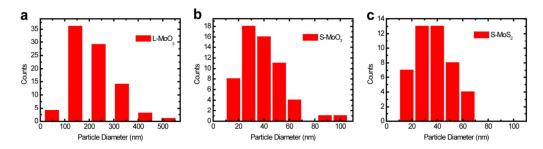
Supporting Information for

Electrochemical Tuning of MoS₂ Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution


Haotian Wang¹,[†], Zhiyi Lu²,[†], Desheng Kong², Jie Sun², Thomas M. Hymel², and Yi Cui^{2,3,*}

¹Department of Applied Physics, Stanford University, Stanford, CA 94305, USA

²Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA

³Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

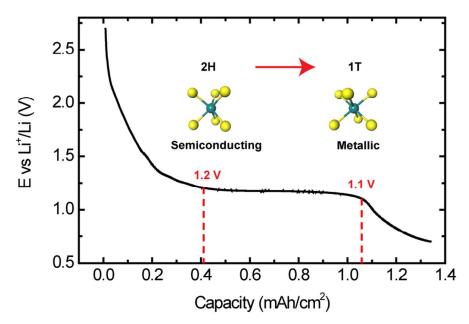
†These authors contributed equally.

Figure S1. Statistical analysis of the particle size distributions of L-MoO₃, S-MoO₃, and S-MoS₂ respectively. The size of L-MoO₃ NP is \sim 200 nm, much larger than those of S-MoO₃ and S-MoS₂ which are \sim 30 nm.

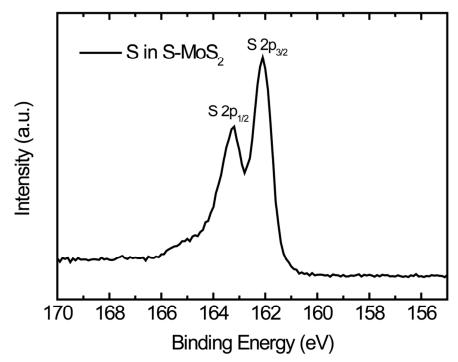
L- MoS_2 and *S*- MoS_2 NP surface area estimation:

We treat the NP as a perfect sphere to simplify the calculation process. The diameters of L-MoS₂ and S-MoS₂ are 200 and 30 nm respectively. The mass loading m_L and m_S of the catalysts are the same. We set that the numbers of L-MoS₂ and S-MoS₂ per area on CFP are N_L and N_S respectively, and we can easily get the equation shown below:

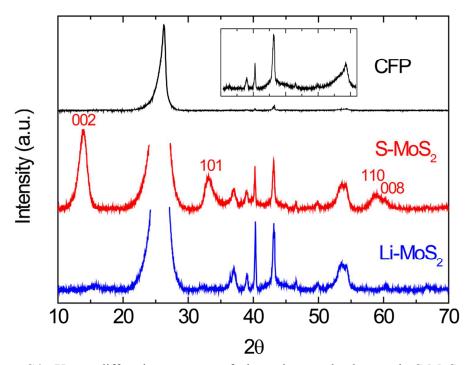
$$m_{L} = N_{L} \frac{4}{3} \pi (100 \text{ nm})^{3} \rho,$$

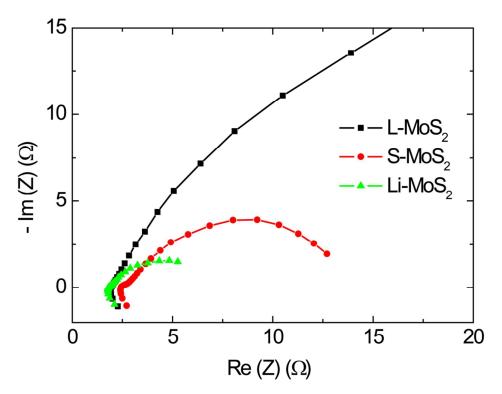

$$m_{S} = N_{S} \frac{4}{3} \pi (15 \text{ nm})^{3} \rho,$$

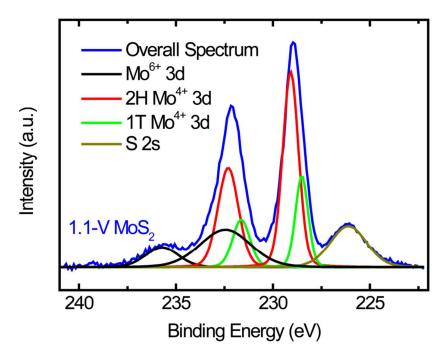
$$m_{L} = m_{S} \rightarrow N_{S} = (\frac{100}{15})^{3} N_{L},$$

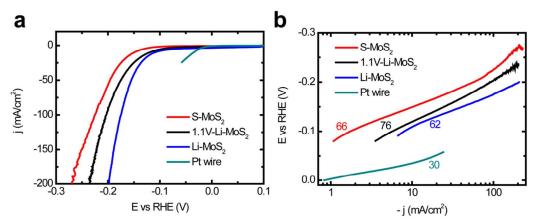

where ρ represents the density of MoS₂. Then we can get the surface area ratio of S-MoS₂ to L-MoS₂ as:

$$\frac{S_{\rm S}}{S_{\rm L}} = \frac{N_{\rm S} 4\pi (15 \text{ nm})^2}{N_{\rm L} 4\pi (100 \text{ nm})^2} = \frac{100}{15} = 6.7.$$


This rough estimation agrees well with the electrochemical capacitance measurement which gives out a result of 3.6.


Figure S2. Galvanostatic discharge curve of Li electrochemical intercalation into MoS_2 NPs. The well-defined plateau from 1.2 to 1.1 V vs. Li⁺/Li represents the 2H to 1T phase transition. The atomic structure is changed from trigonal prismatic to octahedral, along with the electronic semiconducting to metallic transition. The capacity, which is 0.65 mAh/cm² as shown in the figure, of the plateau offers us the mass loading of MoS₂. From Ref. 10 we know that during the phase transition process the Li composition changes by about $\Delta x \approx 1$, therefore we can calculate the mass loading of MoS₂ to be 3.88 mg/cm², which agrees well with the measurement by microbalance.


Figure S3. XPS spectra of S in S-MoS₂ catalyst. The peak positions of S $2p_{1/2}$ and $2p_{3/2}$ are 163.2 and 162.1 eV respectively.


Figure S4. X-ray diffraction spectra of the substrate background, S-MoS₂, and Li-MoS₂. CFP has a very strong peak which is truncated for amplification of other peaks. The additional small peaks of CFP are zoomed in as shown by the inset. Distinguished peaks of MoS₂ are marked in the spectrum of S-MoS₂. However, after the lithiation and exfoliation processes those peaks disappear in Li-MoS₂ spectrum.

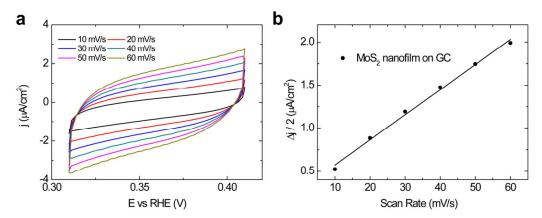

Figure S5. Nyquist plots of impedance spectroscopy analysis of the electrochemical cells setup, where L-MoS₂, S-MoS₂, and Li-MoS₂ were used as working electrodes. The series resistances are 1.92 Ω for L-MoS₂, 2.43 Ω for S-MoS₂, and 1.80 Ω for Li-MoS₂ respectively. The series resistance primarily comes from wiring and the electrolyte, while the resistance of MoS₂ NPs is negligible.

Figure S6. XPS spectrum of the 1.1-V MoS_2 sample. The broad Mo regions in 1.1-V MoS_2 spectrum is deconvoluted into red and green peaks, corresponding to 2H MoS_2 and 1T MoS_2 respectively. The ratio of MoS_2 2H to 1T phase is estimated to be 2.67 by the Mo $3d_{5/2}$ peak intensities.

Figure S7. Comparison of HER performances of S-MoS₂, 1.1-V MoS₂, and Li-MoS₂ catalysts. (a) Polarization curves of S-MoS₂, 1.1-V MoS₂, Li-MoS₂, and Pt wire. 1.1-V MoS₂ shows an improved HER activity than that of S-MoS₂ due to the formation of 1T phase MoS₂ and increased surface area. The performance of Li-MoS₂ is further enhanced as the percentage of 1T phase is increased from 1.1-V MoS₂. (b) Tafel plots of S-MoS₂, 1.1-V MoS₂, Li-MoS₂, and Pt wire.

Figure S8. Electrochemical double layer capacitance measurement of MoS₂ nanofilm on flat glassy carbon substrate. (a) Electrochemical cyclic voltammogram of MoS₂ nanofilm at different potential scanning rates. The scan rates are 10, 20, 30, 40, 50, 60 mV/s respectively, due to the much smaller surface area compared with Li-MoS₂. The selected potential range where no faradic current was observed is 0.31 to 0.41 V *vs*. RHE. (b) Linear fitting of the capacitive currents of the catalysts *vs*. scan rates. The calculated double layer capacitance is 29 μ F/cm². From Ref. 8 we know that the density of HER active sites in MoS₂ nanofilm is 5.37 × 10¹⁴ sites/cm². Therefore, the density of the active sites in Li-MoS₂ sample is 5.37 × 10¹⁴ sites/cm² × 345000 / 29 = 6.4 × 10¹⁸ sites/cm². At 200 mV overpotential we get 200 mA/cm² cathodic current, by which the TOF is calculated as follows:

TOF (at 200 mV) =
$$\frac{0.2 \text{ A/cm}^2}{1.6 \times 10^{-19} \text{ C/e}^- \times 2 \text{ e}^-/\text{H}_2 \times 6.4 \times 10^{18} \text{ sites/cm}^2} = 0.1 \text{ H}_2/\text{s}$$
 per site.

Catalyst	Mass Loading	Tafel Slope	j @ - 200 mV vs RHE
Li-MoS ₂ (current work)	$\sim 3.4 \text{ mg/cm}^2$	62 mV/decade	200 mA/cm ²
1T MoS ₂ nanosheets ³⁶	0.05 mg/cm^2	40 mV/decade	7 mA/cm ²
Exfoliated 1T MoS ₂ ²⁸	N/A	43 mV/decade	21 mA/cm ²
MoS ₂ NPs on graphene ¹⁷	1 mg/cm ²	41 mV/decade	43 mA/cm^2
Double-gyroid MoS ₂ ²⁶	0.06 mg/cm^2	50 mV/decade	4 mA/cm ²
Amorphous MoS ₂ ²²	N/A	40 mV/decade	15 mA/cm ²
MoS ₂ sponges ²⁷	N/A	185 mV/decade	71 mA/cm ²

Table S1. The mass loadings, Tafel slopes, and the cathodic currents at 200 mV overpotential of different MoS_2 catalysts.