Synthesis of Proposed Aglycone of Mandelalide A

Karla Mahender Reddy, ${ }^{\dagger}$ Vanipenta Yamini, ${ }^{\dagger}$ Kiran K. Singarapu ${ }^{\ddagger}$ and Subhash Ghosh* ${ }^{\dagger}$
${ }^{\dagger}$ Organic and Biomolecular Chemistry Division, ${ }^{\dagger}$ Centre for NMR \& Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-50007, India.
E-mail: subhash@uict.res.in
Fax: + 91-40-27191604; Tel: + 91-40-27191609;

Table of Contents

General information and abbreviation	Page: S 2
Experimental procedures and analytical data	Page: $\mathrm{S} 3-\mathrm{S} 22$
Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of	Page: S 23
Mandelalide A (Isolation), synthetic Mandelalide A	
(Fürstner et al) and Compound $\mathbf{5}$ Page: S24-S45 Spectral data Page: $\mathrm{S} 46-\mathrm{S} 48$	

General information and abbreviations:

General information:

All the air and moisture sensitive reactions were carried out under inert atmosphere (nitrogen or argon). Oven-dried glass apparatus were used to perform all the reactions. Freshly distilled anhydrous solvents were used for air and moisture sensitive reactions. Commercially available reagents were used as such. Purification of compounds was carried out via column chromatography by using silica gel (60-120 or 100-200 mesh) packed in glass columns. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded in CDCl_{3} solvent on $300 \mathrm{MHz}, 400 \mathrm{MHz}$, $500 \mathrm{MHz}, 700 \mathrm{MHz}$ and $75 \mathrm{MHz}, 100 \mathrm{MHz}, 125 \mathrm{MHz}$ spectrometer, respectively, using TMS as an internal standard. Chemical shifts are measured as ppm values relative to internal $\mathrm{CHCl}_{3} \delta 7.26$ or TMS $\delta 0.0$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CHCl}_{3} \delta 77$ for ${ }^{13} \mathrm{C}$ NMR. In ${ }^{1} \mathrm{H}$ NMR multiplicity defined as: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{dd}=$ doublet of doublet; ddd $=$ doublet of double of doublet; $\mathrm{dt}=$ doublet of triplet; $\mathrm{m}=$ multiplet; brs $=$ broad singlet. Optical rotation values were recorded on Horiba sepa 300 polarimeter using a 2 mL cell with a 10 mm path length. FTIR spectra were recorded on Alpha (Bruker) infrared Spectrophotometer. High resolution mass spectra (HRMS) $\left[\mathrm{ESI}^{+}\right]$were obtained using either a TOF or a double focusing spectrometer.

Abbreviations:

KHMDS $=$ Potassium bis(trimethylsilyl)amide; $\operatorname{DDQ}=2,3$-Dichloro-5,6-dicyano-1,4benzoquinone; $\mathrm{DMPU}=1,3$-Dimethyl-3,4,5,6-tetrahydro-2 $(1 H)$-pyrimidinone; $\mathrm{EDCI}=1$ -Ethyl-3-(3-dimethylaminopropyl)carbodiimide; Ipc $=$ Isopinocampheyl; $\mathrm{DBU}=1,8$ -Diazabicyclo[5.4.0]undec-7-ene.

Experimental procedures and analytical data:

(3R,4S)-6-(tert-butyldimethylsilyloxy)-4-(4-methoxybenzyloxy)-3-methylhexan-1-ol (14):

To a stirred solution of $\mathbf{1 3}(10 \mathrm{~g}, 27.25 \mathrm{mmol})$ in dry THF $(90 \mathrm{~mL})$ was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(3$ $\mathrm{mL}, 30.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring 12 h at rt , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with aqueous $\mathrm{NaOH}\left(3 \mathrm{M}\right.$ solution, 50 mL), $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(25$ mL). After 2 h at room temperature, the mixture was extracted with ethyl acetate (2×100 mL). The combined organic extracts were washed sequentially with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$, brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure gave crude residue which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $60-120$ mesh, $12 \% \mathrm{EtOAc} /$ hexane $)$ to afford $14(8.8 \mathrm{~g}, 85 \%)$ as a colorless oil. $R_{f}=0.5\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc /hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}=-10.6\left(c 0.3, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max } 3391,2927,2855$, 1612, 1513, 1462, 1301, 1248, 1173, 1059, 834, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}): δ $7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.74-3.68 (m, 3H), $3.61(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75MHz, CDCl_{3}): $\delta 159.1,130.8,129.3(2 \mathrm{C}), 113.7(2 \mathrm{C}), 79.4,71.5,60.6,59.8,55.2,35.5$, 33.6, 32.6, 25.9(3C), 18.3, 15.2, $-5.30,-5.32$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4}$ NaSi 405.2431, found 405.2439.
tert-Butyl ($3 S, 4 R, E)-8-((R)$-2,2-dimethyl-1,3-dioxolan-4-yl)-3-(4-methoxybenzyloxy)-4-methyloct-6-enyloxy)dimethylsilane (16) :

To a stirred solution of $\mathbf{1 4}(8 \mathrm{~g}, 20.94 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added NaHCO_{3} $(1.76 \mathrm{~g}, 20.94 \mathrm{mmol})$ and Dess-Martin periodinane $(13.3 \mathrm{~g}, 31.41 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 1 h stirring at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 350 \mathrm{~mL}$). The combined organic extracts were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent furnished crude aldehyde which was passed through a short pad of silica gel and used as such for the next reaction.

To a stirred solution of sulfone $\mathbf{1 5}(10.6 \mathrm{~g}, 31.41 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added KHMDS ($62.8 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene, 31.41 mmol) under argon atmosphere. After 30 minutes, the crude aldehyde in THF (15 mL) was added to the reaction mixture at $-78^{\circ} \mathrm{C}$ via cannula. After 3 h stirring at $-78^{\circ} \mathrm{C}$, the reaction was quenched with water $(5 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 250 \mathrm{~mL}$). The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 60-120\right.$ mesh, $7 \% \mathrm{EtOAc} /$ hexane $)$ to afford $16(8.2 \mathrm{~g}, 80 \%$ over two steps) as a colourless oil. $R_{f}=0.5\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=-25.0(c 3$, CHCl_{3}); IR (Neat): $v_{\max }$ 2954, 2930, 2856, 1612, 1512, 1462, 1369, 1301, 1246, 1172, 1156,1062, 1037, 831, $774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H})$, $4.0(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{q}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}$, $3 \mathrm{H}), 0.91-0.81(\mathrm{~m}, 12 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.0, 132.1, 131.1, 129.2 (2C), 126.2, 113.7(2C), 108.8, 78.8, 75.6, 71.2, 68.8, 59.9, 55.2, 36.8, 36.2, 35.7, 33.2, 26.8, 25.9(3C), 25.6, 18.2, 14.4, $-5.28,-5.33 . \operatorname{HRMS}(\mathrm{ESI}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{NaSi} 515.3163$, found 515.3165.

(3S,4R,E)-1-(tert-butyldimethylsilyloxy)-8-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-

 methyloct-6-en-3-ol (9) :

To a stirred solution of $\mathbf{1 6}(7.5 \mathrm{~g}, 15.24 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}: \mathrm{pH}=7$ phospahte Buffer (20:1, 55 $\mathrm{ml})$ was added $\operatorname{DDQ}(6.9 \mathrm{~g}, 30.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring 2 h at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with EtOAc (2 x 250 $\mathrm{mL})$. The combined organic extracts were washed with water (15 mL), brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $9(5.37 \mathrm{~g}, 95 \%)$ as a clear oil. $R_{f}=0.3$ $\left(\mathrm{SiO}_{2}, 15 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=-2.0\left(c 0.7, \mathrm{CHCl}_{3}\right) ;$ IR (Neat): $v_{\max } 3509,2931,2858$, 1462, 1370, 1253, 1156, 1064, 971, 835, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.52(\mathrm{~m}$, $1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{brs}, \mathrm{OH}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.60(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (125MHz, CDCl_{3}): $\delta 132.2,126.1,108.8,75.7,75.6,68.8,63.1,38.8,36.8,35.5$, 34.6, 26.8, 25.8(3C), 25.6, 18.0, 15.1, $-5.58,-5.56$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{NaSi} 395.2588$, found 395.2591.
(R)-1-((2R,4R,5R)-5-(2-(tert-Butyldimethylsilyloxy)ethyl)-4-methyltetrahydrofuran-2-yl)-2-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol (17):

To a stirred solution of $\mathbf{9}(4.5 \mathrm{~g}, 12.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(2.6 \mathrm{~mL}$, $18.1 \mathrm{mmol})$ and $\mathrm{MsCl}(1.3 \mathrm{~mL}, 15.73 \mathrm{mmol})$ drop wise at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere and stirred at rt for 1.5 h . Then the reaction mixture was quenched with saturated aqueous
$\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 250 \mathrm{~mL}$). The combined organic extracts were washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure afforded the mesylate compound which was used directly without further purification.

The above mesylate compound was added to a solution of AD-mix- β (33.8 g) and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(2.3 \mathrm{~g}, 24.2 \mathrm{mmol})$ in t-BuOH:water (1:1, 350 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 72 h and then quenched by slow addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(34.5 \mathrm{~g}$, 181.5 mmol) and stirred for additional 0.5 h . Then the reaction mixture was diluted with water, and extracted with EtOAc ($2 \times 250 \mathrm{~mL}$).The combined organic extracts were washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 13 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $\mathbf{1 7}$ $(3.7 \mathrm{~g}, 79 \%$ over two steps $)$ as a clear oil. $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+$ 22.2 (c 0.45, CHCl_{3}); IR (Neat): $v_{\max } 3463,2955,2859,1461,1370,1253,1095,1063,834$, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ $(\mathrm{m}, 1 \mathrm{H}), 3.79-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{brs}, \mathrm{OH}), 2.37(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (dt, $J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}), 0.95$ $(\mathrm{d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 108.4,81.8,78.7$, $73.5,71.9,69.8,60.8,37.8,36.2,35.7,34.0,26.9,25.9(3 \mathrm{C}), 25.7,18.4,14.9,-5.4(2 \mathrm{C})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{NaSi} 411.2537$, found 411.2529.
tert-Butyl-(2-((2R,3R,5R)-5-((R)-1-(tert-butyldimethylsilyloxy)-2-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-3-methyltetrahydrofuran-2-yl)ethoxy)dimethylsilane (S1):

To a stirred solution of $\mathbf{1 7}(3 \mathrm{~g}, 7.73 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added 2,6-lutidine ($2.7 \mathrm{~mL}, 23.19 \mathrm{mmol}$) and TBSOTf ($2 \mathrm{~mL}, 8.5 \mathrm{mmol}$) sequentially at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 2 h of stirring at rt , the reaction mixture was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 250 \mathrm{ml}$). The organic extract was washed with saturated aqueous $\mathrm{CuSO}_{4}(15 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $\mathbf{S 1}(3.6 \mathrm{~g}, 93 \%)$ as aclear oil. $R_{f}=0.5\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc /hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}=+30.3$ (c 0.6, CHCl_{3}); IR (Neat): $v_{\max }$ 2954, 2931, 2858, 1466, 1374, 1251, 1092, 834, 776, $666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}$, $J=7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{qt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dt}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 108.5,81.6,78.2,72.5,71.7$, $70.0,61.2,37.0,35.5,35.3,34.3,27.1,26.0$ (6C), 25.8, 18.3, 18.2, 15.6, $-4.0,-4.8,-5.3$ (2C). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{NaSi}_{2} 525.3402$, found 525.3412.

2-((2R,3R,5R)-5-((R)-1-(tert-butyldimethylsilyloxy)-2-((R)-2,2-dimethyl-1,3-dioxolan-4-

 yl)ethyl)-3-methyltetrahydrofuran-2-yl)ethanol (18):

To a stirred solution of $\mathbf{S} \mathbf{1}(3 \mathrm{~g}, 5.98 \mathrm{mmol})$ in dry THF (20 mL) in a polypropylene vial, was added HF-py complex $(70 \%, 0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly raised to rt and stirred for 12 h . After completion of the reaction, it was cautiously poured into saturated aqueous NaHCO_{3} and stirred for 30 min . Then both the layers were separated, aqueous layer was further extracted with EtOAc ($2 \times 100 \mathrm{ml}$). The combined organic layers were washed with saturated aqueous $\mathrm{CuSO}_{4}(15 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$ and dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $\mathbf{1 8}(2.0 \mathrm{~g}, 86 \%$ yield $)$ as a colourless liquid. $R_{f}=0.2\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+18.7\left(c 0.65, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\text {max }}$ 3444, 2955, 2857, 1471, 1370, 1249, 1214, 1058, 836, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 108.6,82.0,81.2$, $72.5,70.7,69.9,61.8,37.1,35.6,34.8,33.0,27.0,25.9$ (3C), 25.7, 18.1, 15.2, -4.1, -4.7. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{NaSi} 411.2537$, found 411.2542.
tert-Butyl ((R)-2-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-((2R,4R,5R)-5-((Z)-3-iodoallyl)-4-methyltetrahydrofuran-2-yl)ethoxy)dimethylsilane(19):

To a stirred solution of $\mathbf{1 8}(1.8 \mathrm{~g}, 4.64 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added NaHCO_{3} $(0.37 \mathrm{~g}, 4.64 \mathrm{mmol})$ and Dess-Martin periodinane ($3 \mathrm{~g}, 6.96 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 2 h stirring at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ and extracted with EtOAc (2 x 100 $\mathrm{mL})$. The combined organic extracts were washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent furnished crude aldehyde, which was passed through a short pad of silica gel and used as such for the next reaction.

To a suspension of (iodomethyl triphenylphosphonium) iodide ($7.36 \mathrm{~g}, 13.92 \mathrm{mmol}$) in anhydrous THF (33 mL) was added NaHMDS ($13.9 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 13.92 mmol) at $0^{\circ} \mathrm{C}$ under argon atmosphere. After 15 min of stirring at $0^{\circ} \mathrm{C}$, the resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) ($2.8 \mathrm{~mL}, 23.2$
mmol) was added followed by the addition of above aldehyde in anhydrous THF (10 mL) via cannula. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and stirred at rt for 1 h and extracted with EtOAc (2 x 100 $\mathrm{mL})$. The combined organic extracts were washed with water (10 mL), brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $19(1.77 \mathrm{~g}, 75 \%$ over two steps $)$ as a viscous liquid. $R_{f}=0.6\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+15.4\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max }$ 2954, 2929, 2857, 1463, 1372, 1251, 1062, 1001, 834, 777, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.32(\mathrm{dt}, J=7.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}$, $1 \mathrm{H}), 4.04(\mathrm{dd}, J=7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dt}, J=12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{dt}, J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.68(\mathrm{ddd}, J=13.5,8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{ddd}, J=13.7,9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.33$ $(\mathrm{s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.9,108.6,83.3,81.9,79.9,72.5,71.6,70.0,37.0,36.9,35.6,35.3,27.1$, 26.0(3C), 25.8, 18.2, 15.3, -4.0, -4.7. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{INaSi}$ 533.1554, found 533.1563.

(2R,4R)-4-(tert-butyldimethylsilyloxy)-4-((2R,4R,5R)-5-((Z)-3-iodoallyl)-4-

 methyltetrahydrofuran-2-yl)butane-1,2-diol (S2):

To a stirred solution of $\mathbf{1 9}(1.4 \mathrm{~g}, 2.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ was added $\mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(1.4 \mathrm{~g}, 8.25 \mathrm{mmol})$ at $-5^{\circ} \mathrm{C}$ portion wise. After 2 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 70 \mathrm{~mL}$). The combined organic extracts were washed with brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The
residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 35 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $\mathbf{S 2}$ $(1.16 \mathrm{~g}, 90 \%)$ as a clear oil. $R_{f}=0.2\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+13.2(c \quad 0.5$, CHCl_{3}); IR (Neat): $v_{\max } 3733,3370,2928,2856,2313,1515,1463,1251,1089,835,777 \mathrm{~cm}^{-}$ ${ }^{1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.32(\mathrm{dt}, J=7.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dt}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.99-3.94 (m, 2H), 3.93-3.88(m, 2H), $3.60(\mathrm{dd}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=11.1,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dq}, J$ $=14.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.7,83.6,81.1,80.1,73.6,69.1,67.2,36.9,36.1,35.9,35.6$, 25.9(3C), 18.1, 15.4, -4.3, 4.9. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{ISi}$ 471.1422, found 471.1416 .

(6R,8R)-8-((2R,4R,5R)-5-((Z)-3-Iodoallyl)-4-methyltetrahydrofuran-2-yl)-

2,2,3,3,10,10,11,11-octamethyl-4,9-dioxa-3,10-disiladodecan-6-ol (20):

To a stirred solution of $\mathbf{S} \mathbf{2}(0.900 \mathrm{~g}, 1.91 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added Imidazole $(0.2 \mathrm{~g}, 2.87 \mathrm{mmol})$ and $\mathrm{TBSCl}(0.43 \mathrm{~g}, 2.87 \mathrm{mmol})$ sequentially at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 3 h stirring at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (5 mL) and extracted with EtOAc (2 x 100 mL). The combined organic extracts were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 7 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $20(1.05 \mathrm{~g}, 94 \%)$ as a oily liquid. $R_{f}=0.2\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc /hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}=+22.0\left(c 1.4, \mathrm{CHCl}_{3}\right) ;$ IR (Neat): $v_{\max } 2953,2928,2856,1465,1367,1252,1094,1002,837,776,672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.32(\mathrm{dt}, J=7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}$, $2 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=9.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$
(brs, OH), $2.34(\mathrm{q}, J=7.3,1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.23(\mathrm{~m}$, $2 \mathrm{H}), 0.98(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.1(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.9,83.3,81.7,80.0,72.8,68.6,67.6,36.9,36.5,35.66$, 35.64, 25.9 (3 C), 25.8 (3 C), 18.26, 18.23, 15.4, -4.1, -4.9, -5.4 (2 C). HRMS (ESI): [M + $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{IO}_{4} \mathrm{Si}_{2} 585.2290$, found 585.2288.

(6R,8R)-8-((2R,4R,5R)-5-((Z)-3-Iodoallyl)-4-methyltetrahydrofuran-2-yl)-

$\mathbf{2 , 2 , 3 , 3 , 1 0 , 1 0 , 1 1 , 1 1 - o c t a m e t h y l - 4 , 9 - d i o x a - 3 , 1 0 - d i s i l a d o d e c a n - 6 - y l ~ 2 - (d i e t h o x y p h o s p h o r y l) ~}$

 acetate (6):

To a stirred solution of $\mathbf{2 0}(0.900 \mathrm{~g}, 1.54 \mathrm{mmol})$ which was previously azeotroped with benzene, in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added diethyl phosphono acetic acid $(0.8 \mathrm{~mL}, 4.62$ $\mathrm{mmol})$ and DMAP $(0.038 \mathrm{~g}, 0.308 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After 10 min stirring at $0^{\circ} \mathrm{C}$, EDCI $(0.9 \mathrm{~g}, 4.62 \mathrm{mmol})$ was added to it and stirred at rt for another 4 h . Then water was added and extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $6(1.1 \mathrm{~g}, 94 \%)$ as a yellow oil. $R_{f}=0.2\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+24.8(c$ $0.45, \mathrm{CHCl}_{3}$); IR (Neat): $v_{\max } 2927,2856,1737,1465,1391,1259,1102,1053,1027,970$, $838,778,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.31$ (dt, $J=7.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.25 (dt, J $=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.65$ (qd, $J=10.7,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.01$ (m, 1H), $1.79(\mathrm{ddd}, J=14.3,9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{ddd}, J=14.2,9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{td}$,
$J=7.0,2.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06$ $(\mathrm{s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3,138.9$, $83.3,81.6,80.0,73.3,70.9,64.3,62.63,62.60,37.0,35.4,35.2,34.9,34.3,33.8,25.9(3 \mathrm{C})$, 25.8(3C), 18.2, 18.17, 16.4, 15.4, -4.0, $-4.9,-5.4(2 \mathrm{C})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{30} \mathrm{H}_{60} \mathrm{INaO}_{8} \mathrm{PSi}_{2} 785.2501$, found 785.2492.

(4S,6R)-7-(tert-butyldiphenylsilyloxy)-6-Methylhept-1-en-4-ol (21):

Ozone was bubbled through a stirred solution of $\mathbf{1 1}(5.7 \mathrm{~g}, 16.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until a light blue colour persisted. After 3 h the reaction was complete, Ar was bubbled through the solution until it became colourless. Dimethyl sulfide ($12.4 \mathrm{~mL}, 420.5$ mmol) was added via syringe at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to slowly warm to room temperature. Solvent was removed under vacuo and the residue was purified by flash column chromatography afforded aldehyde which was used directly in the next step.

To a stirred solution of $(-)-\operatorname{Ipc}_{2} \operatorname{BOMe}(7.98 \mathrm{~g}, 25.23 \mathrm{mmol})$ in diethyl ether $(60 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added allylmagnesium bromide (1 M in diethyl ether, $23.5 \mathrm{~mL}, 23.5$ mmol).This resultant mixture allowed to room temperature over 1 h before it was cooled back to $-78{ }^{\circ} \mathrm{C}$. To this mixture, was added a solution of above aldehyde in diethyl ether (15 mL). The resultant mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 8 h . To this mixture was added a premixed solution of 10% aqueous $\mathrm{NaOH}(30 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(60 \mathrm{~mL})$. After being stirred at room temperature overnight, the resultant mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 300 \mathrm{~mL}$). The combined organic extracts were washed with brine $(50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 6 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $21(4.5 \mathrm{~g}, 70 \%$ two steps $)$ as a oily liquid. $R_{f}=0.4\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc /hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}=+8.6\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max } 3396,2363,1641,1107,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69-7.65(\mathrm{~m}, 4 \mathrm{H})$,
7.45-7.36 (m, 6H), $5.84(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}$, 2H), 2.45 (brs, OH), $2.29-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.36$ (dddd, J $=14.2,7.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 135.6$ (4C), 135.0 (2C), 133.5, 129.6 (2C), 127.6 (4C), 117.6, 69.8, 69.0, 42.6, 41.7, 33.3, 26.8 (3C), 19.2, 17.2. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa} 405.2225$, found 405.2228 .
(4S,6R)-7-(tert-butyldiphenylsilyloxy)-6-methylhept-1-en-4-yl 3-(4-methoxybenzyloxy) propanoate (10):

To a stirred solution of alcohol $21(4 \mathrm{~g}, 10.47 \mathrm{mmol})$ and acid $22(4.1 \mathrm{~g}, 20.94 \mathrm{mmol})$ previously azeotroped with dry benzene (3 times), in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added DCC $(4.3 \mathrm{~g}, 20.94 \mathrm{mmol})$ followed by $\operatorname{DMAP}(0.3 \mathrm{~g}, 2.09 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring for 12 h at room temperature, then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the solution was kept stirring for another 10 min . Hexanes $(200 \mathrm{~mL})$ was added and the white precipitate was filtered off and the precipitate was washed with hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1,150 \mathrm{~mL})$. The filtrate was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 6 \%\right.$ EtOAc/hexanes) to afford $10(5.7 \mathrm{~g}, 95 \%)$ as a colour less oil. $R_{f}=0.5\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$ $/$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+15.6\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max }$ 2957, 2932, 2858, 1732, 1612, 1427, 1247, 1181, 1108, 1036, 822, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.64(\mathrm{~m}$, 4H), 7.45-7.36 (m, 6H), $7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H})$, 5.11-5.02 (m, 3H), $4.45(\mathrm{ABq}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-$ $3.44(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2,159.2,135.6$
(4C), 133.9, 133.6 (2C), 130.2, 129.5 (2C), 129.2 (2C), 127.6 (4C), 117.6, 113.7 (2C), 72.7, $71.3,69.2,65.5,55.2,39.5,37.4,35.4,32.2,26.9$ (3C), 19.3, 16.3. HRMS (ESI): $[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{Si}$ 575.3187, found 575.3182.

(2R,4S,6S)-2-((R)-3-(tert-butyldiphenylsilyloxy)-2-methylpropyl)-6-(2-(4-

 methoxybenzyloxy)ethyl)tetrahydro-2H-pyran-4-ol (23):

To a stirred solution of ester $\mathbf{1 0}(5 \mathrm{~g}, 8.71 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added DIBAL-H (1 M in toluene, $17.5 \mathrm{~mL}, 17.4 \mathrm{mmol}$) dropwise via syringe at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 45 min , the reaction was treated sequentially with pyridine $(2.2 \mathrm{~mL}, 26.1 \mathrm{mmol})$ dropwise via syringe, a solution of DMAP ($2.12 \mathrm{~g}, 17.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ dropwise via cannula, and acetic anhydride ($4.9 \mathrm{~mL}, 52.2 \mathrm{mmol}$) dropwise via syringe. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 14 h , then warmed to $0^{\circ} \mathrm{C}$ and stirred for an additional 30 min and then the reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and saturated aqueous sodium potassium tartrate $(15 \mathrm{~mL})$. The mixture was warmed to rt and stirred vigorously for 30 min and extracted with EtOAc ($2 \times 250 \mathrm{~mL}$). The combined organic extracts were washed with ice cooled 1 M sodium bisulfate ($2 \times 30 \mathrm{~mL}$), saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$, and brine $(15 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo afforded the crude α-acetoxy ether which was used directly in the next reaction.

To a stirred solution of α-acetoxy ether in dry hexanes $(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ acetic acid $(2.5 \mathrm{~mL}$, $43.5 \mathrm{mmol}, 5$ equiv) was added followed by dropwise addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.15 \mathrm{~mL}, 0.871$ mmol, 0.1 equiv). After 2 h , the reaction was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc ($2 \times 200 \mathrm{~mL}$). The combined organic extracts were washed with brine
$(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The crude material was then dissolved in 25 mL methanol and potassium carbonate ($2.4 \mathrm{~g}, 17.4 \mathrm{mmol}, 2 \mathrm{eq}$) was added. The mixture was stirred for 3 h and then concentrated in vacuo. Water 5 mL was added to the reaction mixture and extracted with EtOAc ($2 \times 250 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $\mathbf{2 3}$ $(2.0 \mathrm{~g}, 40 \%$ over three steps $)$ as a colour less oil. $R_{f}=0.3\left(\mathrm{SiO}_{2}, 30 \%\right.$ EtOAc $/$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}$ $=-4.5\left(c 1.1, \mathrm{CHCl}_{3}\right) ;$ IR (Neat): $v_{\max } 3378,2930,2857,1612,1510,1247,1106,819,742$, $702,613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.49$ $(\mathrm{m}, 3 \mathrm{H}), 3.46-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.1,135.6(4 \mathrm{C}), 134.0,133.9,130.6,129.5$ (2C), 129.2 (2C), 127.5 (4C), 113.7 (2C), 73.0, 72.7, 72.3, 69.2, 68.3, 66.5, 55.2, 41.8, 41.3, 39.6, 36.2, 32.1, 26.9(3C), 19.3, 16.6. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{NaSi} 599.3163$, found 599.3173.

tert-Butyl((R)-3-((2R,4S,6S)-4-(tert-butyldimethylsilyloxy)-6-(2-(4-

methoxybenzyloxy)ethyl)tetrahydro-2H-pyran-2-yl)-2-methylpropoxy)diphenylsilane (S3):

To a stirred solution of $\mathbf{2 3}(1.8 \mathrm{~g}, 3.13 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added 2,6-lutidine $(1 \mathrm{~mL}, 9.39 \mathrm{mmol})$ and $\operatorname{TBSOTf}(0.8 \mathrm{~mL}, 3.44 \mathrm{mmol})$ sequentially at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 1 h stirring at rt , the reaction mixture was quenched with saturated aqueous
$\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ solution and extracted with EtOAc (2 x 50 mL). The combined organic extracts were washed with saturated aqueous $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc} /\right.$ hexanes $)$ to afford $\mathbf{S 3}(2.0 \mathrm{~g}, 92 \%)$ as a clear oil. $R_{f}=0.4$ $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=-7.7\left(c 1.75, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max }$ 2931, 2857, 1612, 1512,1366, 1249, 1084, 834, 777, 702, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.65$ (m, 4H), 7.43-7.35 (m, 6H), $7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H})$, 3.79-3.70 (m, 2H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H})$, $1.81-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 159.1$, 135.6 (4C), 134.0, 133.9, 130.6, 129.4 (2C), 129.2 (2C), 127.5 (4C), 113.7 (2C), 73.0, 72.8, 72.2, 69.3, 68.9, 66.6, 55.2, 42.4, 41.9, 39.6, 36.3, 32.1, 26.9 (3C), 25.8 (3C), 19.3, 18.1, 16.5, -4.53, -4.51. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{NaSi}_{2} 713.4028$, found 713.4035.

(R)-3-((2R,4S,6S)-4-(tert-butyldimethylsilyloxy)-6-(2-(4-

 methoxybenzyloxy)ethyl)tetrahydro-2H-pyran-2-yl)-2-methylpropan-1-ol (24):

To the stirred solution of $\mathbf{S 3}(1.8 \mathrm{~g}, 2.6 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ and water (1 mL) was added 18-crown-6 ($8.9 \mathrm{~g}, 33.8 \mathrm{mmol}$) and $\mathrm{KOH}(7.4 \mathrm{~g}, 130 \mathrm{mmol})$. After 2 h stirring at rt , the reaction mixture was quenched with water (5 mL) and extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic extract were washed with brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 15 \%\right.$ EtOAc/hexanes) to afford $24(0.99 \mathrm{~g}, 84 \%)$ as a yellow liquid. $R_{f}=0.3\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$
$/$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+5.6\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max } 3565,2922,2853,1728,1512,1374$, $1250,1074,837,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.53-$ $3.47(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{ddd}, J=14.6,5.9$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,130.6,129.3$ (2C), 113.7 (2C), $74.8,72.8,72.7,68.6,68.3,66.2,55.2$, $42.5,41.5,41.0,36.1,34.2,25.8$ (3C), 18.1, 17.9, $-4.53,-4.55$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{NaSi} 475.2850$, found 475.2840 .

tert-Butyl((2S,4S,6R)-2-(2-(4-methoxybenzyloxy)ethyl)-6-((R)-2-methylbut-3-

 enyl)tetrahydro-2H-pyran-4-yloxy)dimethylsilane (26):

To a stirred solution of $\mathbf{2 4}(0.800 \mathrm{~g}, 1.77 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added NaHCO_{3} $(0.145 \mathrm{~g}, 1.77 \mathrm{mmol})$ and Dess Martin periodinane $(1.12 \mathrm{~g}, 2.65 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 2 h stirring at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc (2 x 100 mL$)$. The combined organic extracts were washed with water (5 mL) and brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo and the residue was purified by flash column chromatography afforded aldehyde which was used directly in the next step.

To a stirred solution of sulfone $25(1.2 \mathrm{~g}, 5.31 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added NaHMDS ($3.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 3.54 mmol) under argon atmosphere. After 30 minutes the crude aldehyde in THF (10 mL) was added at $-78^{\circ} \mathrm{C}$ to the reaction mixture via cannula. The reaction mixture was gradually warmed to room temperature and stirred for 12 h . Then the reaction was quenched with water (5 mL) and extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The
combined organic extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 4 \%\right.$ EtOAc/hexanes) to afford $26(0.64 \mathrm{~g}, 80 \%$ over two steps $)$ as yellow oil. $R_{f}=0.5\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc /hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}=-11.7\left(c 0.45, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max } 2928,2856,1513,1462$, 1360, 1248, 1076, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}$, 1H), $3.59(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-$ $1.71(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,144.6,130.6,129.2(2 \mathrm{C}), 113.7(2 \mathrm{C}), 112.1,73.2$, 72.7, 72.3, 68.9, 66.5, 55.2, 42.5, 41.88, 41.84, 36.2, 33.8, 25.8 (3C), 19.4, 18.1, -4.5 (2C). HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{NaSi} 471.2901$, found 471.2913.

2-((2S,4S,6R)-4-(tert-Butyldimethylsilyloxy)-6-((R)-2-methylbut-3-enyl)tetrahydro-2H-

 pyran-2-yl)ethanol (27):

To a stirred solution of $\mathbf{2 6}(0.600 \mathrm{~g}, 1.34 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}: \mathrm{pH}=7$ phospahte buffer (20:1, 8 $\mathrm{mL})$ was added DDQ $(0.6 \mathrm{~g}, 2.68 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring 2 h at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with EtOAc (2×50 $\mathrm{mL})$. The combined organic extracts were washed with water (5 mL), brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 7 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $27(0.4 \mathrm{~g}, 91 \%)$ as a clear oil.
$R_{f}=0.3\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc /hexanes $) ;[\alpha]_{\mathrm{D}}^{25}=-4.3\left(c 1.6, \mathrm{CHCl}_{3}\right)$; IR (Neat): $v_{\max } 3398$, 3077, 2928, 2856, 1464, 1374, 1253, 1075, 911, 839, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.70(\mathrm{ddd}, J=17.3,10.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.88(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H})$,
$3.35(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{brs}, \mathrm{OH}), 2.28(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.15(\mathrm{~m}, 3 \mathrm{H})$, $1.0(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.2$, $112.5,76.1,73.9,68.5,61.5,42.5,41.7,41.5,37.7,34.3,25.8(3 \mathrm{C}), 19.9,18.1,-4.55,-4.57$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}$ 329.2506, found 329.2505.
$(E)-((6 R, 8 R)-8-((2 R, 4 R, 5 R)-5-((Z)-3-i o d o a l l y l)-4-m e t h y l t e t r a h y d r o f u r a n-2-y l)-$ $\mathbf{2 , 2 , 3 , 3 , 1 0 , 1 0 , 1 1 , 1 1 - o c t a m e t h y l - 4 , 9 - d i o x a - 3 , 1 0 - d i s i l a d o d e c a n - 6 - y l)} \quad 4-((2 S, 4 R, 6 R)-4-(4-$ methoxybenzyloxy)-6-((R)-2-methylbut-3-enyl)tetrahydro-2H-pyran-2-yl)but-2-enoate (28):

To a stirred solution of $27(0.200 \mathrm{~g}, 0.609 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added NaHCO_{3} $(0.049 \mathrm{~g}, 0.609 \mathrm{mmol})$ and Dess Martin periodinane $(0.39 \mathrm{~g}, 0.913 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 2 h stirring at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 40 \mathrm{~mL}$). The combined organic extract were washed with water (5 mL), brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo and the residue was purified by flash column chromatography afforded aldehyde which was used directly in the next step.

DBU ($0.1 \mathrm{~mL}, 0.609 \mathrm{mmol}$) was added to a mixture of compound $6(0.56 \mathrm{~g}, 0.73 \mathrm{mmol})$ and $\mathrm{LiCl}(0.05 \mathrm{~g}, 1.218 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at room temperature for 15 min , the mixture was again cooled to $0^{\circ} \mathrm{C}$ before a solution of aldehyde $7 \mathrm{in} \mathrm{MeCN}(5 \mathrm{~mL})$ was added dropwise. After stirring at room temperature for 12 h , the reaction mixture was quenched by addition of water and extracted with EtOAc (2×40
$\mathrm{mL})$. The combined organic extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, 60-120 mesh, 3% EtOAc/hexane) to afford $28(0.44 \mathrm{~g}, 77 \%$ two steps $)$ as a colorless oil. $R_{f}=$ $0.5\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc} /\right.$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+17.5$ (c 0.4, CHCl_{3}); IR (Neat): $v_{\max } 2927,2856$, $1722,1464,1370,1254,1174,1076,998,837,776,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $6.96(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dt}, J=7.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.87(\mathrm{dt}, J=15.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddd}, J=17.5,10.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 4.97-$ $4.88(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.67(\mathrm{~m}, 5 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.29 (m, 3H), 2.26-2.22 (m, 2H), 2.01 (m, 1H), 1.88-1.74 (m, 2H), 1.70-1.60 (m, 3H), $1.34-1.13(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,145.3,144.4,138.9,123.3,112.4,83.3,81.7$, 80.0, 74.1, 73.5, 71.7, 71.1, 68.7, 64.5, 42.4, 41.4, 41.3, 38.8, 37.0, 35.5, 35.2, 34.3, 34.0, 26.0(3C), 25.8(6C), 19.9, 18.2, 18.1, 18.0, 15.3, $-4.0,-4.50,-4.53,-4.9,-5.3(2 \mathrm{C})$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{44} \mathrm{H}_{83} \mathrm{O}_{7} \mathrm{INaSi}_{3} 957.4383$, found 957.4383.
($1 R, 3 R, 4 E, 6 Z, 9 R, 10 R, 12 R, 13 R, 15 R, 18 E, 21 S, 23 R)-13,23-b i s((t e r t-b u t y l d i m e t h y l s i l y l) o x y)-$ 15-(((tert-butyldimethylsilyl)oxy)methyl)-3,10-dimethyl-16,25,26-

trioxatricyclo[19.3.1.19,12]hexacosa-4,6,18-trien-17-one (29):

To a stirred solution of vinyl iodide $28(0.100 \mathrm{~g}, 0.107 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.06 \mathrm{~g}, 0.182 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.03 \mathrm{~mL}, 0.128 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.034 \mathrm{~g}, 0.161$
mmol) at rt under argon atmosphere. After stirring 2 days at rt , the reaction mixture was quenched with water and extracted with EtOAc ($2 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuo. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 60-120$ mesh, $3.5 \% \mathrm{EtOAc} /$ hexane $)$ to afford $29(0.05 \mathrm{~g}, 58 \%)$ as a colourless oil. $R_{f}=0.35\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc $/$ hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=$ - 4.5 (c 0.5, CHCl_{3}); IR (Neat): $v_{\max }$ 2929, 2857, 1729, 1465, 1370, 1254, 1174, 1090, 838, $776,621 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.0(\mathrm{ddd}, J=15.7,8.8,4.7 \mathrm{~Hz} 1 \mathrm{H}), 6.32(\mathrm{dd}, J$ $=15.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=15.1$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.66(\mathrm{~m}, 5 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.32$ $(\mathrm{m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.03$ $(\mathrm{s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.2, $144.9,140.9,130.4,127.3,124.1,123.3,82.1,81.2,73.2,72.5,71.3(2 \mathrm{C}), 68.8,64.5,43.2$, $42.1,40.8,37.9,35.9,35.3,34.2,32.5,30.7,26.1(3 \mathrm{C}), 25.8(6 \mathrm{C}), 19.7,18.22,18.2,18.1$, 14.9, $-3.9,-4.5(2 \mathrm{C}),-5.27,-5.3,-5.4$. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{44} \mathrm{H}_{82} \mathrm{O}_{7} \mathrm{NaSi}_{3}$ 829.5260 , found 829.5264 .
($1 R, 3 R, 4 E, 6 Z, 9 R, 10 R, 12 R, 13 R, 15 R, 18 E, 21 S, 23 R)$-13,23-dihydroxy-15-(hydroxymethyl)-3,10-dimethyl-16,25,26-trioxatricyclo[19.3.1.19,12]hexacosa-4,6,18-trien-17-one (5):

To a stirred solution of $29(0.03 \mathrm{~g}, 0.037 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ in a polypropylene vial, was added HF-py complex $(70 \%, 0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly raised to rt and stirred for 36 h . After completion of the reaction, it was cautiously poured into saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and stirred for 30 min . Then both the layers were separated, aqueous layer was further extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{CuSO}_{4}(5 \mathrm{~mL})$, water $(5 \mathrm{~mL})$, brine (5 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 6 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ to afford $\mathbf{5}(15 \mathrm{mg}, 87 \%$ yield $)$ as a colorless semi solid. $R_{f}=0.3\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{27}=-6.0(c 0.6, \mathrm{EtOAc})$; IR (Neat): $v_{\max } 3441,3368,3267,2923,2854,1741,1711,1459,1176,1048,953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data : See table 1. HRMS (ESI): $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{~N}$ 482.3112 , found 482.3127 .

Table 1: Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of Mandelalide A (Isolation), synthetic Mandelalide A (Fürstner et al) and Compound 5

Assign ment	Mandelalide $\mathrm{A}\left(\mathrm{CDCl}_{3}\right)$ (Isolation)		Mandelalide A (Fürstner et al)		Compound 5	
	$\delta_{\text {c }}$ in ppm	δ_{H} in ppm, J in Hz	$\delta_{\text {c }}$ in ppm	δ_{H} in ppm, J in Hz	$\delta_{\text {c }}$ in ppm	δ_{H} in ppm, J in Hz
1	167.4	--	167.3	--	167.1	--
2	123.1	6.01 (dd, 15.5, 1.2)	123.1	5.92 (dt, 15.6, 1.5)	122.5	5.95 (dt, 15.5, 1.4)
3	147.1	6.97 (ddd, 15.2, 10.4, 4.6)	146.3	7.02 (ddd, 15.5, 8.6, 5.5)	146.3	7.07 (ddd, 15.5, 8.5, 5.5)
4a	38.8	2.36 (m)	38.5	2.34 (ddd, 15.2, 6.5, 5.6, 1.8)	37.9	2.38 (dddq, 15.2, 7.0, 5.9, 1.6)
4b	--	2.39 (ddd, 11.4, 10.6, 10.6)	--	2.46 (dddd, 15.2, 8.6, 3.7, 1.2)		2.49 (dddq, 15.2, 8.5, 3.7, 1.0)
5	73.9	3.36 (dddd, 11.4, 11.4, 2.3, 2.3)	73.4	3.42 (m)	73.1	3.45 (m)
6ax	37.6	1.20 (m)	36.7	1.26 (m)	40.2	1.32 (m)
6 eq	--	2.02 (dddd, 12.6, 4.4, 2.3, 1.6)	--	1.94 (ddt, 12.0, 4.6, 1.9)		1.92 (ddt, 11.9, 4.5, 1.8)
7	73.1	3.82 (dddd, 11.1, 10.5, 4.4, 4.4)	72.8	3.77 (m)	68.0	3.80(m)
8 ax	39.7	1.22 (m)	39.3	1.22 (m)	41.1	1.13 (dt, 12.2, 11.1)
8 eq	--	1.87 (m)	--	1.84 (dddd, 12.5, 4.2, 1.9, 1.9)		1.88 (ddt, 12.2, 4.3, 1.9)
9	72.5	3.32 (dddd, 11.2, 11.2, 2.2, 2.2)	73.1	3.33 (m)	72.5	3.34 (m)
10a	43.1	1.21 (ddd, 15.2, 9.6, 2.2)	42.9	1.27 (m)	42.4	1.30 (m)
10b	--	1.51 (ddd, 15.2, 11.2, 3.7)	--	1.69 (ddd, 14.1, 9.1, 5.1)		1.72 (ddd, 14.1, 9.1, 5.0)
11	34.2	2.37 (dqd, 9.6, 6.5, 3.7)	32.8	2.44 (m)	32.2	2.47 (m)
12	141.5	5.45 (dd, 14.8, 9.7)	140.9	5.61 (dd, 15.2, 7.6)	140.4	5.64 (dd, 15.3, 7.5)
13	123.9	6.28 (dd, 14.8, 11.0)	123.8	6.22 (ddt, 15.2, 10.8, 1.0)	123.4	6.25 (ddt, 15.3, 10.8, 1.0)
14	131.3	6.05 (dd, 10.9, 10.9)	130.5	6.01 (tt, 10.8, 1.8)	130.1	6.02 (tt, 10.8, 1.5)
15	126.9	5.28 (ddd, 10.8, 10.8, 5.6)	126.5	5.27 (ddd, 10.8, 8.3, 7.5)	126.1	5.29 (m)
16a	31.1	1.88 (m)	31.2	2.14 (dddd, 14.8, 6.8, 5.1, 1.9)	30.7	2.15 (dddd, 14.6, 6.7, 5.2, 1.8)
16b	--	2.28 (ddd, 13.1, 11.4, 11.4)	--	2.29 (dtd, 14.8, 8.5, 1.6)		2.32 (dtd, 14.6, 8.6, 1.6)
17	81.0	3.98 (ddd, 11.1, 8.1, 1.8)	81.3	4.03 (ddd, 8.6, 7.2, 4.9)	80.9	4.05 (ddd, $8.5,7.4,5.1)$
18	37.3	2.52 (dddq, 12.0, 7.0, 7.0, 7.0)	37.1	2.43 (m)	36.6	2.45 (m)
19a	36.8	1.17 (ddd, 11.9, 11.9, 10.3)	36.0	1.28 (m)	35.5	1.29 (m)
19b	--	2.01 (ddd, 12.2, 7.0, 5.6)	--	2.04 (dt, 12.3, 6.7)		2.06 (dt, 12.3, 6.7)
20	83.2	3.63 (m)	82.7	3.71 (ddd, 8.4, 8.2, 6.7)	82.2	3.73 (ddd, 8.7, 8.2, 6.5)
21	73.0	3.42 (ddd, 11.1, 8.8, 1.8)	73.4	3.45 (m)	72.0	3.46 (m)
22a	34.1	1.46 (ddd, 14.1, 11.1, 1.9)	34.1	1.54 (ddd, 14.4, 10.5, 2.5)	33.6	1.55 (m)
22b	--	1.76 (ddd, 13.9, 11.7, 1.8)	--	1.77 (ddd, 14.4, 10.8, 2.0)		1.80 (ddd, 14.4, 10.7, 2.2)
23	72.3	5.23 (dddd, 11.7, 4.9, 2.9, 1.9)	72.5	5.24 (m)	72.0	5.27 (m)
24a	66.1	3.61 (m)	65.7	3.65 (m)	65.3	3.67 (m)
24b	--	3.81 (dd, 12.2, 2.9)	--	3.78 (dd, 12.1, 3.3)		3.81 (m)
25	18.3	0.85 (d, 6.6)	20.1	1.00 (d, 6.7)	19.6	1.02 (d, 6.7)
26	14.5	1.03 (d, 6.9)	14.7	0.98 (d, 7.0)	14.3	0.99 (d, 7.0)

Spectral data:

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(\mathrm{CDCl}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{S} 2\left(\mathrm{CDCl}_{\mathbf{3}}, \mathbf{1 2 5} \mathbf{~ M H z}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$

2D DQCOSY (Double Quantum Coherence Spectroscopy) spectrum of compound 5 recorded on 700 MHz at $25^{\circ} \mathrm{C}$ in CDCl_{3}.

2D NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of compound 5 recorded on 700 MHz at $25^{\circ} \mathrm{C}$ in CDCl_{3}.

2D ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC (Heteronuclear Single Quantum Coherence Spectroscopy) spectrum of compound 5 recorded on 700 MHz at $25^{\circ} \mathrm{C}$ in CDCl_{3}.

