An Intermolecular Potential for Binding of

Protonated Peptides Ions with Perfluorinated

Hydrocarbon Surfaces

Subha Pratihar, ${ }^{a}$ Swapnil C. Kohale, ${ }^{a}$ Saulo A. Vázquez, ${ }^{b *}$ William L. Hase, ${ }^{a}$ *
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
${ }^{\mathrm{b}}$ Departamento de Química Física and Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

Figure S1: Comparison of MP2/aug-cc-pVTZ potential energy curves for a F-atom of CF_{4} interacting with a C -atom of CH_{4} and $\mathrm{CH}_{3} \mathrm{CHO}$.

Figure S2. Two-body potentials obtained from the $\mathrm{CH}_{4} / \mathrm{CF}_{4}$ fitting.

Figure S3. Two-body potentials obtained from the $\mathrm{NH}_{3} / \mathrm{CF}_{4}$ fitting.

Figure S4. Two-body potentials obtained from the $\mathrm{NH}_{4}{ }^{+} / \mathrm{CF}_{4}$ fitting.

Figure S5. Two-body potentials obtained from the $\mathrm{HCOOH} / \mathrm{CF}_{4}$ fitting. O 1 and O 2 are carbonyl and hydroxyl oxygens, respectively. H 1 and H 2 are the carbonyl and hydroxyl hydrogens, respectively.

Figure S6. For the $\mathrm{HCOOH} / \mathrm{CF}_{4}$ system: a comparison between our present potential (solid lines) and that reported in JPC B 2005, 109, 8320 (dashed lines). The insets do not show the JPC-B data.

Figure S7: Comparison between IPECs calculated at the MP2/aug-cc-pVTZ level (solid circles) for CF_{4} interacting with HCONH_{2} and those predicted with the analytic potentials (solid lines) using parameters listed in Table 2.

Figure S8: For the $\mathrm{NH}_{4}{ }^{+} / \mathrm{CF}_{4}$ system: a comparison between our present potential (solid lines) and that reported in ref. 97 (dashed lines), for the orientations considered in the latter. The points are the MP2 calculations. Both the current and previous identifications are given.

Figure S9: For the $\mathrm{NH}_{3} / \mathrm{CF}_{4}$ system: a comparison between our present potential (solid line) and that reported in ref. 97 (dashed lines), for the orientations considered in the latter. The points are from MP2 calculations. Both the current and previous identifications of the orientations are given.

Figure S10: For the $\mathrm{CH}_{4} / \mathrm{CF}_{4}$ system: a comparison between our present potential (solid lines) and that reported in ref. 97 (dashed lines), for the orientations considered in the latter. The points are from MP2 calculations. Both the current and previous identifications of the orientations are given.

