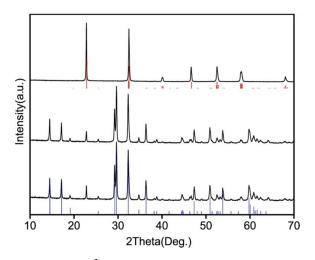
Supporting Information for


Tunable optical and photocatalytic performance promoted by nonstoichiometric control and site-selective codoping of travillent ions in NaTaO₃

Yiguo Su,[†] Liman Peng,[†] Jianwei Guo,[†] Shushu Huang,[†] Li, Lv,[‡] Xiaojing Wang^{*†}

[†]College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner

Mongolia 010021, P. R. China

[‡]Chemical Engineering College of Inner Mongolia University of Technology,

Hohhot, Inner Mongolia 010021, P. R. China

Figure S1 XRD patterns of Eu^{3+} doped NaTaO₃ with different Na/Ta initial molar ratio of 2.5(a), 1.5 (b) and 1 (c). Vertical bars represent the standard diffraction data from JCPDS file for NaTaO₃ (up one, 25-0863) and Na₂Ta₄O₁₁ (down one, 84-0810).

Calculated data	Formula	Lattice volume	a (Á)	b (Á)	c (Á)
		(Å ³)			
	NaTaO ₃	259.11	5.8636	7.9890	5.5313
	Na _i	272.15	5.7789	8.1460	5.7813
	Nai-Eu@Ta	272.49	5.8150	8.1442	5.7538
	Eu@Ta	282.75	5.7307	8.2399	5.9879
	Eu@Na	270.90	5.6796	8.1590	5.8462
Selected	Na/Ta molar	Lattice volume	a (Á)	b (Á)	c (Á)
experimental data	ratio	(Å ³)			
	1.041	235.30	5.5136	7.7825	5.4842
	1.046	235.72	5.4898	7.7797	5.5190
0.2361 • Eu ³⁺ free system • Eu ³⁺ doped system 0.2355 0.2355 0.2352 0.2352 0.2349 3 4 Initial molar ratio of Na/Ta			5		

Table S2 Lattice parameters of pure NaTaO₃ and doped NaTaO₃ based density functional theory (DFT) calculations and experimental data

Figure S3 Lattice volume of Eu^{3+} doped and Eu^{3+} free NaTaO₃ as a function of Na/Ta initial molar ratio.

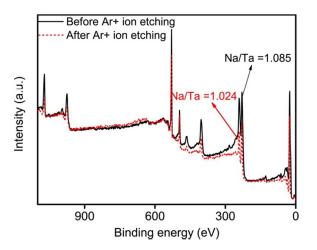


Figure S4 XPS spectra of Eu³⁺ doped NaTaO3 with Na/Ta molar ratio of 1.041 before

and after Ar⁺ ions etching.

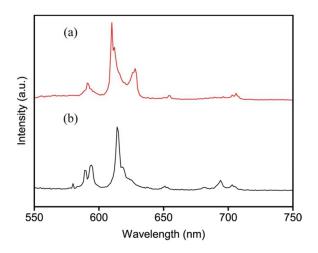


Figure S5 Emission spectra of surface Eu^{3+} doped NaTaO₃ (a) and Eu^{3+} doped NaTaO₃ with Na/Ta initial molar ratio of 2.5.

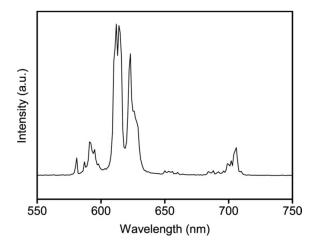
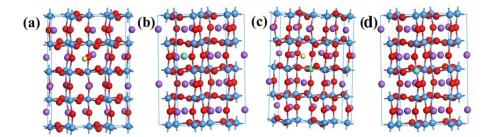



Figure S6 Emission spectrum of Eu₂O₃ under 395 nm excitation.

Figure S7 The supercell model proposed for doped NaTaO₃: Na at an interstitial site (a), Eu at Na site (b), the dual substitute model by substituting Na at interstitial site and Eu at Ta site (c) and Eu at Ta site (d).

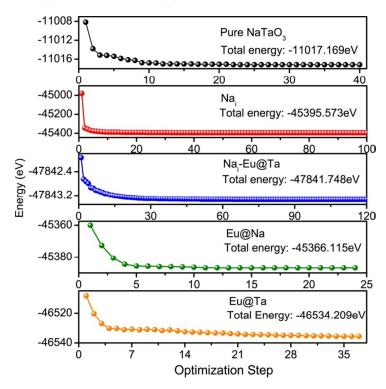


Figure S8 Total energy and energetic convergence data of all calculated models.

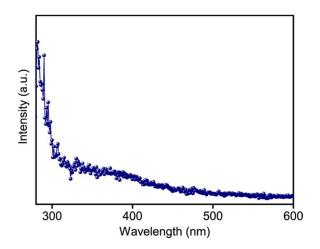


Figure S9 UV-vis reflectance spectra of undoped NaTaO₃.

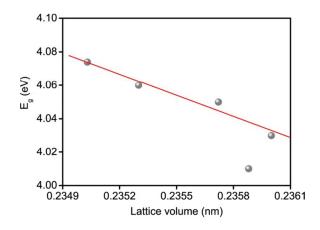
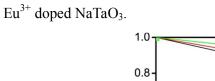



Figure S10 Correlation between the band gap energies, $E_{g},$ and the lattice volume of

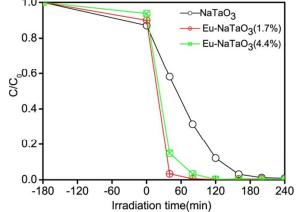


Figure S11 Normalized concentration of MB versus UV light irradiation time of Eu^{3+}

doped NaTaO₃ prepared with initial Na/Ta molar ratio of 2.5.

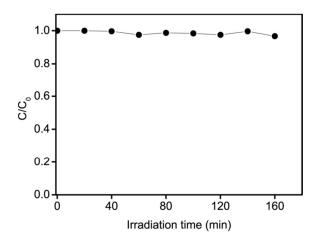
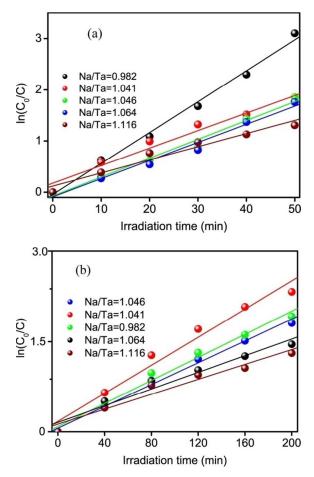



Figure S12 Normalized concentration of MB versus UV light irradiation time in the absence of Eu^{3+} doped NaTaO₃.

Figure S13 The $ln(C_0/C)$ versus time curves of MB photodegradation over Eu^{3+} doped NaTaO₃ under UV light irradiation (a) and visible light irradiation (b).