Supporting Information

Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity

Ruben Ragg,[†] Filipe Natalio,[‡] Muhammad Nawaz Tahir,[†] Henning Janssen,[§] Anubha Kashyap,[§] Dennis Strand,[§] Susanne Strand,[§] Wolfgang Tremel ^{†,}*

[†]Institut für Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg-Universität, Duesbergweg 10–14, D-55099 Mainz, Germany, [‡]Institut für Chemie - Anorganische Chemie, Martin-Luther Universität Halle-Wittenberg, Kurt Mothes Straße 2, D-06120 Halle, Germany, [§]Medizinische Klinik, Johannes-Gutenberg-Universität, Obere Zahlbacher Strasse 63, D-55131 Mainz, Germany, *email: tremel@uni-mainz.de

Figure S1. P-XRD pattern of as-synthesized MoO₃ **nanoparticles and digital photograph of respective nanoparticle dispersion [0.5 mg/ml].** P-XRD showed the formation of the hydrated form of monoclinic hydrogen molybdenum oxide (H₂MoO₅•H₂O). The nanoparticles displayed a solubility of up to 1 mg/ml in distilled water.

Figure S2. P-XRD pattern of calcinated MoO₃ **nanoparticles and digital photograph of respective nanoparticle dispersion [0.5 mg/ml].** P-XRD shows the formation of phase pure orthorhombic molybdenum oxide (MoO₃). The nanoparticles remained well soluble up to 1 mg/ml in distilled water after calcination.

Figure S3. P-XRD pattern of calcinated MoO₃ nanoparticles after incubation in bovine serum. MoO₃ nanoparticles were incubated in bovine serum for six hours. After separation from the serum the particles were examined by P-XRD, still showing phase-pure orthorhombic molybdenum oxide (MoO₃).

Figure S4. IR-Measurements of as-synthesized (MoO₃ as), calcinated (MoO₃ an) and TPPfunctionalized (MoO₃-TPP) MoO₃ nanoparticles. The bands corresponding to the O-H stretch (from H₂O) at 3520-3100 cm⁻¹ and 1610 cm⁻¹ are clearly observed for as-synthesized MoO₃ nanoparticles corroborating the idea of the presence of a high degree of hydration either between layers or at the surface of the nanoparticles in agreement with P-XRD data. After calcination, a clear reduction of the intensity of these bands indicates the elimination of H₂O. The typical bands for the Mo=O terminal bond at 990 cm⁻¹ and Mo-O-Mo bridging bonds at 860 cm⁻¹ confirm the orthorhombic symmetry of the calcinated MoO₃ nanoparticles. The bands found at 550 and 455 cm⁻¹ are attributed to the terminal Mo-O stretch. The band at 920 cm⁻¹ corresponding to the vibration of O atoms in peroxo groups (O-O) of as-synthesized nanoparticles, disappears after temperature treatment (450°C, 30 min). The band at 1660 cm⁻¹ corresponds to primary amide groups (C=O and C-N) from Dopa-TPP and shows the successful surface functionalization.

Figure S5. UV-VIS-Spectra of Dopa-TPP ligand, MoO₃ and MoO₃-TPP nanoparticles and TEM-image of MoO₃-TPP nanoparticles. Calcinated MoO₃ nanoparticles exhibit no prominent absorption characteristics, with one band having a maximum at 230 nm attributed to Mo-O ligand to metal charge transfer (LMCT). The spectrum of the Dopa-TPP ligand exhibits a broad band at 270 nm, which can also be found as a shoulder in the LMCT peak of the MoO₃-TPP spectrum and therefore proves the successful surface functionalization of the particles. The inset shows a transmission electron microscopy image of the functionalized MoO₃-TPP nanoparticles.

Figure S6. Concentration dependence of the sulfite oxidase activity of MoO₃ nanoparticles. Concentration dependence of the sulfite oxidase activity of calcinated MoO₃ nanoparticles, determined by measuring the initial reaction rates of the ferricyanide reduction from the absorption at 420 nm for 180 s at 25 °C in the presence of constant concentrations of SO_3^{2-} (0.66 mM) and potassium ferricyanide (0.33 mM).

Figure S7. Dependence of the sulfite oxidase activity of TPP-functionalized MoO₃ nanoparticles on the ferricyanide concentration. Dependence of the sulfite oxidase activity of functionalized MoO₃-TPP nanoparticles on the ferricyanide concentration, determined by measuring the initial reaction rates of the ferricyanide reduction from the absorption at 420 nm for 180 s at 25 °C in the presence of constant concentrations of SO₃²⁻ (0.66 mM) and MoO₃-TPP nanoparticles (0.025 mg/ml).

Figure S8. IR-Spectra of BaSO₄ **formed by the reaction of sulfite with MoO**₃**-TPP and bulk BaSO**₄**.** The bands corresponding to bulk BaSO₄ at 1061 cm⁻¹ (S-O stretch) and 605 cm⁻¹ are clearly observed in the precipitate formed (addition of 8.5 mM barium chloride to reaction mix) after the reaction of sulfite with MoO₃**-**TPP nanoparticles (1 h, RT) and therefore demonstrates the MoO₃**-**TPP mediated formation of sulfate.

Figure S9. Cell-uptake studies with Fmoc-TAMRA functionalized MoO₃ nanoparticles. LSM localization studies in HepG2 cells with TAMRA-labeled MoO₃-TAMRA nanoparticles (50 ppm, 8 h, λ_{ex} =543 nm) showing cellular uptake of the particles but no intracellular localization at the mitochondria.

Figure S10. ¹H-NMR of Dopamine-TPP (1).

Figure S11. ¹H-NMR of Dopamine-Lys(5-TAMRA)-Fmoc (2).

Figure S12. ¹H-NMR of Dopamine-Lys(5-TAMRA)-TPP.