), 4.77 (dd, *J* = 12.7, 6.2 Hz, 1H), 1.89–0.34 (m, 3H); ¹³C NMR: δ 164.2 (d, *J* = 8 Hz), 134.1 (d, *J* = 2 Hz), 132.1, 132.0 (d, *J* = 10 Hz), 130.2 (d, *J* = 11 Hz), 129.0 (d, *J* = 10 Hz), 129.0 (d, *J* = 10 Hz), 129.0 (d, *J* = 5 Hz), 71.6 (d, *J* = 29 Hz); ³¹P NMR: δ 15.4 (br m); HRMS (ESI): *m/z* calcd. for C₁₃H₁₂OP [*M*⁺+H–BH₃] 215.062, found 215.0619.

HPLC determination of enantiomeric excess of 11: a quasi-racemic mixture was prepared by mixing (S_P)-11 and (R_P)-11. (S_P)-11 was prepared following Scheme 2 starting from (+)-oxazaPB. HPLC analysis was carried out on homoconjugated Daicel Chiralcel OD-H columns (25 cm + 15 cm): hexane/2-PrOH 99:1, 1.0 mL/min, UV detection ($\lambda = 230$ nm), $t_R = 12.1$ min (S_P), 13.3 min (R_P).

RLi ^b	Solvent	T ℃	Additive ^c (equiv/RLi)	3 or 4 % ee (<i>Conf.</i>) ^d
TMSCH₂Li	THF	-78	-	13 (<i>R</i> _P)
TMSCH ₂ Li	Et ₂ O	-40	-	77 (<i>R</i> _P)
TMSCH ₂ Li	Et ₂ O	-78	TMEDA (1.1)	87 (<i>R</i> _P)
TMSCH ₂ Li	Et ₂ O	-78	TMCDA (1.1)	Not Analyzed
				(4 in 60% yield
				+ byproducts)
TMSCH₂Li	Et ₂ O	-78	(-)-Sparteine (1.1)	90 (<i>R</i> _P)
TMSCH ₂ Li	Toluene	-60	-	20 (<i>R</i> _P)
MeLi	THF	-30	-	43 (<i>S</i> _P)
MeLi	THF	-78	-	35 (<i>S</i> _P)
MeLi	Et ₂ O	-78	-	68 (<i>R</i> _P)
MeLi	Et ₂ O	-78	TMEDA (1.1)	85 (<i>S</i> _P)
MeLi	Et ₂ O	-78	LiBr (2.2)	9 (<i>R</i> _P)
MeLi	MTBE	-78	-	67 (<i>R</i> _P)
MeLi	Bu ₂ O	-78	-	86 (<i>R</i> _P)
MeLi	Toluene	0	-	69 (<i>R</i> _P)
MeLi	Toluene	-78	-	89 (<i>R</i> _P)
MeLi	Toluene	-78	HMPA (1.1)	85 (<i>R</i> _P)
MeLi	Toluene	-78	TMEDA (1.1)	67 (<i>S</i> _P)
MeLi	Toluene	-78	TMEDA (2.2)	83 (<i>S</i> _P)
MeLi	Toluene	-78	TMEDA (4.4)	83 (<i>S</i> _P)
MeLi	Toluene	-78	TMCDA (2.2) ^e	95 (<i>S</i> _P)
MeLi	Toluene	-78	(-)-Sparteine (2.2)	46 (<i>S</i> _P)
MeLi	Et-PhH	-78	-	90 (<i>R</i> _P)
MeLi	Cumene	-78	-	91 (<i>R</i> _P)
MeLi	Cumene	-78	TMCDA (2.2)	92 (<i>S</i> _P)
MeLi-LiBr	Et ₂ O	-78	-	12 (<i>R</i> _P)
MeLi-LiBr	Hexane	-78	-	No reaction
MeLi-LiBr	Toluene	-78	-	94 (<i>R</i> _P)
MeLi-LiBr	Toluene	-78	TMCDA (2.2)	90 (<i>S</i> _P)
MeLi-LiBr	Cumene	-78	-	97 (<i>R</i> _P)
MeLi-LiBr	Cumene	-78	TMCDA (2.2)	94 (<i>S</i> _P)
Me₃MgLi LiCl ^f	Et ₂ O	-40	-	65 (<i>R</i> _P)

2. Organolithiums reaction with (R_P) -2 under various explored conditions (Table S1)^a

^a RLi (2 equiv to 2) was added at the indicated temperature to $(R_{\rm P})$ -2 (99.8% ee) premixed with the optional additive and the reaction was quenched with water after 2–3 h. This protocol was adopted due to convenience and to inconsistent results with preformed RLi-additive.

^b TMSCH₂Li (1 M in pentane); MeLi (1.6 M in Et₂O); MeLi·LiBr (1.5 M in Et₂O); Me₃MgLi·LiCl prepared at 0 °C from 1 equiv MeMgCl (3 M in THF) and 2 equiv MeLi (1.6 M in Et₂O).

^c TMEDA: *N*,*N*,*N'*,*N'*-Tetramethylethylenediamine; TMCDA: *trans-N*,*N*,*N'*,*N'*-Tetramethyl-1,2-cyclohexanediamine; HMPA: Hexamethylphosphoramide.

^d Ee was determined by chiral HPLC (for details, see above).

(R,R)- or (S,S)-TMCDA used.

^f Note that 60% ee was obtained with MeMgBr in THF at 60 °C while no reaction occurred at rt.

3. Continued References from "Reference 3" of the Main Document:

- For 1,1'-bisphospholanoferrocene, see: Burk, M. J.; Gross, M. F. *Tetrahedron Lett.* **1994**, *35*, 9363–9366.
- For Ph-Quinox, see: Fox, M. E.; Jackson, M.; Lennon, I. C.; Klosin, J.; Abboud, K. A. *J. Org. Chem.* **2008**, *73*, 775–784.
- For sugars- and mannitol-derived phospholanes, see:
 - RoPHOS: Holz, J.; Quirmbach, M.; Schmidt, U.; Heller, D.; Stürmer, R.; Börner, A. J. Org. Chem. 1998, 63, 8031–8034.
 - BASPHOS: Holz, J.; Stürmer, R.; Schmidt, U.; Drexler, H.-J.; Heller, D.; Krimmer, H.-P.; Börner, A. *Eur. J. Org. Chem.* **2001**, *24*, 4615–4624.

- Yan, Y.-Y.; RajanBabu, T. V. Org. Lett. 2002, 2, 199–202.

- R-KetalPhos (R = Me, Et): Li W.; Zhang Z.; Xiao D.; Zhang X. J. Org. Chem. 2000, 65, 3489–3496.
- Me-f-KetalPhos: Liu, D.; Li, W.; Zhang, X. Org. Lett. 2002, 4, 4471-4474.
- For bicyclic phospholanes, see: MacKay, J. A.; Vedejs, E. J. Org. Chem. **2006**, *71*, 498–503. Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. **2003**, *125*, 4166–4173.
- For α-functionalized phospholanes, see: Huang, K.; Zhang, X.; Emge, T. J.; Hou, G.; Cao, B.; Zhang, X. *Chem. Commun.* **2010**, *46*, 8555–8557. Tang, W.; Wang, W.; Zhang, X. *Angew. Chem. Int. Ed.* **2003**, *42*, 943–946.
- For POPs, see: Tang, W.; Capacci, A. G.; White, A.; Ma, S.; Rodriguez, S.; Qu, B.; Savoie, J.; Patel, N. D.; Wei, X.; Haddad, N.; Grinberg, N.; Yee, N. K.; Krishnamurthy, D.; Senanayake, C. H. *Org. Lett.* **2010**, *12*, 1104–1107.
- For oxa-monophosphorous ligands, see: Tang, W.; Patel, N. D.; Xu, G.; Xu, X.; Savoie, J.; Ma, S.; Hao, M.-H.; Keshipeddy, S.; Capacci, A. G.; Wei, X.; Zhang, Y.; Gao, J. J.; Li, W.; Rodriguez, S.; Lu, B. Z.; Yee, N. K.; Senanayake, C. H. *Org. Lett.* **2012**, *14*, 2258–2261;
- For diazaphospholanes, see: Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud, K. A. J. *Am. Chem. Soc.* **2005**, *127*, 5040–5042.

4. X-Ray Crystal Structures Determination

Data for (R_P)-1 and (S_P)-2 were collected on Agilent SuperNova diffractometer using monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) (crystal of (R_P)-1) or Cu-K α radiation ($\lambda = 1.54184$ Å) (crystal of (S_P)-2). The coordinates of some or all of the non-hydrogen atoms were found *via* direct methods using the structure solution SHELXS-97 program.⁷ Positions of the remaining non-hydrogen atoms were located by using a combination of least-squares refinement and difference Fourier maps in the SHELXL-97 program.⁷ Except hydrogen atoms, all atoms were refined anisotropically. The absolute configurations were determined by refinement of the completed models together with the Flack *x* parameters,⁸ which refined to values of -0.12(12) and -0.02(2) for (R_P)-1 and (S_P)-2, respectively, and thereby confirmed that the refined coordinates for each structure represent the true enantiomorph. Figures depicting the structures were prepared by Ortep3.⁹ The supplementary crystallographic data (atomic coordinates, anisotropic displacement parameters, and extended lists of interatomic distances and angles) are contained in the cif files.

Figure S1. ORTEP drawing at the 50% probability level of (R_P)-1 derived from (+)-ephedrine. Selected bond lengths (Å) and angles (°):P–B 1.930(4); P–N1 1.657(2); P–C21 1.810(3); P–C31 1.840(3); B–P–N1 113.7(2); N1–P–C21 107.1(2), C21–P–C31 103.5(1); C31–P–B 118.4(2).

C₂₃H₂₉BNO₂P, $M_r = 393.25$, monoclinic, space group P 2₁ (No. 4), a = 9.1640(16), b = 14.0102(17), c = 9.5202(18) Å, a = 90, $\beta = 117.23(2)$, $\gamma = 90^{\circ}$, V = 1086.8(3) Å³, Z = 2, T = 293(2) K, $d_{calcd} = 1.202$ g cm⁻³, $\mu = 0.144$ mm⁻¹, 10885 measured reflections, 4980 unique reflections ($R_{int} = 0.0555$), 272 refined parameters, $R_1 [I > 2\sigma(I)] = 0.0582$, wR2 [all data] = 0.1584.

⁽⁷⁾ Sheldrick, G. M. SHELX-97. Programs for Crystal Structure Analysis; University of Göttingen: Göttingen, Germany, 1998.

⁽⁸⁾ Flack, H. D. Acta Crystallogr. 1983, A39, 876-881.

⁽⁹⁾ Farrugia, L. J. Appl. Crystallogr. 1997, 30, 565.

Figure S2. ORTEP drawings at the 50% probability level of both molecules found in the asymmetric unit of (S_P)-**2**. Selected bond lengths (Å) and angles (°) for the left molecule: P1–O1 1.599(2); P1–B1 1.880(4); P1–C11 1.804(3); P1–C21 1.813(3); C1–O1 1.492(7); O1–P1–C21 106.6(2); C21–P1–B1 114.8(2); B1–P1–C11 114.9(2); C11–P1–O1 95.2(2). Selected bond lengths (Å) and angles (°) for the right molecule: P2–O2 1.613(2); P2–B2 1.891(4); P2–C31 1.788(2); P2–C41 1.800(2); C2–O2 1.445(4); O2–P2–C41 104.6(1); C41–P2–B2 113.9(2); B2–P2–C31 116.5(1); C31–P2–O2 94.7(1).

C₁₃H₁₄BOP, M_r = 228.02, monoclinic, space group *P* 2₁ (No. 4), *a* = 11.8787(2), *b* = 8.9358(2), *c* = 12.7533(3) Å, *a* = 90, *β* = 108.685(2), *γ* = 90°, *V* = 1282.36(5) Å³, *Z* = 4, *T* = 293(2) K, *d*_{calcd} = 1.181 g cm⁻³, *μ* = 1.685 mm⁻¹, 14321 measured reflections, 5239 unique reflections (R_{int} = 0.0347), 289 refined parameters, R_1 [$I > 2\sigma(I)$] = 0.0459, *wR*2 [all data] = 0.1376.

Figure S3. An overlay of the two molecules belonging to the asymmetric unit in (S_P) -2. The pair does not differ significantly in geometric parameters. The main difference is in the relative orientation of phenyl ring.

5. HPLC Chromatograms

Quasi-*rac*-1-Phenyl-2-oxa-1-phosphindane-*P*-borane (*rac*-2)

 (R_P) -1-Phenyl-2-oxa-1-phosphindane-*P*-borane ((R_P)-2), 99.8% ee; prepared from (–)-ephedrine

 $(R_{\rm P})$ -(2-Hydroxymethyl-phenyl)(methyl)(phenyl)phosphine-*P*-borane (($R_{\rm P}$)-3), 97.7% ee

 $(R_{\rm P})$ -(2-Mesyloxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-*P*-borane (($R_{\rm P}$)-5), 97.5% ee

 $(R_{\rm P})$ -(2-Mesyloxymethyl-phenyl)(phenyl)(trimethylsilylmethyl)phosphine-*P*-borane (($R_{\rm P}$)-5), >99.9% ee

 $(R_{\rm P})$ -1-Phenyl-phosphindane-*P*-borane (($R_{\rm P}$)-7), >99.9% ee

1-Phenyl-phosphindane-P-oxide ((S_P)-9), 37% ee

Chiralpak IA column

Chiralcel AD-H column

 (R_P) -1-Phenyl-3-oxa-1-phosphindane-*P*-borane ((R_P)-11), >99.9% ee

6. ¹H NMR and ¹³C NMR spectra

НО ۰Ph Ph, 1 но-'N-Me

1 ³¹P NMR(120 MHz) - CDCl₃

77.42 77.00 76.58 76.00

9.64 9.50 9.50 9.50 9.03 9.03 9.03 9.03 9.03 8.86 8.65 8.48 8.48

-37.84 15.11 14.95 14.73 14.43 13.60 13.60

38.18 38.09 37.09 37.61 37.39 37.39 37.39 37.39 37.39 37.39 37.39 37.39 36.98

1.0.20 9 ¹H NMR(300 MHz) - CDCI₃/TMS 9.26-L.00-1.02 -2.48-6.0 5.5 5.0 4.5 4.0 f1 (ppm) 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 6.0 5.5 5.0 8.5 4.5 4.0 8.5 4.0 9.0 8.5 . 8.0 7.5 . 7.0 6.5 3.5 . 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 77.42 77.00 76.58 28.42 28.24 28.19 27.49 -130.52 ~129.03 ~128.90 128.63 ~128.47 9 $^{13}\mathrm{C}\ \mathrm{NMR}(75\ \mathrm{MHz})$ - CDCI_3 131 130 129 128 f1 (ppm) 127 126 <132.76 132.73 <131.82 <131.79 4.5 134.0 133.5 133.0 132.5 132.0 131.5 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

