Supporting Information

Monopicolinate Cross-bridged Cyclam Combining
 Very Fast Complexation with Very High Stability and Inertness of its Copper(II) Complex

Luis M. P. Lima ${ }^{\dagger}$ Zakaria Halime, ${ }^{\dagger}$ Ronan Marion, ${ }^{\dagger}$ Nathalie Camus, ${ }^{\dagger}$ Rita Delgado, ${ }^{*}{ }^{\dagger}$ Carlos Platas-Iglesias, ${ }^{\S}$ and Raphaël Tripier $*{ }^{*} \dagger$
${ }^{\dagger}$ Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal. ${ }^{\dagger}$ Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France. ${ }^{\S}$ Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain.

Summary

Figure S1. "Ball and stick" view of $[\mathrm{Cu}(\mathbf{c b}-\mathbf{t e 1} \mathbf{1 p a})]\left(\mathrm{ClO}_{4}\right)_{2}$. Perchlorate anions and water molecules are omitted for clarity.

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the metal coordination environments in $[\mathrm{Cu}(\mathbf{c b}-\mathrm{te} 1 \mathrm{pa})]\left(\mathrm{ClO}_{4}\right)_{2}$. See Figure 2 for labeling.

Figure S2. ${ }^{1} \mathrm{H}$ NMR titration of Hcb-te1pa in $\mathrm{D}_{2} \mathrm{O}$ solution, showing only the resonances arising from the pendant arm for simplicity.

Figure S3. Speciation diagrams of Cu^{2+} (left) and Zn^{2+} (right) in presence of Hcb-te1pa at $\mathrm{C}_{\mathrm{M}^{2+}}=\mathrm{C}_{\text {Heb-telpa }}=10^{-3} \mathrm{M}$.

Figure S4. UV and vis-NIR spectra of the copper(II) complex of Hcb-te1pa in aqueous solution.

Figure S5. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra at variable temperature (5, 15, 25, 40,55 and $70{ }^{\circ} \mathrm{C}$ from bottom to top) of the $[\mathrm{Zn}(\mathbf{c b - t e 1 p a})]^{+}$complex in $\mathrm{D}_{2} \mathrm{O}$ at $\mathrm{pD}=6.8$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra at variable temperature (5, 15, 25, 40,55 and $70{ }^{\circ} \mathrm{C}$ from bottom to top) of the $[\mathrm{Zn}(\mathbf{c b}-\text { te1pa })]^{+}$complex in $\mathrm{D}_{2} \mathrm{O}$ at $\mathrm{pD}=6.8$.

Figure S7. Time course of the copper(II) complexation by Hcb-te1pa in equimolar amount at $\mathrm{C}_{\mathrm{M}^{2+}}=\mathrm{C}_{\mathrm{Hcb-telpa}}=0.8 \mathrm{mM}$) and $\mathrm{pH}=5$ in acetate buffer, as followed by the increasing complex absorbance band at 600 nm .

Figure S8. Arrhenius plot for the acid-assisted dissociation of the copper(II) complex of Hcb-te1pa in 5 M HCl aqueous solutions.

Table S2. Optimized Cartesian coordinates obtained with DFT calculations for $[\mathrm{Cu}(\mathbf{c b}-\mathrm{te} 1 \mathrm{pa})]^{2+}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(298 \mathrm{~K}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3 .
Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum ($298 \mathrm{~K}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3.
Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum ($298 \mathrm{~K}, 300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of compound Heb-te1pa
Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum ($298 \mathrm{~K}, 75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of compound Heb-te1pa.
Figure S13. Elementary analysis of compound 3 and Heb-te1pa
Figure S14. HR-MS spectra the copper(II) complex of cb-te1pa.

Figure S1. "Ball and stick" view of $[\mathrm{Cu}(\mathbf{c b}-\mathrm{te} 1 \mathbf{p a})]\left(\mathrm{ClO}_{4}\right)_{2}$. Perchlorate anions and water molecules are omitted for clarity.

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the metal coordination environments in $[\mathrm{Cu}(\mathbf{c b}-\mathbf{t e 1} \mathbf{p a})]\left(\mathrm{ClO}_{4}\right)_{2}$. See Figure S 1 for labeling.

$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.010(6)$	$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{N}(5)$	$102.1(2)$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2.138(6)$	$\mathrm{N}(5)-\mathrm{Cu}(1)-\mathrm{N}(5)$	$80.4(2)$
$\mathrm{Cu}(1)-\mathrm{N}(3)$	$1.966(6)$	$\mathrm{N}(4)-\mathrm{Cu}(1)-\mathrm{N}(5)$	$127.7(2)$
$\mathrm{Cu}(1)-\mathrm{N}(4)$	$2.108(6)$	$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$90.7(2)$
$\mathrm{Cu}(1)-\mathrm{N}(5)$	$2.113(6)$	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$85.1(2)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$175.4(3)$	$\mathrm{N}(4)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$86.2(2)$
$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{N}(4)$	$87.4(2)$	$\mathrm{N}(5)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$143.7(2)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(4)$	$94.1(2)$		

X-ray diffraction determination of $[\mathrm{Cu}(\mathbf{c b - t e 1 p a})]\left(\mathrm{ClO}_{4}\right)_{2}$:
Single crystals of the complex of Hcb-te1pa with Cu^{2+} were obtained by slow evaporation of a concentrated aqueous solution at neutral pH . Crystals were found to be composed of the $[\mathrm{Cu}(\mathbf{c b}-\text { te1pa })]^{2+}$ cation, two perchlorate anions, and water molecules. A view of the structure of the complex cation is shown in Figure S1, while bond distances and angles of the metal coordination environment are given in Table S1.

The metal ion in $[\mathrm{Cu}(\mathbf{c b}-\mathbf{t e 1} \mathbf{p a})]^{2+}$ is five coordinated, being directly bound to the four nitrogen atoms of the macrocyclic unit and the nitrogen atom of the pyridyl group. The distance between the metal atom and the oxygen atom of the carboxylic group $\mathrm{O}(1)$ [3.16 \AA]
is too long to be considered as a bond distance. The coordination polyhedron around the copper center can be defined as a trigonal bipyramid, in which the equatorial plane is defined by the N atoms of the cyclam fragment N 2 and N 4 , the nitrogen atom of the pyridyl unit N 5 and the metal ion, and the apical positions are defined by donor atoms N1 and N3. Alternatively, the coordination polyhedron may be defined as square pyramidal, where the basal plane is formed by $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 3$ and N 5 , and the apical position is defined by N4. The index of trigonality τ is calculated to be 0.53 , which points to a distorted coordination polyhedron that is halfway between the two ideal geometries ($\tau=0$ for a perfect squarepyramidal geometry and $\tau=1$ for an ideal trigonal-bipyramidal geometry). ${ }^{1}$

The cyclam unit presents a cis-V-folded coordination configuration ${ }^{2}$ that provides four convergent nitrogen donor atoms for Cu^{2+} coordination. The bicyclo[6.6.2] ligand backbone shows a [2323]/[2323] conformation, ${ }^{3}$ as often observed in structures of Cu^{2+} complexes of cross-bridged cyclam derivatives. Interestingly, the diprotonated form of the ligand adopts the same conformation. An intramolecular hydrogen bonding interaction exists between the NH group of the macrocyclic fragment and one of the oxygen atoms of the carboxylate function $\left(\mathrm{N}(3) \cdots \mathrm{O}(1) 2.808(7) \AA, \mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(1) 2.16 \AA, \mathrm{~N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(1) 126.0^{\circ} ; \mathrm{N}(3) \cdots \mathrm{O}(1)\right.$ $\left.2.814(3) \AA, \mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(1) 2.16 \AA, \mathrm{~N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(1) 126.9^{\circ}\right)$, which results in the formation of a macrotricyclic-like structure due to the formation of a third pseudomacrocycle.

In $[\mathrm{Cu}(\mathbf{c b}-t e 1 \mathbf{p a})]^{+}$the donor atom of the macrocyclic fragment N 3 provides the strongest interaction with the copper center, with bond distance of $1.97 \AA$, the other $\mathrm{Cu}-\mathrm{N}$ distances in the range $2.01-2.14 \AA$. These bond distances are shorter than those observed for $[\mathrm{Cu}(\mathbf{t e} \mathbf{1 p a})]^{+}$ $(2.00-2.35 \AA$) related five-coordinated copper(II) complexes with cyclam-based ligand lacking the cross-bridge unit, ${ }^{4}$ which points to a particularly strong interaction of the cb-te1 $\mathbf{p a}^{-}$ligand with Cu^{2+}.

Figure S2. ${ }^{1} \mathrm{H}$ NMR titration of Hcb-te1pa in $\mathrm{D}_{2} \mathrm{O}$ solution and the corresponding resonance labeling, showing only the resonances arising from the pendant arm for simplicity. Aromatic protons are labeled 1,2 and 3, while non-equivalent methylene protons are labeled 4 a and 4 b .

Figure S3. Speciation diagrams of Hcb-te1pa ligand in presence of Cu^{2+} (left) and Zn^{2+}. (right) in aqueous solution at $\mathrm{C}_{\mathrm{M}^{2+}}=\mathrm{C}_{\mathrm{Hcb} \text {-telpa }}=10^{-3} \mathrm{M}$.

Figure S4. UV (left) and vis-NIR (right) spectra of the copper(II) complex of Heb-te1pa in aqueous solution at $\mathrm{pH}=7.5$ and RT .

Figure S5. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra at variable temperature (5, 15, 25, 40,55 and $70{ }^{\circ} \mathrm{C}$ from bottom to top) of the $[\mathrm{Zn}(\text { cb-te1pa })]^{+}$complex in $\mathrm{D}_{2} \mathrm{O}$ at $\mathrm{pD}=6.8$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra at variable temperature $\left(5,15,25,40,55\right.$ and $70{ }^{\circ} \mathrm{C}$ from bottom to top) of the $[\mathrm{Zn}(\mathbf{c b - t e} 1 \mathbf{p a})]^{+}$complex in $\mathrm{D}_{2} \mathrm{O}$ at $\mathrm{pD}=6.8$.

Figure S7. Time course of the copper(II) complexation by Heb-te1pa in equimolar amount at $\mathrm{C}_{\mathrm{M}^{2+}}=\mathrm{C}_{\text {Hcb-te1pa }}=0.8 \mathrm{mM}$) and $\mathrm{pH}=5$ in acetate buffer, as followed by the increasing complex absorbance band at 600 nm .

Figure S8. Arrhenius plot for the acid-assisted dissociation of the copper(II) complex of Heb-te1pa in 5 M HCl aqueous solutions.

Table S2. Optimized Cartesian coordinates obtained with DFT calculations for $[\mathrm{Cu}(\mathbf{c b}-\mathrm{te} 1 \mathrm{pa})]^{+}$.

	VP (0 imaginary	equencies)	
C	-1.52687000	-2.50949100	-0.73583200
H	-2.26255100	-2.60581700	0.05621900
H	-1.37901900	-3.50713800	-1.16180800
C	-2.01474300	-1.54906200	-1.80670900
H	-1.35069700	-1.57445200	-2.67166600
H	-3.00888300	-1.85671500	-2.15145100
C	-2.03556300	0.77575400	-2.48608900
H	-1.19836600	0.46360500	-3.11370900
H	-2.95738500	0.62638000	-3.06279400
C	-1.88743400	2.26091300	-2.16268400
H	-2.76927300	2.64462200	-1.64390600
H	-1.87604600	2.78120100	-3.12481900
C	-0.61179600	2.65821400	-1.42360800
H	0.26537000	2.35936900	-2.00200600
H	-0.58613700	3.74913500	-1.32096700
C	-1.49087200	2.47281100	0.90787400
H	-1.24849100	3.47478000	1.27524400
H	-2.46718600	2.53495800	0.43284200
C	-1.50302000	1.49537900	2.07247000
H	-2.31607600	1.74083400	2.76629800
H	-0.55550000	1.57045800	2.60673500
C	-1.21905800	-0.83629100	2.69341300
H	-1.94984200	-0.78198200	3.51104900
H	-0.26826700	-0.46098700	3.07655200
C	-1.05158100	-2.29793500	2.28116700
H	-2.01114000	-2.75045100	2.02085400
H	-0.72775700	-2.83070500	3.18017500
C	0.00314100	-2.59925400	1.21824300
H	0.97346200	-2.21618000	1.54072700
H	0.09373700	-3.68616900	1.10640200
C	-3.20154900	0.10690700	-0.41556500
H	-4.06673600	-0.47022300	-0.76110900
H	-3.46790000	1.15418400	-0.51950800
C	-2.97678500	-0.22494000	1.07637100
H	-3.73591900	0.31296500	1.65618800
H	-3.15558300	-1.28408400	1.24357900
C	0.87652900	-2.33421600	-1.03993700
H	0.56497300	-2.11594400	-2.06389700
H	1.11350300	-3.40155500	-0.98661200
C	2.08809500	-1.50860500	-0.71251200
C	3.35834800	-2.02020100	-0.94653700
H	3.46852100	-3.03138700	-1.31781300

C	4.46037200	-1.21567800	-0.69565000
H	5.46511800	-1.58094600	-0.87225000
C	4.24294900	0.06201800	-0.20401000
H	5.05846100	0.73795600	0.01177800
C	2.94524800	0.50616100	0.04797600
C	2.79525100	1.89191200	0.69237200
N	-0.25521800	-2.01428300	-0.13580600
N	-2.03899100	-0.14835200	-1.30976900
N	-0.47604300	2.03779800	-0.08511300
N	-1.62185700	0.09055400	1.59801400
N	1.86789900	-0.26998200	-0.21987400
\bigcirc	3.72745100	2.69315000	0.47889700
Cu	-0.27087700	0.03003200	-0.07515300
O	1.76420000	2.08031800	1.40108200
H	0.44332100	2.26908800	0.33260100
$E($ UTPSSh $)=-2807.206889$ Hartree			
Zero-point correction $=0.495427$			
Thermal correction to Energy $=0.519007$			
Thermal correction to Enthalpy $=0.519951$			
Thermal correction to Gibbs Free Energy $=0.444436$			
Sum of electronic and zero-point Energies $=-2806.711462$			
Sum of electronic and thermal Energies $=-2806.687882$			
Sum of electronic and thermal Enthalpies $=-2806.686938$			
Sum of electronic and thermal Free Energies $=-2806.762453$			

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(298 \mathrm{~K}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3}$.

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum ($298 \mathrm{~K}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(298 \mathrm{~K}, 300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ of compound Heb-te1pa

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum ($298 \mathrm{~K}, 75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of compound Hcb-te1pa.

Villeurbanne le: \quad 18/07/2013

Renseignements
Bureau des Analyse
de $8 \mathrm{~h}-12 \mathrm{~h}$ et $13 \mathrm{~h}-16 \mathrm{~h} 30$
Tél: 04.37.42.36.36
Fax: 04.37.42.36.37
Fax : 04.37.42.36.37
Mèl : bda@sca.cnrs.fr

CNRS UMR6521
CHIMIE, ELECTROCHIMIE MOLECULATRES
ET CHIMIE ANALYTIQUE
M. TRIPIER

UNIVERSITE DE BRETAGNE OCCIDENTALE DE BREST
UFR SCIENCES ET TECHNIQUES BAT C 6 AV VICTOR LE GORGEU - CS 93837 29238 BREST Cedex 3

Bulletin d'analyses BUL13/1565-1
Veuillez trouver ci-après, les résultats des analyses effectuées sur les échantillons que vous nous avez envoyés.

Bon de commande :		L04946/94.4.2013			Du	15/05/2013
Référence	2H146		Date de réception	22/05/13	N° SCA	13/04541
C	53.62 \%					
H	8.69 \%					
N	15.35\%					

Remarques:

Réforence	ZH164	Date de réception	22/05/13	N° SCA	13/04542
C	36.79\%				
H	7.22 \%				
N	10.93\%				

ZH 146: compound 3: $\left(\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot \mathrm{HCl}^{2} \mathrm{H}_{2} \mathrm{O}\right)$
ZH 164: compound Heb-te1pa $\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 5 \mathrm{HCl} \cdot 4.5 \mathrm{H}_{2} \mathrm{O}\right)$

Responsable scientifique

Téléphone : (33) $\begin{array}{r}5 \text { rue de la Doua - } 69100 \text { VILLEURBANNE (France) } \\ 047423636 \text { - Télécopie : } \\ \text { : } 33 \text {) } \\ 0437423637-h t t p: / / w w w . s c a . c n r s . f r ~\end{array}$
Figure S13. Elementary analysis of compound $\mathbf{3}$ and Heb-te1pa

Figure S14. HR-MS spectra the copper(II) complex of cb-te1pa.

References

(1) Addison, A. W.; Nageswara-Rao, T.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349-1356.
(2) Liang, X.; Sadler, P. J. Chem. Soc. Rev. 2004, 33, 246-266.
(3) Dale, J. Acta Chem. Scand. 1973, 27, 1115-1129.
(4) El Ghachtouli, S.; Cadiou, C.; Dechamps-Olivier, I.; Chuburu, F.; Aplincourt, M.; Roisnel, T. Eur. J. Inorg. Chem. 2006, 3472-3481.

