Supporting Information

Cyclohexadepsipeptides of the Isaridin Class from the Marine-Derived Fungus *Beauveria felina* EN-135

Feng-Yu Du,^{†,§} Peng Zhang,^{†,‡,§} Xiao-Ming Li,*,[†] Chun-Shun Li,[†] Chuan-Ming Cui,[†] and Bin-Gui Wang^{*,†}

[†]Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, P. R. China
[‡]University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, P. R. China

Corresponding Author

*Tel and Fax: ++86-532-82898553. E-mail: lixmqd@aliyun.com (X.-M.L.);

wangbg@ms.qdio.ac.cn (B.-G.W.).

Content

- Page S1. Table S1-Main torsion angels in the crystal structures of compounds 1–3.
- Page S1. Table S2-H-bonds parameters for compounds 1–3.
- Page S2. ¹H NMR (500 MHz, Acetone- d_6) spectrum of compound **1**.
- Page S3. DEPT spectrum of compound 1.
- Page S4. ¹H-¹H COSY spectrum of compound **1**.
- Page S5. HSQC spectrum of compound 1.
- Page S6. HMBC spectrum of compound 1.
- Page S7. NOESY spectrum of compound 1.
- Page S8. ¹H NMR (500 MHz, Acetone- d_6) spectrum of compound **2**.
- Page S9. DEPT spectrum of compound 2.
- Page S10. ¹H-¹H COSY spectrum of compound **2**.
- Page S11. HSQC spectrum of compound 2.
- Page S12. HMBC spectrum of compound 2.
- Page S13. NOESY spectrum of compound 2.
- Page S14. ¹H NMR (500 MHz, Acetone- d_6) spectrum of compound **3**.
- Page S15. DEPT spectrum of compound 3.
- Page S16. ¹H-¹H COSY spectrum of compound **3**.
- Page S17. HSQC spectrum of compound 3.
- Page S18. HMBC spectrum of compound 3.
- Page S19. NOESY spectrum of compound 3.
- Page S20. Table S3-1D NMR data in acetone- d_6 for compound 5.

	1 1015	Torsion angel (°)			
Residue		Isaridin G (1)	desmethylisaridin G (2)	desmethylisaridin C1 (3)	
HMPA ¹	ϕ_1	-60.2	-109.4	-66.1	
	ψ_1	147.7	142.1	-42.7	
	ω_1	9	-9.8	176.9	
Pro ²	ϕ_2	-81.4	-66.5	-68.3	
	ψ_2	-2	156.4	155.0	
	ω_2	166.5	175.4	177.1	
Tyr ³ /Tyr ³ /Phe ³	ϕ_3	-64.3	-61.5	-97.2	
	ψ_3	141.8	142.5	124.8	
	ω3	178.0	-2.6	2.8	
N-Me-Val ⁴	ϕ_4	-104.7	-111.9	-114.8	
	ψ_4	103.0	52.6	68.1	
	ω_4	6	-178.9	-170.5	
<i>N</i> -Me-Leu ⁵ /Leu ⁵ /Leu ⁵	φ ₅	-124.5	-104.8	-115.3	
	ψ_5	107.9	-24.2	-8.5	
	ω_5	177.4	-170.4	-175.8	
	ω_5'		-178.3		
β -Ala ⁶	ϕ_6	-137.5	-162.4	83.2	
	${\phi_6}'$		82.0		
	θ_6	-59.1	-56.7	71.2	
	$\theta_6{'}$		60.8		
	ψ_6	124.1	-82.4	-164.5	
	$\psi_6{}'$		-168.0		
	ω_6	-170.0	175.9	177.7	
	${\omega_6}'$		156.9		

Table S1. Main torsion angels in the crystal structures of compounds **1–3**.

Table S2. H-bonds parameters for compounds 1–3.

Donor	Acceptor	<i>d</i> (D A)[Å]	<i>d</i> (H A)[Å]
isaridin G (1)			
NH (β -Ala ⁶)	$CO(Tyr^3)$	2.876	2.071
NH (Tyr ³)	CO (β -Ala ⁶)	3.080	2.542
desmethylisaridin G (2)			
NH (Leu ⁵)	CO (Pro ²)	2.938	2.104
NH (β -Ala ⁶)	CO (β -Ala ⁶)	2.940	2.319
NH' (β -Ala ⁶)	HN (Leu ⁵)	2.714	2.293
desmethylisaridin C1 (3)			
NH (Leu ⁵)	CO (Pro ²)	2.820	1.986

¹H NMR (500 MHz, Acetone- d_6) spectrum of compound **1**.

DEPT spectrum of compound **1**.

HSQC spectrum of compound **1**.

fl (ppm)

HMBC spectrum of compound **1**.

NOESY spectrum of compound 1.

¹H NMR (500 MHz, Acetone- d_6) spectrum of compound **2**.

DEPT spectrum of compound 2.

(Note: the weak signals were further confirmed by the following HSQC spectrum)

fl (ppm)

 1 H- 1 H COSY spectrum of compound **2**.

HSQC spectrum of compound **2**.

fl (ppm)

HMBC spectrum of compound **2**.

NOESY spectrum of compound **2**.

¹H NMR (500 MHz, Acetone- d_6) spectrum of compound **3**.

DEPT spectrum of compound **3**.

(Note: the weak signals were further confirmed by the following HSQC and HMBC spectra)

¹H-¹H COSY spectrum of compound **3**.

HSQC spectrum of compound **3**.

fl (ppm)

HMBC spectrum of compound **3**.

NOESY spectrum of compound **3**.

position	$\delta_{\rm C}$ (type)	$\delta_{\rm H}$ (mult., J in Hz)		
	HMPA ¹			
CO	170.1, C			
α	73.9, CH	5.17, dd (11.7, 2.5)		
β	39.7, CH ₂	1.75, dd (14.4, 2.6)		
		1.26, dd (13.3, 11.0)		
γ	25.2, CH	1.71, m		
δ	23.8. CH ₃	0.95. d (6.6)		
δ'	20.8 CH ₂	0.86 d (6.6)		
-	<i>B</i> -Me-Pro ²			
CO	1719 C			
<i>a</i>	68 5 CH	365 d(24)		
ß	40.7 CH	2.44 m		
p	20.8 CH	$1.50 \text{ m} \cdot 1.44 \text{ m}$		
Y S	29.8, CH ₂	$2.68 \text{ m} \cdot 2.26 \text{ m}$		
0 0 Ma	$43.8, CH_2$	3.06, 111, 5.20, 111		
p-Me	19.2, CH ₃	1.06, d (7.0)		
<u> </u>	Phe ²			
CO	1/4.8, C			
α	54.1, CH	4.70, ddd (10.4, 7.6, 5.5)		
β	36.3, CH ₂	3.05, m		
		2.97, m		
γ	138.2, C			
δ, δ'	130.0, CH	7.32, m		
ε, ε'	129.4, CH	7.30, m		
θ	127.6, CH	7.26, m		
NH		8.00, d (7.7)		
	<i>N</i> -Me-Val ⁴			
СО	170.2, C			
α	58.1, CH	5.11, d (10.7)		
β	27.9, CH	2.26, m		
γ	19.7, CH ₃	0.68, d (6.5)		
ν'	19.3. CH ₃	0.81. d (6.5)		
N-Me	30.3. CH ₃	3.08. s		
	<i>N</i> -Me-Phe ⁵	2		
CO	168.6 C			
a	62.8 CH	5.14 m		
ß	37.2 CH	3.59 dd (13.3, 9.5)		
β	57.2, 0112	2.69 dd (13.4 4.7)		
21	138.8 C	2.07, uu (15.4, 4.7)		
s s'	130.0, C	7.32 m		
0,0	130.0, CH	7.32, m		
E, E 0	129.3, СП 127.7, СШ	7.30, III 7.26, m		
	127.7, CH	7.26, m		
IN-Me	29.2, CH ₃	2.95, S		
G 0	β -Ala°			
CO	174.3, C			
α	35.7, CH ₂	2.57, dt (14.8, 2.8)		
		2.29, m		
β	36.3, CH ₂	3.92, m; 3.31, m		
NH		7.39, br. s		
"Recorded at 500 and 125 MHz for ¹ H and ¹³ C, respectively.				

Table S3. 1D NMR data in acetone- d_6 for compound $\mathbf{5}^a$.