SUPPORTING INFORMATION

Kinetics and Mechanism of the Hydrogenation of the CpCr(CO)₃•/ [CpCr(CO)₃]₂ Equilibrium to CpCr(CO)₃H

Jack R. Norton,^{*,†} Tudor Spataru,^{†,#} Donald M. Camaioni,^{*,‡} Suh-Jane Lee,[‡] Gang Li,[†] Jongwook

Choi, § and James A. $Franz^{\ddagger,\infty}$

[†]Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027,

^{*}Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, [#]Natural

Sciences Department, Hostos Community College, 500 Grand Concorse, Bronx, NY 10451,

[§]Dow Corning Corporation, 2200 W. Salzburg Road, MS C043C1, Auburn, MI 48611

Contents

Figures:

S1–S3: Optimized Structures and Energies of $CpCr(CO)_3(\eta^2-H_2) \bullet (5)$, $CpCr(CO)_3H_2$ (the dihydride 6), and $CpCr(CO)_3 \bullet (1)$.

S4–S5: Kinetic Profiles

S6: The SOMO for $CpCr(CO)_3(\eta^2-H_2)$ • (5) and the corresponding virtual orbital for 5⁺, with the Cp–Cr distances indicated.

S7: Structure of van der Waals Complex (7)

S8–S9: The total energy behavior along the reactions coordinates for homolytic and for heterolytic mechanisms.

Tables:

S1–S4, S10: Thermochemical data for structures calculated at various levels of theory.

S5–S9, S11–S16: Optimized Cartesian coordinates for $CpCr(CO)_3$ • (1), its van der Waals Complex (7) with H₂, Various 2Cr/H₂ Precursor Complexes (8, 9, and 10), and Species Involved in the Heterolytic and Homolytic Pathway (Scheme 2 and 3): $[CpCr(CO)_3]_2$ (2), the transition state, $CpCr(CO)_2COH$ (11), and $CpCr(CO)_3H$ (3).

Energy of H₂: UB3LYP/LANL2DZ: -1.1744164 hartree

Figure S1. Optimized Structure of CpCr(CO)₃(H₂), UB3LYP/LANL2DZ: -620.89298 hartree

Figure S2. Optimized Structure of CpCr(CO)₃(H)₂, UB3LYP/LANL2DZ: -620.880737 hartree

Figure S3. Optimized Structure of CpCr(CO)₃• (1), UB3LYP/LANL2DZ: -619.770685 hartree

Figure S4. Equilibrating 1 and 2 with 1 atm of H_2 at 25 $^{\circ}C$ (run 2).

Figure S5. Equilibrating 1 and 2 with 1 atm of H_2 at 25 $^{\circ}C$ (run 3).

Figure S6. The SOMO for $CpCr(CO)_3(\eta^2-H_2) \bullet (5)$ and the corresponding virtual orbital for 5^+ , with the Cp–Cr distances indicated

Table S1. Thermochemical data for Mononuclear H_2 Complexes calculated at B3LYP-D3/Ahlrichs polarized VTZ level of theory.

Molecule	E electronic	ZPE	S° ₂₉₈	H° ₂₉₈ (au)	G°_{298} (au)
	(au)	(au)	(cal/molK)		
$CpCr(CO)_3(\eta^1-H_2)\bullet$	-1579.45165	0.10921	129.286	-1579.31500	-1579.37642
(7),					
$< S^2 > = 0.779$					
H ₂	-1.17965	0.01007	31.125	-1.16628	-1.18107
$CpCr(CO)_3 \bullet (1)$	-1578.27081	0.10921	110.329	-1578.14899	-1578.20141
$\langle S^2 \rangle = 0.767$					
$CpCr(CO)_3(\eta^2-H_2)$ •	-1579.40324	0.12390	114.371	-1579.26532	-1579.31966
(5)					
$CpCr(CO)_3H_2\bullet(6),$	-1579.39481	0.12205	114.502	-1579.25880	-1579.31321
$< S^2 > = 0.776$					

Table S2. Thermochemical data for Mononuclear H_2 Complexes calculated using B3LYP without dispersion correction, with 6-311G** basis on all atoms except SBKJC VDZ ECP basis on Cr.

Molecule	E electronic	S° ₂₉₈	H° ₂₉₈ (au)	G° ₂₉₈ (au)
	(au)	(cal/molK)		
$CpCr(CO)_{3}(\eta^{2}-H_{2})\bullet (5)$	-621.40337	113.536	-621.26547	-621.31941
H ₂	-1.17957	31.126	-1.16620	-1.18099
$CpCr(CO)_3 \bullet (1)$	-620.27418	108.739	-620.15252	-620.20419
$CpCr(CO)_{3}H_{2}\bullet(6)$, dihyhdride	-621.39502	113.580	-621.25882	-621.31278

Figure S7. Structure of van der Waals Complex **7**, B3LYP-D3 with Ahlrichs polarized VTZ basis. The change in electronic energy upon forming the complex is -0.11 kcal/mol (including Counterpoise Correction³ of 0.64 kcal/mol for Basis Set Superposition Error). Thermal correction gives $\Delta H^{\circ}_{298} \sim 0.8$ and $\Delta G^{\circ}_{298} = 4.4$ kcal/mol.

Table S3. Calculated structures of $2Cr/H_2$ precursor complexes **8**, **9**, **10**, and their energies (kcal/mol) relative to the separated molecules by Grimme's D3 dispersion corrected DFT. The third structure, with a nearly co-linear Cr-H-H-Cr, is close to having C_2 symmetry. From left to right, distances in the structures are (Cr-Cr) 5.3, 6.2 and 6.8 Å, (shortest Cr-H₂) 3.26, 3.43 and 3.05 Å, respectively.^a

	8	9	10
ΔE elec	-9.5 (-11.2) ^b	-7.8 (-9.1) ^b	-2.3 (-3.8) ^b
ΔH°_{298}	-6.7	-5.0	+0.5
ΔG°_{298}	-6.9	+8.3	+13.9

^{*a*}B3LYP-D3/DZVP2 except DZVP on Cp hydrogens. ^{*b*}Values in parentheses are interaction energy without Counterpoise Correction³ for Basis Set Superposition Error.

As the structures of the CpCr(CO)₃ radicals and H₂ are essentially unchanged in these complexes, the enthalpy and free energy changes were estimated by correcting the electronic energies for changes in the number of rotational, translational and low frequency modes in the complexes. In forming the complexes 6 translational and 5 rotational modes are replaced by 11 low frequency vibrations. Thus, the changes in rotational and translational energies and entropies were calculated using the data in Table S4. For each of the new vibrations, 0.6 kcal/mol of E_{thermal} (0.5 RT) and 4.5 eu (~10 cm-1) for S_{vib} was added. See "Molecular Thermodynamics" by McQuarrie and Simon¹ or the whitepaper on "Thermochemistry in *Gaussian*" by Ochterski

(http://www.gaussian.com/g_whitepap/thermo.htm)² for details on the computation of these values.

Complex or Molecule	E electronic (au)	$I_A I_B I_C$ (au)	E ₂₉₈ trans + rot (kcal/mol)	S ₂₉₈ trans + rot (cal/molK)
Trimer structure 8 $=1.029$	-3157.29977	8.92674×10^{11}	1.78	79.02
Trimer structure 9 $\langle S^2 \rangle = 1.029$	-3157.29641	1.53092×10^{12}	1.78	79.56
Trimer structure 10 $\langle S^2 \rangle = 1.024$	-3157.28803	2.37313×10^{12}	1.78	79.99
CpCr(CO) ₃ • (1) <S ² > = 0.765	-1578.05131		1.78	72.45 ^b
H ₂	-1.17929		1.48	31.13 ^b

Table S4. Calculated thermochemical data for structures in Table S3.^a

^{*a*}B3LYP-D3/DZVP2 basis on all atoms except DZVP on Cp hydrogens; rotational entropies are estimated from the product $I_A I_B I_C$ of the moments of inertia, and translational entropies are estimated from molecular weights. ^{*b*}Rotational entropies from frequency calculation.

Table S5. The optimized Cartesian coordinates (B3LYP-D3/Alhrichs polarized VTZ) of Structure 7, the van der Waals complex of H_2 with CpCr(CO)₃• (1).

Atom	Х	Y	Z
Cr	0.00105621	0.08233959	-0.01481906
С	1.49092180	1.11710221	-0.54877558
С	-1.13944712	-1.83121313	-0.31714541
С	0.04400942	-1.90904829	-1.09332476
С	1.15179823	-1.84163896	-0.21150488
С	0.65727555	-1.72363132	1.11162926
С	-0.76744318	-1.71704977	1.04633149
С	-0.05089027	1.16505373	1.51151867
С	-1.43901576	1.12848097	-0.65170009
Н	-2.14798874	-1.85870485	-0.69801290
Н	0.09321759	-1.98961050	-2.16800781
Н	2.19079345	-1.87756276	-0.49823626
Н	1.25253696	-1.67029834	2.00869506
Н	-1.44175647	-1.65870909	1.88522680

0	2.41941198	1.71444590	-0.85704683
0	-0.08427320	1.82295875	2.45275738
0	-2.33899036	1.73349358	-1.02319021
Η	0.08607706	0.46416512	-3.30301607
Η	0.08376800	0.56572823	-4.04056796

Table S6. The optimized Cartesian coordinates (B3LYP-D3/Alhrichs polarized VTZ) of $CpCr(CO)_3 \cdot (1)$.

Atom	Х	Y	Ζ
Cr	-0.11687895	0.05920506	0.00000000
С	1.31709707	1.26247190	0.00000000
С	-0.78584888	1.04846821	-1.46530665
С	-0.78584888	1.04846821	1.46530665
0	2.20233693	1.99492176	0.00000000
0	-1.17358121	1.62017216	2.38024979
0	-1.17358121	1.62017216	-2.38024979
С	-0.21094267	-1.87390291	-1.14673419
С	-0.21094267	-1.87390291	1.14673419
С	1.11981590	-1.64974442	0.71306428
С	1.11981590	-1.64974442	-0.71306428
Η	1.98111189	-1.52375251	1.34844102
Н	1.98111189	-1.52375251	-1.34844102
С	-1.03207609	-2.01343090	0.00000000
Η	-2.09748397	-2.18209530	0.00000000
Η	-0.54123782	-1.93295540	-2.17141323
Η	-0.54123782	-1.93295540	2.17141323

Table S7. The optimized Cartesian coordinates (B3LYP-D3/DZVP2 except DZVP on Cp Hydrogens) of Precursor Complex **8**, $CpCr(CO)_3 H_2 CpCr(CO)_3$.

Atom	Х	Y	Ζ
Cr	0.08845046	-2.39935494	0.22584662
С	1.52297059	-3.56977407	-0.11073827
С	0.88662262	-1.13501933	1.36986648
С	0.77600463	-1.40186947	-1.19102312
0	2.38179778	-4.31891167	-0.34457255
0	1.36146078	-0.34249386	2.07849921
0	1.22106409	-0.78644797	-2.07679407
Cr	-0.16361724	2.83474784	-0.09116463
С	-1.03402501	1.87608211	1.26482407
С	-1.02943742	1.67040714	-1.25829403
С	-1.49055375	4.08772132	-0.57319133
0	-1.55683953	1.25615280	2.10213359
0	-1.59342985	0.94748046	-1.98060816
0	-2.28301051	4.87691740	-0.89213511
Н	1.68769844	2.54129104	-2.38010240

С	1.68390865	2.83773945	-1.33872278
С	1.86217629	1.96396168	-0.22026742
С	1.49392426	4.15776578	-0.84165387
Н	2.05317844	0.90319968	-0.27056432
С	1.78067320	2.75260897	0.96865820
Н	1.31768108	5.04473003	-1.43797963
С	1.55503156	4.10691671	0.58437487
Н	1.87789181	2.37894231	1.98011872
Н	1.42695480	4.94890231	1.25423447
Н	-2.24207048	-1.28982906	-1.22558611
С	-1.99779246	-2.06408268	-0.51015928
С	-2.00473539	-1.91942240	0.90392902
С	-1.58359329	-3.39733435	-0.82144550
Н	-2.25455590	-1.01987257	1.45108318
С	-1.59453743	-3.16117159	1.47848258
С	-1.33261240	-4.07506699	0.41502847
Н	-1.48938563	-3.82058098	-1.81326749
Н	-1.48616807	-3.36466521	2.53682465
Н	-1.01148115	-5.10405736	0.52282907
Н	1.25801394	-3.65503378	3.00007247
Н	1.46243879	-3.99042667	3.63156937

Table S8. The optimized Cartesian coordinates (B3LYP-D3/DZVP2 except DZVP on Cp Hydrogens) of Precursor Complex 9, $CpCr(CO)_3 H_2 CpCr(CO)_3$.

Atom	Х	Y	Ζ
Cr	-0.08350183	-3.18785274	-0.02894592
С	-1.00355314	-1.64948508	0.46906587
С	1.91065713	-3.52938786	-0.92698492
С	1.92639418	-2.29270639	-0.20819868
С	1.69608674	-2.58924633	1.17296547
С	1.54062706	-3.99678487	1.30286112
С	1.67294417	-4.58065679	0.00662925
С	-1.43186958	-4.13892438	0.88962941
С	-0.87149435	-2.93232762	-1.71749768
Н	2.06191305	-3.64777192	-1.99307999
Н	2.10199867	-1.30934929	-0.62232531
Н	1.64595623	-1.86155881	1.97155739
Н	1.34106611	-4.53349638	2.22232891
Η	1.58718908	-5.63529182	-0.22617689
0	-1.58580746	-0.68141052	0.76408690
0	-2.23814985	-4.72674348	1.48678606
0	-1.32323159	-2.74104389	-2.77321821
Н	0.13813222	-0.21568430	-1.88869165
Cr	0.05965554	3.00163548	0.05191098
С	0.94906317	1.51691443	0.77840185

С	-1.83856054	3.59119936	-0.93318445
С	-2.04190990	2.31618461	-0.32948554
С	-1.86080490	2.45898145	1.07725423
С	-1.55010603	3.82147870	1.34798933
С	-1.53318024	4.53000744	0.10186388
С	1.35704999	4.03970665	0.90646803
С	1.03898784	3.31169347	-1.52437631
Н	-1.90766343	3.81284933	-1.99134131
Н	-2.25676882	1.38704923	-0.84139096
Н	-1.93217051	1.65875266	1.80163596
Н	-1.35672366	4.24747512	2.32459110
Н	-1.34165587	5.58712282	-0.03070424
0	1.47115238	0.58682761	1.24813435
0	2.16294603	4.69166812	1.43967044
0	1.61556286	3.53392798	-2.51126283
Η	0.32960709	0.43084890	-2.20145228

Table S9. The optimized Cartesian coordinates (B3LYP-D3/DZVP2 except DZVP on Cp Hydrogens) of Precursor Complex **10**, $CpCr(CO)_3 H_2 CpCr(CO)_3$.

Atom	Х	Y	Ζ
Cr	-0.07648415	3.41332751	0.00721258
С	0.83445777	2.77523779	1.52994137
С	-1.96490196	3.21192245	-1.14742940
С	-2.16872910	2.59303998	0.12056849
С	-2.01350211	3.59003071	1.12859297
С	-1.71846295	4.82754521	0.48760047
С	-1.68804083	4.59682189	-0.92734367
С	1.19032817	4.78590166	-0.02372172
С	0.92431875	2.65100814	-1.39224390
Н	-2.01744745	2.71808041	-2.11013810
Н	-2.37747872	1.54389835	0.29132502
Н	-2.09714981	3.43024634	2.19668836
Н	-1.55207130	5.77571184	0.98325184
Н	-1.50710805	5.34074682	-1.69262652
0	1.36849937	2.39340742	2.49056102
0	1.97561854	5.64654658	-0.04794347
0	1.51539210	2.19408840	-2.28486326
Н	0.01924554	0.37174151	0.12890121
Cr	0.07628829	-3.41347967	0.00728687
С	-0.83431805	-2.77558295	1.53016608
С	1.96469892	-3.21167513	-1.14729854
С	2.16842496	-2.59284877	0.12063464
С	2.01337305	-3.58982930	1.12856509
С	1.71857915	-4.82728790	0.48757630

С	1.68814384	-4.59654226	-0.92728047
С	-1.19019176	-4.78603021	-0.02384241
С	-0.92430568	-2.65102577	-1.39212511
Н	2.01734856	-2.71774077	-2.10990870
Н	2.37718052	-1.54376716	0.29143806
Н	2.09729843	-3.43008581	2.19661839
Н	1.55259299	-5.77550909	0.98317218
Н	1.50749605	-5.34049137	-1.69252517
0	-1.36865580	-2.39402966	2.49100267
0	-1.97529896	-5.64710382	-0.04806400
0	-1.51555519	-2.19432719	-2.28492603
Н	-0.01958312	-0.37194620	0.12886816

Table S10. Thermodynamic data (kcal/mol) (illustrated in Figure 2) calculated at the UBP86/6- $311++G^{**}$ level of theory for the components of the heterolytic pathway in Scheme 3.

Compound	Total energy	Zero-point energy	Enthalpy (298.15 K)	Entropy J/K
CpCr(CO) ₃ • (1) (a) <S2>-0.798	-990484.73	66.85	-990409.99	460.24
[CpCr(CO) ₃] ₂ (a)	-1980983.16	136.09	-1980831.53	686.16
$=0.000$ H ₂ (a)	-738.81	6.18	-730.55	130.45
$ = 0.000$				
Transition State (b) $\langle S^2 \rangle = 0.077$	-1981696.09	142.91	-1981536.72	762.90
Intermediate 11 (c) $\langle S^2 \rangle = 0.000$	-1981706.29	145.78	-1981543.94	775.05
Cp(CO) ₃ CrH 3 (d) $ = 0.000$	-990865.59	71.83	-990785.85	450.64

Table S11. The optimized Cartesian coordinates (UBP86/6-311++G**) of the initial monomer **1** (CpCr(CO)₃•) in Scheme 3 (part **a** in Figure 2)

Atom	Х	Y	Z
Cr	-0.03385100	0.00000400	-0.14192200
С	-1.24306700	0.00001000	1.25731500
С	-1.02953700	1.44935600	-0.76959700
С	-1.02977500	-1.44911600	-0.76970300
0	-2.00380500	0.00003400	2.14093300
0	-1.63368600	2.37468100	-1.13646300
0	-1.63418800	-2.37424200	-1.13663700
Н	1.44356500	-1.36067600	2.00317000
С	1.60326700	-0.71876100	1.14050800
С	1.86500400	-1.15564900	-0.19469000
С	1.60329000	0.71689800	1.14164700
С	2.03489800	0.00080700	-1.01384400
Н	1.93121400	-2.18874300	-0.52776000
С	1.86505800	1.15593200	-0.19280400
Н	1.44354900	1.35743700	2.00532700
Н	2.22145000	0.00168900	-2.08606500
Н	1.93122400	2.18956300	-0.52421200

Table S12. The optimized Cartesian coordinates (UBP86/6-311++G**) of the initial dimer 2 ($[CpCr(CO)_3]_2$) in Scheme 3 (part **a** in Figure 2)

Atom	Х	Y	Ζ
Cr	1.63628300	-0.05243300	0.00009200
С	1.01587600	-0.91784300	-1.52070600
С	1.01552600	-0.92016600	1.51947200
С	2.70323900	-1.54115900	-0.00082100
0	0.78174500	-1.48861300	-2.51347600
0	0.78106400	-1.49390100	2.51045300
0	3.38989900	-2.48519100	-0.00134400
Cr	-1.63647500	0.05196300	-0.00007100
С	-1.01565600	0.92046100	-1.51901100
С	-1.01610900	0.91802400	1.52042600
С	-2.70378400	1.54034100	0.00085600

-0.78092800	1.49626900	-2.50872700
-0.78178500	1.49116000	2.51179000
-3.38952800	2.48503800	0.00144500
-4.13501200	-0.63254700	1.35727400
-3.37558900	-1.07509100	0.71705400
-2.20689200	-1.76762900	1.15621400
-3.37520000	-1.07426100	-0.71939900
-1.91043500	-1.94123200	2.18732000
-1.49644000	-2.20530600	-0.00130800
-4.13427800	-0.63096500	-1.35950900
-2.20627200	-1.76631100	-1.15871600
-0.56789700	-2.76870600	-0.00135600
-1.90921800	-1.93865800	-2.18986200
4.13424800	0.62999000	1.35948500
3.37528100	1.07343300	0.71934600
2.20649800	1.76574600	1.15862300
3.37565700	1.07415800	-0.71711000
1.90949200	1.93825200	2.18975600
1.49675500	2.20481100	0.00118800
2.20711000	1.76691800	-1.15631100
4.13496700	0.63138600	-1.35730800
0.56830500	2.76836500	0.00120500
1.91068400	1.94054200	-2.18742200
	-0.78092800 -0.78178500 -3.38952800 -4.13501200 -3.37558900 -2.20689200 -3.37520000 -1.91043500 -1.91043500 -1.49644000 -4.13427800 -2.20627200 -0.56789700 -1.90921800 4.13424800 3.37528100 2.20649800 3.37565700 1.90949200 1.49675500 2.20711000 4.13496700 0.56830500 1.91068400	-0.78092800 1.49626900 -0.78178500 1.49116000 -3.38952800 2.48503800 -4.13501200 -0.63254700 -3.37558900 -1.07509100 -2.20689200 -1.76762900 -3.37520000 -1.07426100 -1.91043500 -1.94123200 -1.49644000 -2.20530600 -4.13427800 -0.63096500 -2.20627200 -1.76631100 -0.56789700 -2.76870600 -1.90921800 -1.93865800 4.13424800 0.62999000 3.37528100 1.07343300 2.20649800 1.76574600 3.37565700 1.07415800 1.90949200 1.93825200 1.49675500 2.20481100 2.20711000 1.76691800 4.13496700 0.63138600 0.56830500 2.76836500 1.91068400 1.94054200

Table S13. The optimized Cartesian coordinates (UBP86/6-311++ G^{**}) calculated for the transition state in Scheme 3 (part **b** in Figure 2)

Х	Y	Z
-2.85923500	-0.08893900	0.08631400
-3.58282100	-0.67899700	1.70632800
-1.91405900	-1.46367200	-0.76888500
-4.26542400	-1.10202700	-0.54711500
-4.08603300	-1.01453100	2.69801800
-1.37095100	-2.30743500	-1.35088700
-5.15464700	-1.73480800	-0.94968700
3.05316400	0.05356500	0.11519000
1.62605000	0.18851900	1.19512000
2.03026600	0.61028700	-1.28670900
3.53285800	1.81917100	0.33485700
0.67675200	0.30214700	1.92730100
1.35351400	0.96808700	-2.18125600
3.83534300	2.94096500	0.47035800
	X -2.85923500 -3.58282100 -1.91405900 -4.26542400 -4.08603300 -1.37095100 -5.15464700 3.05316400 1.62605000 2.03026600 3.53285800 0.67675200 1.35351400 3.83534300	XY-2.85923500-0.08893900-3.58282100-0.67899700-1.91405900-1.46367200-4.26542400-1.10202700-4.08603300-1.01453100-1.37095100-2.30743500-5.15464700-1.734808003.053164000.053565001.626050000.188519002.030266000.610287003.532858001.819171000.676752000.302147001.353514002.94096500

Н	5.25599100	-0.30409800	-1.82097800
С	4.79229900	-0.79401100	-0.96867100
С	3.71075200	-1.73245600	-1.01822200
С	5.14844100	-0.61491100	0.40631000
Н	3.20928100	-2.08118300	-1.91773100
С	3.41451500	-2.14080300	0.31611500
Н	5.93252600	0.03774400	0.78266800
С	4.30508600	-1.45135400	1.19726500
Н	2.64175800	-2.84623700	0.61210500
Н	4.32146400	-1.53364900	2.28162200
Н	-3.49719900	1.01800800	-2.54707500
С	-3.17607100	1.32883900	-1.55577500
С	-1.82224000	1.47445000	-1.11811500
С	-4.03602700	1.68015600	-0.46029500
Н	-0.92491100	1.29347800	-1.70760100
С	-1.85019000	1.93883200	0.23082000
С	-3.20900500	2.04348800	0.64747700
Н	-5.12339700	1.68520800	-0.47430100
Н	-0.97811800	2.12921900	0.85289000
Н	-3.55430400	2.36748100	1.62647400
Н	-1.46265400	-0.57742300	1.26234400
Н	-0.73313900	-0.20804500	1.43968500

Table S14. The optimized Cartesian coordinates (UBP86/6-311++G**) calculated for the collinear transition state of homolytic mechanism

Atom	Х	Y	Ζ
Cr	3.109700	-0.043245	0.004144
С	2.386523	-1.139606	-1.320082
С	2.443773	-0.789313	1.580842
С	4.371911	-1.384712	0.142552
0	1.972227	-1.820563	-2.170406
0	2.070967	-1.247578	2.584459
0	5.168821	-2.231386	0.230549
Cr	-3.109698	0.043254	0.004001
С	-2.386539	1.139716	-1.320149
С	-2.443821	0.789235	1.580766
С	-4.371948	1.384677	0.142497
0	-1.972247	1.820716	-2.170440

0	-2.071066	1.247417	2.584439
0	-5.168881	2.231324	0.230545
Н	-5.428690	-1.318961	1.183213
С	-4.585541	-1.502126	0.521860
С	-3.295728	-1.975739	0.915789
С	-4.573283	-1.326378	-0.902875
Н	-2.982214	-2.210167	1.930337
С	-2.494368	-2.104327	-0.258294
Η	-5.405319	-0.985592	-1.513961
С	-3.276645	-1.693091	-1.378638
Η	-1.455311	-2.424999	-0.289938
Н	-2.945560	-1.673809	-2.414249
Η	5.428361	1.318991	1.183958
С	4.585393	1.502137	0.522368
С	3.295457	1.975738	0.915932
С	4.573534	1.326387	-0.902367
Η	2.981657	2.210182	1.930388
С	2.494434	2.104323	-0.258385
С	3.277034	1.693096	-1.378500
Η	5.405741	0.985600	-1.513220
Η	1.455384	2.424991	-0.290331
Η	2.946242	1.673797	-2.414204
Η	0.383761	-0.017982	0.039776
Н	-0.383779	0.018170	0.039691

Table S15: The optimized Cartesian coordinates (UBP86/6-311++G**) calculated for the intermediate $CpCr(CO)_2COH$ (11) in Scheme 3 (part c in Figure 2)

Atom	Х	Y	Z	
Cr	-3.03137200	-0.09136100	0.01342200	
С	-2.89016100	-0.84458600	1.69130900	
С	-2.19521300	-1.15802400	-1.23310700	
С	-4.35381100	-1.36627800	-0.15400600	
0	-2.79413100	-1.31442400	2.75383100	
0	-1.64641700	-1.82141400	-2.01951500	
0	-5.17889200	-2.18379500	-0.25709800	
Cr	3.17545000	0.06982500	0.04861000	
С	1.67133500	0.19777500	0.86508300	

С	2.50347200	0.94657500	-1.41374100
С	3.70661400	1.68022100	0.74015300
0	0.58532500	0.34065300	1.53863600
0	2.05418300	1.50568400	-2.34263900
0	4.02519600	2.71072200	1.20264000
Н	5.79454600	-0.13984100	-1.33533900
С	5.09596800	-0.73030600	-0.74775100
С	4.01627300	-1.52103000	-1.26049300
С	5.09216000	-0.86309200	0.67928700
Н	3.75102300	-1.63496700	-2.30890700
С	3.35988700	-2.14549700	-0.15864700
Н	5.78977800	-0.38922800	1.36577300
С	4.02527200	-1.73806500	1.04181500
Н	2.50027000	-2.80870600	-0.21838800
Н	3.75999400	-2.03940100	2.05237900
Н	-4.98328200	1.05816200	-1.85132700
С	-4.24676500	1.35162500	-1.10752300
С	-2.87176900	1.64624100	-1.36030100
С	-4.48571400	1.52545400	0.29637900
Н	-2.37699900	1.61523800	-2.32786100
С	-2.26265700	2.00389000	-0.11954000
С	-3.25483800	1.92520100	0.90485200
Н	-5.43547300	1.38655200	0.80671000
Н	-1.22494600	2.29786800	0.01715700
Н	-3.10186800	2.14369200	1.95880900
Н	-1.50012000	-0.44784600	0.33612800
Н	-0.25321900	0.11530900	1.02662000

Table S16: The optimized Cartesian coordinates (UBP86/6-311++G**) of the product $CpCr(CO)_{3}H$ (3) in Scheme 3 (part **d** in Figure 2)

Atom	Х	Y	Z
Cr	0.03925800	-0.00015700	-0.13618400
С	0.95513900	1.47861900	-0.72953700
С	0.95783000	-1.47715300	-0.72999300
С	1.31294100	0.00047800	1.20160300
0	1.51171200	2.41778200	-1.13955000
0	1.51625800	-2.41508800	-1.14026600

0	2.11976000	0.00096800	2.04182400
Н	-1.36388500	-1.35997000	2.05685400
С	-1.55080000	-0.71861500	1.19916600
С	-1.85097400	-1.15659000	-0.12732600
С	-1.55144300	0.71590800	1.19968300
Н	-1.92634400	-2.18963900	-0.45840800
С	-2.03706000	-0.00076200	-0.94455000
С	-1.85200400	1.15459100	-0.12648600
Н	-1.36495800	1.35682800	2.05778800
Н	-2.27202900	-0.00050100	-2.00617100
Н	-1.92812600	2.18789700	-0.45660000
Н	0.42953900	0.00098300	-1.67648400

Figure S8. Total {CpCr(CO)₃-H₂-CpCr(CO)₃} energy in kcal/mol as a Function of Cr-H bond Distance (Å) for homolytic mechanim: RBP86/6-311++G** close shell,(S**2=0); UBP86/6-311++G** open shell (S**2>0). The energy of all curves has been aligned to the total energy of the initial compounds.

Figure S9. Total{CpCr(CO)₃ –H- CpCr(CO)₃} Energy in Kcal/mol as a Function of Cr-H bond Distance (Å) for heterolytic mechanim: RBP86/6-311++G** close shell,(S**2=0); UBP86/6-311++G** open shell (S**2>0). The energy of all curves has been aligned to the total energy of the initial compounds. Starting with distances of about 2.2 Å and longer, the S**2 parameter decreases dramatically from about 0.800-0.900 to 0.077 at the maximum point of the S**2>0 curve corresponding to 1.89 Å distance. This is due to the increase of the exchange interaction of hydrogen molecular orbitals with CpCr(CO)₃ radical-molecular orbitals. The hydride formation starts immediately after the transition state corresponding to decreasing Cr-H distance with both curves having S**2=0.

References

1. McQuarrie, D. A.; Simon, J. D., *Molecular Thermodynamics*. University Science Books: Sausalito, CA, 1999.

2. Ochterski, J. W. Thermochemistry in Gaussian. http://www.gaussian.com/g_whitepap/thermo.htm.

3. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.