Supporting Information

The gluten biopolymer and nano-clay derived structures in wheat gluten-urea-clay composites; barrier and mechanical properties

Ramune Kuktaite^{a*}, Hasan Türe^b, Mikael S. Hedenqvist^b, Mikael Gällstedt^c and Tomás S. Plivelic^d

a, Department of Plant Breeding, The Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden

b, KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, Royal Institute of Technology, SE-10044 Stockholm, Sweden

c, Innventia, Box 5604, 11486 Stockholm, Sweden

d, MAX IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden

Present address for Hasan Türe: Ordu University, Faculty of Marine Sciences, Department of Marine Science and Technology Engineering, 52400, Fatsa, Ordu, Turkey

Corresponding author's * e-mail: ramune.kuktaite@slu.se. Phone: +46 40 415337.

This Supported Information contains:

- **Table S1**, detailing tensile properties of WGG and WGG-5%C15A composites injection molded at 170, 180 and 190° C at transverse- and radial- directions.
- **Table S2**, detailing glass transition temperature of WGG and WGG-5%C15A composites injection molded at 170, 180 and 190° C.
- Figure S1, depicting SAXS patterns of C15A clay composites indicating the first Bragg peak from the HCP structure.
- Figure S2, depicting WAXS patterns of 1, 3 and 5 wt.% natural MMT and C15A composites.
- Two figures, two tables and in total 4 pages.

Table S1. Tensile properties of WGG and WGG-5%C15A composites injection molded at 170, 180 and 190° C: a) transverse direction; b) radial direction. a)

Mechanical properties of the samples in transverse direction (TD)				
Sample ¹	E-modulus (Mpa)	Max stress (MPa)	Strain at break (%)	
WGG-170	21 ± 5	1.5 ± 0.3	21.2 ± 9.6	
WGG-180	28 ± 2	1.9 ± 0.3	14.7 ± 4.3	
WGG-190	19± 6	1.3 ± 0.3	18.5 ± 7.0	
WGG-5%C15A-170	13 ± 3	0.7 ± 0.2	16.0 ± 4.1	
WGG-5%C15A-180	8 ± 1	0.3 ± 0.1	11.9 ± 4.2	
WGG-5%C15A-190	10± 6	0.4 ± 0.2	11.9± 3.4	

Mechanical properties are given with the average value and standard deviation.

b)

Mechanical properties of the samples in radial direction (RD)					
Sample	E-modulus (MPa)	Max stress (MPa)	Strain at break (%)		
WGG-170	16 ± 6 g	1.1 ± 0.1	18.2 ± 7.3		
WGG-180	22 ± 3 fg	1.4 ± 0.2	16.0 ± 2.8		
WGG-190	19 ± 5 fg	1.2 ± 0.2	16.7± 7.3		
WGG-5%C15A-170	10 ± 3 g	0.6 ± 0.2	16.2 ± 3.8		
WGG-5%C15A -180	6 ± 2 g	0.2 ± 0.1	9.0 ± 2.9		
WGG-5%C15A -190	9 ± 3 g	0.5 ± 0.2	14.9± 3.2		

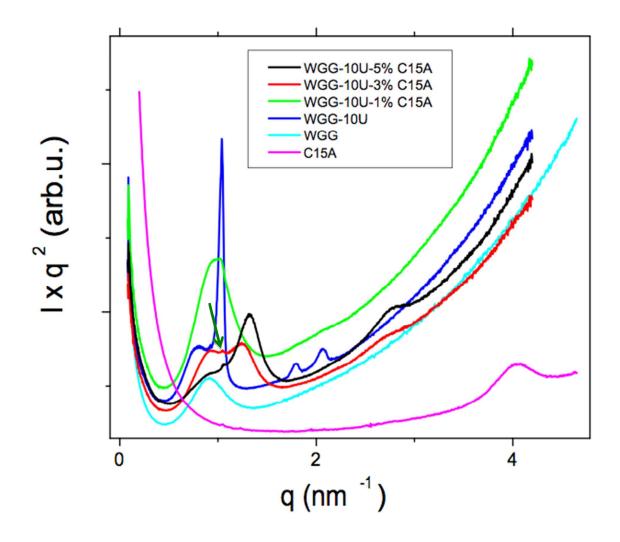

Mechanical properties are given with the average value and standard deviation.

Table S2. Glass transition temperature of WGG and WGG-5%C15A composites injection molded at 170, 180 and 190° C.

Glass transition temperatures of the samples by DSC				
Sample	Glass transition temperature (°C)			
Sample	Onset	Midpoint		
WGG-170 WGG-180 WGG-190 WGG-5%C15A -170 WGG-5%C15A -180 WGG-5%C15A -190	8.1 (0.9) 12.6 (4.2) 11.6 (2.1) 0.4 (3.6) 2.8 (1.4) 3.0 (1.9)	31.4 (1.2) 33.1 (2.2) 35.7 (1.3) 25.0 (3.2) 26.0 (0.9) 27.8 (1.0)		

The values in parentheses are standard deviations.

Figure S1. SAXS patterns of C15A clay composites; (the first Bragg peak from the HCP structure is indicated by arrow).

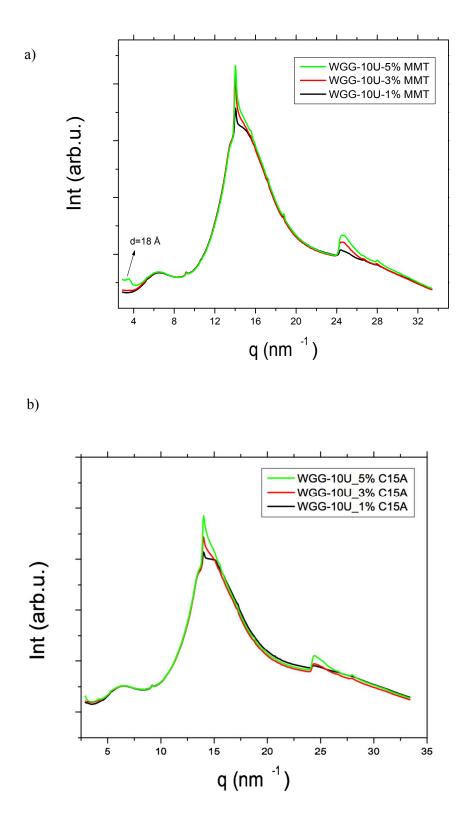


Figure S2. WAXS patterns of 1, 3 and 5 wt.% natural MMT and C15A composites.