Supporting Information

N-Arylations of Sulfoximines with 2-Arylpyridines by Copper-Mediated Dual N-H/C-H Activation

Long Wang, Daniel L. Priebbenow, Wanrong Dong and Carsten Bolm*

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
carsten.bolm@oc.rwth-aachen.de

Table of Contents:

General Experimental S2
Specific Experimental S3
References S7
NMR Spectra S8

General information

All reagents were purchased from Sigma-Aldrich, Acros or Alfa Aesar and were used without further purification. The substituted 2-phenylpyridines were prepared by following the literature procedure for the Suzuki coupling of the corresponding aryl boronic acid with 2-bromopyridine. ${ }^{[\mathrm{S} 1]}$ Sulfoximines were prepared according to literature procedures by treating sulfoxides with sodium azide and concentrated sulfuric acid. ${ }^{[52]}$

All product mixtures were analyzed by thin layer chromatography using aluminum foil backed silica TLC plates with a fluorescent indicator from Merck. UV-active compounds were detected with a UV lamp $(\lambda=254 \mathrm{~nm})$. For flash column chromatography, silica gel was used as the stationary phase. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded either on a Varian V-NMRS 600, Varian V-NMRS 400 in deuterated chloroform at $25^{\circ} \mathrm{C}$. Chemical shifts (d) are reported in ppm, and spin-spin coupling constants (J) are given in Hz , while multiplicities are abbreviated by br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). High resolution mass spectra (HRMS) were recorded on a Thermo Scientific LTQ Orbitrap XL spectrometer [electrospray ionisation (ESI) in positive ion mode]. Analytical high-performance liquid chromatography (HPLC) measurements for the determination of enantiomers were performed with an Agilent 1100 -series system and a chiral stationary phase (Chiralcel AD-H: $250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) from Chiral Technologies Inc. Melting points (M.P.) were determined in open-end capillary tubes on a Büchi B-540 melting point apparatus.

Specific Experimental:

Table S1. Reaction condition screening for oxidative coupling between 2-phenylpyridine and sulfoximine

		 5a				
Entry ${ }^{\text {a }}$	Metal (Equiv)	Oxidant	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Additive (Equiv)	Yield (\%)
1	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	air	$\mathrm{CH}_{3} \mathrm{CN}$	130	-	26
2	$\mathrm{CuBr}_{2}(1.0)$	air	$\mathrm{CH}_{3} \mathrm{CN}$	130	-	-
3	$\mathrm{CuCl}_{2}(1.0)$	air	$\mathrm{CH}_{3} \mathrm{CN}$	130	-	trace
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.10)$	air	$\mathrm{CH}_{3} \mathrm{CN}$	130	-	-
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.10)$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	DCE	130	-	-
6	CuBr (0.10)	t-BuO-Ot-Bu	PhMe	120	-	-
7	CuBr (0.10)	t-BuO-Ot-Bu	neat	130	-	-
8	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	air	DMF	130	-	trace
9	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	air	DMSO	130	-	trace
10	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	air	1,4-dioxane	130		trace
11	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	air	PhMe	130	-	trace
12	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	air	xylene	145	-	trace
13	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	air	anisole	160	-	trace
14	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	O_{2}	$\mathrm{CH}_{3} \mathrm{CN}$	130	-	38
15	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	O_{2}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	150	-	55
16	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	O_{2}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	150	pyridine (1.0)	-
17	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0)$	O_{2}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathbf{C N}$	150	$\mathrm{AcOH}(0.5)$	80
18	$\mathbf{C u}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\mathbf{1 . 0})$	O_{2}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathbf{C N}$	150	2-nitrobenzoic acid (0.5)	74
19	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.20)$	O_{2}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	150	$\mathrm{AcOH}(0.5)$	22

a Reactions were performed on a 0.5 mmol scale.

MS analysis of the reaction mixture prior to work-up:

General Procedure A: To a 20 mL sealable reaction tube with a magnetic stirring bar was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.50 \mathrm{mmol})$ and the reaction tube was back filled with molecular oxygen. To this reaction vessel was then added a solution containing the substituted 2 -aryl pyridine (0.50 mmol), the sulfoximine (1.0 mmol), glacial acetic acid ($15 \mathrm{mg}, 0.25 \mathrm{mmol}$) and propanenitrile $(1 \mathrm{~mL})$. The tube was sealed and heated to $150{ }^{\circ} \mathrm{C}$ for 24 h . After this time, the reaction mixture was cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ The organic phase was washed with $\mathrm{Na}_{2} \mathrm{~S}(10 \mathrm{~mL}$, saturated aqueous solution) and separated. The aqueous phase was then extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic phases were filtered over a short pad of celite, and the solvent then concentrated under vacuum. Purification by silica gel column chromatography afforded the arylated sulfoximine 6 .

General Procedure B: As General Procedure A, but with the use of 2-nitrobenzoic acid ($42 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ instead of glacial acetic acid.

N-(2-Pyridinylphenyl)-S-methyl- S-phenylsulfoximine (6a)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $123 \mathrm{mg}(80 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.72$ $(\mathrm{s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=158.6,149.1$, $142.3,139.4,135.1,133.1,130.7,129.3,129.1,128.4,125.5,123.3,122.4,121.3$, 45.0 ppm ; ESI-HRMS $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 309.1056, Found 309.1064.

Following General Procedure A with enantiopure (S)-5a afforded optically active 6a, $\left\{[\alpha]_{\mathrm{D}}{ }^{20}=-149.4\right.$ (sample of 10.0 mg in $2 \mathrm{mLCHCl}_{3}$)\} in a comparable yield to that reported for the reaction of racemic 5a. HPLC: $t_{\mathrm{r}}=12.6 \mathrm{~min}$ (minor), $t_{\mathrm{r}}=14.9 \mathrm{~min}$ (major); Chiralcel AD-H, $0.8 \mathrm{~mL} / \mathrm{min}$, n-heptane/isopropanol $=85 / 15, \lambda=254 \mathrm{~nm}, 20^{\circ} \mathrm{C}$; e.r. $=>99.5: 0.5$

N-(2-Pyridinylphenyl)-S-ethyl-S-phenylsulfoximine (6b)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $116 \mathrm{mg}(72 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.73$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{dd}, J=$ $7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{tt}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), $7.25-7.20$ (m, 1H), 7.15 (dd, $J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (td, $J=7.8$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=158.6,149.1,142.5,137.1,134.9$, 134.7, 133.1, 130.6, 129.3, 129.2, 129.1, 125.7, 122.8, 122.0, 121.2, 51.8, 7.8 ppm ; ESI-HRMS (m / z) $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 323.1213, Found 323.1223.

N-(2-Pyridinylphenyl)-S,S-diphenylsulfoximine (6c)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $127 \mathrm{mg}(69 \%)$, white solid, m.p. $120-121{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.82-8.78(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{td}, J$ $=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{tt}, J=7.6$ $\mathrm{Hz}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.6$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=7.6 \mathrm{~Hz}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=158.9,149.2,142.1,140.8,135.2,135.1,132.5$, $130.5,129.1,128.5,125.9,123.2,122.2,121.4 \mathrm{ppm}$; ESI-HRMS $(m / z)\left[\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 371.1213, Found 371.1222.

N-(2-Pyridinylphenyl)-S-methyl- S-(4-methylphenyl)sulfoximine (6d)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $124 \mathrm{mg}(77 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $8.73-8.70(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=158.6,149.1,144.0,142.5,136.3,135.0,134.9$, $130.6,129.9,129.1,128.4,125.6,123.3,122.3,121.3,45.2,21.5 \mathrm{ppm} ;$ ESI-HRMS $(m / z)\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 323.1213, Found 323.1222.

N-(2-Pyridinylphenyl)-S-methyl- S-(4-chlorophenyl)sulfoximine (6e)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $140 \mathrm{mg}(82 \%)$, pale yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $8.73-8.70(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=158.6,149.1$, $141.9,139.9,137.9,135.2,135.1,130.7,129.9,129.6,129.2,125.4,123.3$, 122.7, 121.4, 45.1 ppm ; ESI-HRMS $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{ClOS}+\mathrm{H}\right]^{+}$Calcd. 343.0666, Found 343.0678.

N-(2-Pyridinylphenyl)-S-methyl-S-(4-methoxyphenyl)sulfoximine (6f)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $103 \mathrm{mg}(61 \%)$, pale yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.73(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{td}, J=$ $7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=163.3,158.6,149.1,142.6,135.1,134.9,130.6,130.5,129.1$, $125.5,123.3,122.3,121.3,114.5,55.6,45.4 \mathrm{ppm}$; ESI-HRMS $(m / z)\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$Calcd. 339.1162 , Found 339.1169 .

N-(2-Pyridinylphenyl)-S,S-dimethylsulfoximine (6g)

General procedure B was followed using ethyl acetate/pentane (1:1) as eluent; yield: $68 \mathrm{mg}(55 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.64$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}$, 2H), $7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $158.4,149.0,142.2,135.4,135.2,130.8,129.3,125.1,124.3,123.1,121.3,41.8$ ppm; ESI-HRMS $(m / z)\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 247.0900, Found 247.0905.

N-(2-Pyridinyl-5-methylphenyl)-S-methyl-S-phenylsulfoximine (6h)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $119 \mathrm{mg}(74 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.71(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.56$ $-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=158.6,149.0,142.0,139.5,139.2,135.1,133.1,132.2,130.5,129.2,128.3,125.5,124.1$, 123.5, 121.1, 44.8, 21.2 ppm ; ESI-HRMS $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 323.1213, Found 323.1226.

N-(2-Pyridinyl-5-methoxyphenyl)-S-methyl-S-phenylsulfoximine (6i)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $108 \mathrm{mg}(64 \%)$, pale yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75$ (m, 2H), 7.70 (td, $J=8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=160.1,158.2,149.0,143.4,139.3,135.0,133.1,131.6,129.3,128.3,127.9,125.3$, 120.8, 108.6, 108.5, 55.2, 45.0 ppm ; ESI-HRMS $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$Calcd. 339.1162, Found 339.1169 .

N-(2-Pyridinyl-5-chlorophenyl)-S-methyl-S-phenylsulfoximine (6j)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: 139 mg (81%), pale yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.72(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.59$ - 7.53 (m, 2H), 7.46 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.13$ (m, 1H), 7.20 (d, $J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.5,149.2,143.6,138.9,135.3,134.4,133.4,133.3,131.6,129.5$, 128.3, 125.4, 122.8, 122.4, 121.6, 45.3 ppm ; ESI-HRMS $(m / z)\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 343.0666, Found 343.0677.

N-(2-Pyridinyl-5-fluorophenyl)-S-methyl-S-phenylsulfoximine (6k)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $138 \mathrm{mg}(85 \%)$, pale yellow viscous oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta=8.71(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 3 \mathrm{H})$, $7.62-7.53$ (m, 2H), 7.45 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.91$ (dd, J $=10.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=8.4 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=164.1,161.6,157.7,149.1,144.0$,
143.9, 138.9, 135.2, 133.4, 131.9, 131.8, 131.1, 131.0, 129.4, 128.3, 125.4, 121.3, 109.8, 109.6, 109.3, 109.0, 45.4 ppm ; ESI-HRMS $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 327.0962, Found 327.0972.

N-(2-Pyridinyl-3-methylphenyl)-S-methyl-S-phenylsulfoximine (61)

General procedure B was followed using ethyl acetate/pentane (1:1) as eluent; yield: $92 \mathrm{mg}(57 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.79$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=159.0,148.1,143.0,139.6,137.1,133.0,129.2$, 128.9, 128.4, 126.3, 124.1, 121.6, 120.4, 44.1, 20.2 ppm ; ESI-HRMS $(m / z)\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 323.1213, Found 323.1226.

N-[2-(4-Methylpyridinyl)phenyl]-S-methyl-S-phenylsulfoximine (6m)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $116 \mathrm{mg}(72 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $8.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=158.3,148.7,146.2,142.2,139.5$, 135.1, 133.1, 130.7, 129.3, 129.1, 128.4, 126.4, 123.4, 122.5, 122.4, 44.6, 21.2;

ESI-HRMS $(m / z)\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 323.1213, Found 323.1225.

N-[2-(5-Methylpyridinyl)phenyl]-S-methyl-S-phenylsulfoximine (6n)

General procedure A was followed using ethyl acetate/pentane (1:1) as eluent; yield: $121 \mathrm{mg}(75 \%)$, colorless viscous oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.56(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.8 \mathrm{~Hz}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.6,149.3,142.3,139.4$, $135.9,133.1,130.7,130.6,129.3,129.0,128.4,124.9,123.2,122.4,45.1,18.3 \mathrm{ppm}$; ESI-HRMS $(\mathrm{m} / \mathrm{z})$ $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}+\mathrm{H}\right]^{+}$Calcd. 323.1213, Found 323.1222.

References:

[S1] Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.
[S2] Eis, K.; Prien, O.; Luecking, U.; Guenther, J.; Zopf, D.; Brohm, D.; Vöhringer, V.; Woltering, E.; Beck, H.; Lobell, M.; Li, V. M.-J.; Greschat, S. WO 2008/141843 Al (Bayer Schering Pharma AG).

NMR Spectra:
N
$\stackrel{\stackrel{\rightharpoonup}{i}}{i}$

合
6a

6a

No운

6 c

$\stackrel{\text { in }}{\hat{j}}$
8

$\stackrel{\circ}{i}$

$6 e$

-

$\stackrel{\circ}{1}$

$6 \mathbf{g}$

> ~oñ
> $\stackrel{\infty}{\ddagger}$

N
6 g

$\stackrel{\text { in }}{\substack{i}}$

6h


```
|
N-8.0
```

$\stackrel{\infty}{\ddagger}$

6h

$6 i$

$6 i$

ま

6 m

客
$\stackrel{8}{i}$

6n

