Exploring the non-innocent character of electron rich π -extended 8-oxyquinolate ligands in ruthenium(II) bipyridyl complexes

Supporting Information

Stephanie Bellinger-Buckley,[†] Tse-Cing Chang,[‡] David Schweinfurth,[¥] Seema Bag,[†] Weihong Zhou,[†] Bela Torok,[†] Biprajit Sarkar,[¥] Ming-Kang Tsai,[‡]* Jonathan Rochford[†]*

[†]Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125. [‡]Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan ROC. [¥]Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin, Germany.

Jonathan.Rochford@umb.edu

Contents	page #
MO correlation diagrams of $[Ru(bpy)_3]^{2+}$ and $[Ru(bpy)_2(OQN)]^+$	3
Overlay of all UV/Vis electronic absorption spectra of 1^{2+} - 8^+	3
Excitation and emission spectra	4 -7
Overlay of cyclic voltammograms for all complexes $1^{2+} - 8^+$	8
Computational analysis (DFT, MO contributions, TDDFT and spectral assignments)	
of complexes 1^{2+} - 8^+	9 - 26
UV-Vis-NIR spectroelectrochemistry of one-electron oxidized complexes	27 - 30
Computational analysis (DFT, MO contributions, TDDFT and spectral assignments)	
of one-electron oxidized complexes 1^{3+} - 8^{2+}	31 - 48
UV-Vis-NIR spectroelectrochemistry and TD-DFT of two-electron oxidized	
complexes 7^{2+} and 8^{2+} .	49 - 52
Cartesian coordinates of the optimized complexes 1^{2+} - 8^+ .	53 - 68
Complete reference # 69	68

Figure SI-1. Molecular orbital correlation diagrams for 12+ [Ru(bpy)3]2+ (D3 symmetry) and 2+ [Ru(bpy)2(OQN)]+ (C1 symmetry) calculated by DFT with an acetonitrile polarizable continuum model [B3LYP/6-31g(d,p) (C,H,N,O), LANL08 (Ru)].

UV/Vis electronic absorption spectra.

Figure SI-2. Overlay of all electronic absorption spectra $1^{2+} - 8^+$ recorded acetonitrile at room temperature.

Figure SI-3. An overlay of corrected emission spectra for $1^{2^+} \cdot 8^+$ recorded in EtOH:MeOH frozen glass at 77 K.

Figure SI-4. An overlay of absorption (298 K in acetonitrile), corrected excitation and emission spectra for 2^+ recorded in a EtOH:MeOH frozen glass at 77 K.

Figure SI-5. An overlay of absorption (298 K in acetonitrile), corrected excitation and emission spectra for 3^+ recorded in a EtOH:MeOH frozen glass at 77 K.

Figure SI-6. An overlay of absorption (298 K in acetonitrile), corrected excitation and emission spectra for 4^+ recorded in a EtOH:MeOH frozen glass at 77 K.

Figure SI-7. An overlay of absorption (298 K in acetonitrile), corrected excitation and emission spectra for 5^+ recorded in a EtOH:MeOH frozen glass at 77 K.

Figure SI-8. An overlay of absorption (298 K in acetonitrile), corrected excitation and emission spectra for 6^+ recorded in a EtOH:MeOH frozen glass at 77 K.

Figure SI-9. An overlay of absorption (298 K in acetonitrile), corrected excitation and emission spectra for 7^+ recorded in a EtOH:MeOH frozen glass at 77 K.

Figure SI-10. An overlay of absorption (298 K in acetonitrile), corrected excitation and emission spectra for 8^+ recorded in a EtOH:MeOH frozen glass at 77 K.

Figure S11. Overlay of cyclic voltammograms for all complexes $\mathbf{1}^{2+} - \mathbf{8}^+$ recorded in acetonitrile (0.1 M Bu₄NPF₆) at a glassy carbon working electrode with scan rate of 50 mV s⁻¹.

Computational analysis of native $\mathbf{1}^{2+}$ - $\mathbf{8}^+$ complexes

All data was calculated with an acetonitrile polarizable continuum model using the B3LYP functional and 6-31g(d,p) (C,H,N,O) and LANL08 (Ru) basis sets.

1^{2+} [Ru(bpy)₃]²⁺

Figure SI-12. An overlay of experimental (acetonitrile) and theoretical spectra for 1^{2+} . TDDFT spectrum was calculated with an acetonitrile polarizable continuum model using the [B3LYP functional and 6-31g(d,p) (C,H,N,O), LANL08 (Ru) basis sets.

MO contributions (%)	oscillator strength (f)
H-2->L+5 (30%), H-1->L+4 (40%), H-1->L+6 (16%)	0.0765
H-2->L+4 (30%), H-2->L+6 (18%), H-1->L+5 (39%)	0.0773
HOMO->L+7 (29%), HOMO->L+8 (60%)	0.0272
H-1->L+3 (96%)	0.0116
H-2->LUMO (19%), H-2->L+1 (12%), H-2->L+2 (29%),	0.1297
H-1->L+1 (27%), H-1->L+2 (11%)	
H-2->L+1 (28%), H-2->L+2 (12%), H-1->LUMO (21%),	0.1261
H-1->L+1 (11%), H-1->L+2 (26%)	
H-1->LUMO (78%)	0.0135
H-2->LUMO (80%)	0.0117
	MO contributions (%) H-2->L+5 (30%), H-1->L+4 (40%), H-1->L+6 (16%) H-2->L+4 (30%), H-2->L+6 (18%), H-1->L+5 (39%) HOMO->L+7 (29%), HOMO->L+8 (60%) H-1->L+3 (96%) H-2->LUMO (19%), H-2->L+1 (12%), H-2->L+2 (29%), H-1->L+1 (27%), H-1->L+2 (11%) H-2->L+1 (28%), H-2->L+2 (12%), H-1->LUMO (21%), H-1->L+1 (11%), H-1->L+2 (26%) H-1->LUMO (78%) H-2->LUMO (80%)

Table SI-1 electronic transitions for 1^{2+} calculated by TD-DFT.

Fig. SI-13 Selected molecular orbitals for 1^{2+} .

Fig. SI-14 Percentage contributions of Ru and bpy fragments to molecular orbitals of 1^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (130) and LUMO (131) levels.

2^{+} [Ru(bpy)₂(OQN)]⁺

Figure SI-15. An overlay of experimental and theoretical spectra for 2^+ .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
309.70	H-3->L+3 (45%), H-2->L+4 (10%)	0.0313
344.15	H-3->L+2 (13%), H-1->L+5 (40%), H-1->L+10 (25%)	0.0319
349.63	H-2->L+3 (14%), H-1->L+5 (21%), H-1->L+6 (17%), H-1->L+10 (25%)	0.0556
372.62	H-2->L+2 (80%)	0.0967
399.64	H-3->LUMO (24%), H-3->L+1 (15%), HOMO->L+4 (33%)	0.0142
412.31	H-1->L+2 (82%)	0.0156
466.05	HOMO->L+2 (77%)	0.0825
512.94	H-2->L+1 (13%), H-1->LUMO (13%), H-1->L+1 (64%)	0.0468

Table SI-2 Electronic transitions for $\mathbf{2}^{\scriptscriptstyle +}$ calculated by TD-DFT.

Fig. SI-16 Selected molecular orbitals for 2^+ .

Fig. SI-17 Percentage contributions of Ru, OQN, and bpy fragments to molecular orbitals of 2^+ . Filled and valence levels are separated by a yellow row between the HOMO (127) and LUMO (128) levels.

3^{+} [Ru(bpy)₂(Me₂OQN)]⁺

Figure SI-18. An overlay of experimental and theoretical spectra for 3⁺.

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
309.02	H-2->L+5 (30%), H-1->L+4 (40%), H-1->L+6 (16%)	0.0765
309.05	H-2->L+4 (30%), H-2->L+6 (18%), H-1->L+5 (39%)	0.0773
317.42	HOMO->L+7 (29%), HOMO->L+8 (60%)	0.0272
334.35	H-1->L+3 (96%)	0.0116
417.99	H-2->LUMO (19%), H-2->L+1 (12%), H-2->L+2 (29%), H-1->L+1 (27%), H-1->L+2 (11%)	0.1297
418.5	H-2->L+1 (28%), H-2->L+2 (12%), H-1->LUMO (21%), H-1->L+1 (11%), H-1->L+2 (26%)	0.1261
434.82	H-1->LUMO (78%)	0.0135
435.4	H-2->LUMO (80%)	0.0117

Table SI-3 Electronic transitions for $\mathbf{3}^+$ calculated by TD-DFT.

Fig. SI-19 Selected molecular orbitals for 3^+ .

Fig. SI-20 Percentage contributions of Ru, Me_2OQN and bpy fragments to molecular orbitals of 3^+ . Filled and valence levels are separated by a yellow row between the HOMO (135) and LUMO (136) levels.

$\mathbf{4}^{+} [\operatorname{Ru}(\operatorname{bpy})_{2}(i-\operatorname{Ph}_{2}\operatorname{OQN})]^{+}$

Figure SI-21. An overlay of experimental and theoretical spectra for 4^+ .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
311.74	H-3(A)->L+3(A) (26%),H-3(B)->L+3(B) (26%)	0.0401
337.21	H(A)->L+7(A) (40%),H(B)->L+7(B) (40%)	0.0451
349.08	H-1(A)->L+5(A) (32%),H-1(B)->L+5(B) (32%)	0.0637
386.39	H-2(A)->L+2(A) (33%),H-2(B)->L+2(B) (33%)	0.09
393.15	H(A)->L+6(A) (24%),H(B)->L+6(B) (24%)	0.0313
397.15	H(A)->L+5(A) (29%),H(B)->L+5(B) (29%)	0.0304
447.88	H-2(A)->L+1(A) (32%),H-2(B)->L+1(B) (32%)	0.0738
485.03	H-2(A)->L(A) (41%),H-2(B)->L(B) (41%)	0.0323
499.02	H(A)->L+2(A) (45%),H(B)->L+2(B) (45%)	0.0762
529.53	H-1(A)->L(A) (45%),H-1(B)->L(B) (45%)	0.0341
		1

Table SI-4 Electronic transitions for $4^{\scriptscriptstyle +}$ calculated by TD-DFT.

Fig. SI-22 Selected molecular orbitals for 4^+ .

Fig. SI-23 Percentage contributions of Ru, OQN, *i*-Ph₂ and bpy fragments to molecular orbitals of 4^+ . Filled and valence levels are separated by a yellow row between the HOMO (167) and LUMO (168) levels.

$\mathbf{5}^+$ [Ru(bpy)₂(PhOQN)]⁺

Figure SI-24. An overlay of experimental and theoretical spectra for 5⁺.

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
306.12	H-3->L+5 (15%), HOMO->L+8 (76%)	0.2314
315.91	H-3->L+3 (34%)	0.0809
345.97	H-1->L+5 (46%), H-1->L+6 (21%), H-1->L+12 (14%)	0.0491
376.53	H-2->L+2 (87%)	0.1026
415.24	H-3->LUMO (10%), H-3->L+1 (41%), H-1->L+2 (37%)	0.0357
473.67	HOMO->L+2 (82%)	0.1222
476.9	H-2->LUMO (68%), H-2->L+1 (18%)	0.0638
516.53	H-2->L+1 (12%), H-1->LUMO (10%), H-1->L+1 (70%)	0.0337
604.38	HOMO->LUMO (19%), HOMO->L+1 (73%)	0.0251

Table SI-5 Electronic transitions for 5^+ calculated by TD-DFT.

Fig. SI-25 Selected molecular orbitals for 5^+ .

Fig. SI-26 Percentage contributions of Ru, OQN, Ph and bpy fragments to molecular orbitals of 5^+ . Filled and valence levels are separated by a yellow row between the HOMO (147) and LUMO (148) levels.

6^+ [Ru(bpy)₂(Ph₂OQN)]⁺

Figure SI-27. An overlay of experimental and theoretical spectra for 6^+ .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
310.78	HOMO->L+8 (58%)	0.1203
330.42	H-2->L+5 (80%)	0.0206
369.01	H-3->L+2 (16%), HOMO->L+7 (77%)	0.0815
386.68	H-2->L+2 (76%)	0.0869
420.21	H-3->LUMO (46%), H-3->L+1 (38%)	0.0277
454.25	H-2->LUMO (21%), H-2->L+1 (45%)	0.0477
490.82	H-2->L+1 (10%), HOMO->L+2 (85%)	0.1055
518.75	H-2->L+1 (10%), H-1->LUMO (11%), H-1->L+1 (69%)	0.0413
613.41	HOMO->LUMO (24%), HOMO->L+1 (68%)	0.0314

Table SI-6 Electronic transitions for 6^+ calculated by TD-DFT.

Fig. SI-28 Selected molecular orbitals for 6^+ .

Fig. SI-29 Percentage contributions of Ru, OQN, Ph_2 and bpy fragments to molecular orbitals of 6^+ . Filled and valence levels are separated by a yellow row between the HOMO (167) and LUMO (168) levels.

$7^{+} \{Ru(bpy)_{2}[(MeOPh)_{2}OQN]\}^{+}$

Figure SI-30. An overlay of experimental and theoretical spectra for 7^+ .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
306.73	H-3->L+5 (13%),H-3->L+6 (13%)	0.0979
330.71	H-2->L+5 (21%)	0.0786
333.05	H-4->L+2 (16%), H-2->L+5 (15%)	0.1373
335.14	H-4->L+2 (15%), H-2->L+6 (13%)	0.0734
369.8	H->L+7 (35%)	0.1016
384.23	H-2->L+2 (46%)	0.0648
435.46	H-3->L+1 (31%)	0.0553
479.77	H-2->L (38%)	0.0610
497.00	H->L+2 (44%)	0.1206
521.35	H-1->L+1 (36%)	0.0304
638.27	H->L+1 (42%)	0.0191
655.82	H->L (42%)	0.0079

Table SI-7 Electronic transitions for 7^+ calculated by TD-DFT.

Fig. SI-31 Selected molecular orbitals for 7^+ .

Fig. SI-32 Percentage contributions of Ru, OQN, (MeOPh)₂ and bpy fragments to molecular orbitals of 7^+ . Filled and valence levels are separated by a yellow row between the HOMO (182) and LUMO (183) levels.

$\mathbf{8}^+$ [Ru(bpy)₂(TPA₂OQN)]⁺

Figure SI-33. An overlay of experimental and theoretical spectra for $\mathbf{8}^+$.

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
319.66	H-1->L+11 (14%), HOMO->L+11 (82%)	0.1506
348.68	H-5->L+2 (16%), H-3->L+5 (26%), HOMO->L+8 (34%)	0.2696
373.02	H-4->L+2 (40%), H-2->L+2 (12%), H-1->L+3 (20%)	0.1781
389.12	H-4->L+2 (14%), HOMO->L+7 (74%)	0.3368
414.65	H-1->L+2 (92%)	0.0919
454.96	HOMO->L+3 (70%)	0.0614
476.76	H-4->LUMO (58%), H-4->L+1 (24%)	0.0146
510.11	HOMO->L+2 (84%)	0.1465
526.69	H-3->L+1 (70%)	0.027
645.1	HOMO->L+1 (86%), HOMO->LUMO (6%)	0.0202

Table SI-8 Electronic transitions for 8^+ calculated by TD-DFT.

Fig. SI-34 Selected molecular orbitals for 8^+ .

Fig. SI-35 Percentage contributions of Ru, OQN, TPA_2 and bpy fragments to molecular orbitals of 8^+ . Filled and valence levels are separated by a yellow row between the HOMO (255) and LUMO (256) levels.

UV-vis-NIR and EPR spectroelectrochemistry.

Figure SI-36. UV/Vis/NIR electronic absorption data of 1^{3+} recorded during controlled potential electrolysis (+1.60 V vs. SCE) of 1^{2+} in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-37. UV/Vis/NIR electronic absorption data of 2^{2+} recorded during controlled potential electrolysis (+0.75 V vs. SCE) of 2^+ in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-38. UV/Vis/NIR electronic absorption data of 3^{2+} recorded during controlled potential electrolysis (+0.65 V vs. SCE) of 3^+ in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-39. UV/Vis/NIR electronic absorption data of 4^{2+} recorded during controlled potential electrolysis (+0.75 V vs. SCE) of 4^+ in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-40. UV/Vis/NIR electronic absorption data of 5^{2+} recorded during controlled potential electrolysis (+0.76 V vs. SCE) of 5^+ in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-41. UV/Vis/NIR electronic absorption data of 6^{2+} recorded during controlled potential electrolysis (+0.70 V vs. SCE) of 6^+ in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-42. UV/Vis/NIR electronic absorption data of 7^{2+} recorded during controlled potential electrolysis (+0.70 V vs. SCE) of 7^+ in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-43. UV/Vis/NIR electronic absorption data of $\mathbf{8}^{2+}$ recorded during controlled potential electrolysis (+0.65 V vs. SCE) of $\mathbf{8}^{+}$ in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Computational analysis of one-electron oxidized complexes $\mathbf{1}^{3+}$ - $\mathbf{8}^{2+}$

All data was calculated with an acetonitrile polarizable continuum model using the B3LYP functional and 6-31g(d,p) (C,H,N,O) and LANL08 (Ru) basis sets.

$$1^{3+}$$
 [Ru(bpy)₃]³⁺

Figure SI-44. An overlay of experimental and theoretical spectra for $\mathbf{1}^{3+}$.

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
293.30	H-2(B)->L+3(B) (28%)	0.1701
293.55	H-2(B)->L+1(B) (21%), H-3(B)->L+3(B) (11%), H-1(B)->L+3(B) (10%)	0.0816
294.30	H-2(A)->L+2(A) (24%), H-1(A)->L+2(A) (10%), H-1(B)->L+3(B) (10%)	0.1179
294.47	H(B)->L+2(B) (11%)	0.1002
294.60	H-2(B)->L+3(B) (23%), H-1(B)->L+1(B) (14%), H-1(A)->L+2(A) (11%)	0.0559
406.10	H-7(B)->L(B) (93%)	0.0167
406.49	H-6(B)->L(B) (93%)	0.0175
686.05	H-1(B)->LUMO(B) (89%)	0.0029
687.35	HOMO(B)->LUMO(B) (89%)	0.0028

Table SI-9 Electronic transitions for 1^{3+} calculated by TD-DFT.

Fig. SI-45 Selected molecular orbitals for $\mathbf{1}^{3+}$.

Fig. SI-46 Percentage contributions of Ru and bpy fragments for α (left) and β (right) molecular orbitals of 1^{3+} . Filled and valence levels are separated by a yellow row between the HOMO (α 130)/LUMO (α 131) and HOMO (β 129)/LUMO (β 130) levels.

2^{2+} [Ru(bpy)₂(OQN)]²⁺

Figure SI-47. An overlay of experimental and theoretical spectra for 2^{2+} .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
293.86	H(B)->L+7(B) (23%), H-1(A)->L+3(A) (11%), H(A)->L+6(A) (11%)	0.0431
312.58	H-2(A)->L+2(A) (21%), H-2(B)->L+3(B) (16%)	0.0262
346.62	H-2(A)->L+1(A) (23%), H-2(A)->L(A) (19%), H-2(B)->L+1(B) (14%)	0.0306
358.65	H-6(B)->L(B) (26%), H(A)->L+2(A) (13%), H(B)->L+3(B) (12%)	0.0228
363.04	H-2(B)->L+2(B) (50%), H-1(A)->L(A) (15%)	0.0268
368.41	H-1(A)->L+1(A) (25%), H-2(B)->L+1(B) (23%), H-2(B)->L+2(B) (19%)	0.0200
375.24	H-1(A)->L(A) (45%), H-1(B)->L+1(B) (19%)	0.0208
471.55	H(A)->L+2(A) (56%), H(B)->L+3(B) (26%)	0.0295
914.47	H(B)->L(B) (58%), H-2(B)->L(B) (23%), H-1(B)->L(B) (15%)	0.1284

Table SI-10 Selected electronic transitions for 2^{2+} calculated by TD-DFT.

Fig. SI-48 Selected molecular orbitals for 2^{2+} .

Fig. SI-49 Percentage contributions of Ru, OQN and bpy fragments for α (left) and β (right) molecular orbitals of 2^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (α 127)/LUMO (α 128) and HOMO (β 126)/LUMO (β 127) levels.

3^{2+} [Ru(bpy)₂(Me₂OQN)]²⁺

Figure SI-50. An overlay of experimental and theoretical spectra for 3^{2+} .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
245.27	H-5(B)->L+3(B) (22%), H-6(A)->L+2(A) (16%), H-2(A)- >L+7(A) (13%)	0.2929
254.76	H-2(A)->L+7(A) (42%), H-2(B)->L+8(B) (31%)	0.1095
269.10	H-2(A)->L+6(A) (16%), H-2(A)->L+5(A) (10%)	0.3040
274.40	H-1(A)->L+6(A) (12%)	0.1241
336.04	H-2(B)->L+3(B) (34%), H-2(A)->L+2(A) (32%)	0.0503
367.71	H-6(B)->LUMO(B) (35%), H-2(A)->L+1(A) (12%), H- 1(A)->L+2(A) (12%)	0.0327
381.96	H-1(A)->LUMO(A) (12%), H-3(B)->L+2(B) (12%), H- 1(A)->L+1(A) (10%)	0.0288
403.60	H-1(A)->LUMO(A) (30%), H-1(B)->L+1(B) (19%)	0.0251
486.32	HOMO(A)->L+2(A) (60%), HOMO(B)->L+3(B) (17%)	0.0443
993.30	HOMO(B)->LUMO(B) (56%), H-2(B)->LUMO(B) (23%), H-1(B)->LUMO(B) (18%)	0.1462

Table SI-11 Electronic transitions for 3^{2+} calculated by TD-DFT.

Fig. SI-51 Selected molecular orbitals for $\mathbf{3}^{2+}$.

Fig. SI-52 Percentage contributions of Ru, Me₂OQN and bpy fragments for α (left) and β (right) molecular orbitals of 3^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (α 135)/LUMO (α 136) and HOMO (β 134)/LUMO (β 135) levels.

4^{2+} [Ru(bpy)₂(*i*-Ph₂OQN)]²⁺

Figure SI-53. An overlay of experimental and theoretical spectra for 4^{2+} .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
319.44	H-2(A)->L+2(A) (37%), H-2(B)->L+3(B) (30%)	0.1459
350.48	H-10(B)->L(B) (52%), H-1(B)->L+3(B) (11%)	0.0171
371.43	H-1(A)->L(A) (46%), H-2(B)->L+1(B) (11%), H-1(B)->L+1(B) (10%)	0.0263
381.58	H(B)->L+3(B) (50%), H(A)->L+2(A) (26%)	0.1034
393.35	H-1(B)->L+1(B) (46%)	0.0217
488.14	H(A)->L+2(A) (45%), H(B)->L+3(B) (24%)	0.0373
875.90	H(B)->L(B) (50%), H-2(B)->L(B) (37%)	0.1364

Table SI-12 Electronic transitions for 4^{2+} calculated by TD-DFT.

Fig. SI-54 Selected molecular orbitals for 4^{2+} .

Fig. SI-55 Percentage contributions of Ru, OQN, *i*-Ph₂ and bpy fragments for α (left) and β (right) molecular orbitals of 4^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (α 167)/LUMO (α 168) and HOMO (β 166)/LUMO (β 167) levels.

5^{2+} [Ru(bpy)₂(PhOQN)]²⁺

Figure SI-56. An overlay of experimental and theoretical spectra for 5^{2+} .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
290.79	H(B)->L+8(B) (17%), H-16(B)->L(B) (15%)	0.0417
292.50	H-1(B)->L+6(B) (17%)	0.0304
295.39	H-17(B)->L(B) (11%), H-4(B)->L+3(B) (11%)	0.0298
328.40	H-2(A)->L+2(A) (30%), H-2(B)->L+3(B) (25%), H(B)->L+4(B) (11%)	0.0602
357.51	H-1(A)->L+2(A) (35%), H-2(A)->L+1(A) (22%), H-2(A)->L(A) (14%)	0.0248
375.46	H-2(B)->L+2(B) (18%), H-1(A)->L(A) (16%), H-1(A)->L+1(A) (14%)	0.0219
391.37	H(B)->L+3(B) (41%), H-10(B)->L(B) (14%), H(A)->L+2(A) (13%)	0.0509
490.32	H-7(B)->L(B) (38%), H(A)->L+2(A) (32%), H(B)->L+3(B) (12%)	0.0714
526.00	H-4(B)->LUMO(B) (92%)	0.0119
1033.37	HOMO(B)->LUMO(B) (70%), H-2(B)->LUMO(B) (15%), H-1(B)- >LUMO(B) (10%)	0.2117

Table SI-13 Electronic transitions for 5^{2+} calculated by TD-DFT.

Fig. SI-57 Selected molecular orbitals for $\mathbf{5}^{2+}$.

Fig. SI-58 Percentage contributions of Ru, OQN, Ph and bpy fragments for α (left) and β (right) molecular orbitals of 5^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (α 147)/LUMO (α 148) and HOMO (β 146)/LUMO (β 147) levels.

6^{2+} [Ru(bpy)₂(Ph₂OQN)]²⁺

Figure SI-59. An overlay of experimental and theoretical spectra for 6^{2+} .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
300.09	H(B)->L+8(B) (21%)	0.1508
346.96	H-2(B)->L+3(B) (29%), H-2(A)->L+2(A) (27%), H(A)->L+3(A) (11%)	0.0375
368.42	H-2(A)->L+1(A) (34%), H-2(A)->L(A) (10%)	0.0256
405.56	H(B)->L+3(B) (38%), H-1(A)->L+1(A) (12%), H-1(B)->L+2(B) (11%)	0.0338
408.07	H-1(A)->L(A) (40%), H-1(B)->L+1(B) (22%)	0.0261
506.12	H(A)->L+2(A) (43%), H-6(B)->L(B) (32%)	0.0918
680.67	H-3(B)->L(B) (95%)	0.0638
1062.14	H(B)->L(B) (64%), H-2(B)->L(B) (19%), H-1(B)->L(B) (13%)	0.1997

Table SI-14 Electronic transitions for 6^{2+} calculated by TD-DFT.

Fig. SI-60 Selected molecular orbitals for 6^{2+} .

Fig. SI-61 Percentage contributions of Ru, Ph₂, OQN and bpy fragments for α (left) and β (right) molecular orbitals of 6^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (α 167)/LUMO (α 168) and HOMO (β 166)/LUMO (β 167) levels.

$7^{2+} \{Ru(bpy)_2[(MeOPh)_2OQN]\}^{2+}$

Figure SI-62. An overlay of experimental and theoretical spectra for 7^{2+} .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
305.97	H-1(B)->L+4(B) (52%)	0.0427
336.34	H(B)->L+10(B) (11%)	0.0362
340.17	H(A)->L+8(A) (13%)	0.0407
341.55	H(A)->L+5(A) (14%)	0.0800
363.42	H-4(A)->L+1(A) (30%), H(A)->L+3(A) (13%)	0.0475
368.31	H-1(B)->L+3(B) (31%), H-10(B)->L(B) (17%)	0.0378
387.63	H-3(A)->L+1(A) (16%)	0.0274
403.15	H-3(A)->L(A) (40%)	0.0348
532.64	H(A)->L+2(A) (64%), H(A)->L(A) (13%)	0.1372
944.63	H-1(B)->L(B) (91%)	0.1378
1102.86	H(B)->L(B) (55%), H-3(B)->L(B) (22%), H-2(B)->L(B) (15%)	0.2047

Table SI-15 Electronic transitions for 7^{2+} calculated by TD-DFT.

Fig. SI-63 Selected molecular orbitals for 7^{2+} .

Fig. SI-64 Percentage contributions of Ru, OQN, (MeOPh)₂ and bpy fragments for α (top) and β (bottom) molecular orbitals of 3^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (α 183)/LUMO (α 184) and HOMO (β 182)/LUMO (β 183) levels.

Figure SI-65. An overlay of experimental and theoretical spectra for 8^{2+} .

electronic transition (nm)	MO contributions (%)	oscillator strength (f)
300.63	HOMO(A)->L+11(A) (26%), HOMO(B)->L+12(B) (23%), H-5(B)->L+2(B) (12%), H-1(A)->L+11(A) (10%)	0.0898
301.74	HOMO(A)->L+12(A) (39%), HOMO(B)->L+13(B) (40%)	0.1557
326.90	HOMO(B)->L+9(B) (15%)	0.1016
337.50	HOMO(A)->L+8(A) (16%)	0.1431
360.31	H-1(A)->L+3(A) (44%), HOMO(B)->L+6(B) (15%)	0.0608
376.89	H-3(B)->L+3(B) (20%), H-4(A)->L+2(A) (10%), HOMO(B)->L+4(B) (10%)	0.1045
401.98	HOMO(A)->L+8(A) (16%), HOMO(B)->L+9(B) (14%)	0.0709
418.09	HOMO(A)->L+3(A) (18%), H-17(B)->LUMO(B) (17%), HOMO(A)- >L+4(A) (15%), H-2(A)->L+2(A) (13%)	0.0764
459.55	H-1(A)->L+2(A) (41%), H-1(A)->LUMO(A) (18%), H-1(A)->L+1(A) (15%), HOMO(B)->L+3(B) (13%)	0.0864
581.18	HOMO(A)->L+2(A) (51%), HOMO(A)->LUMO(A) (24%)	0.1481
1346.62	H-1(B)->LUMO(B) (58%), H-2(B)->LUMO(B) (36%)	0.1725
1431.02	H-2(B)->LUMO(B) (61%), H-1(B)->LUMO(B) (35%)	0.0870
1713.90	HOMO(B)->LUMO(B) (99%)	0.3442

Table SI-16 Electronic transitions for 8^{2+} calculated by TD-DFT.

Fig. SI-66 Selected molecular orbitals for $\mathbf{8}^{2+}$.

Fig. SI-67 Percentage contributions of Ru, OQN, TPA₂ and bpy fragments for α (left) and β (right) molecular orbitals of 8^{2+} . Filled and valence levels are separated by a yellow row between the HOMO (α 255)/LUMO (α 256) and HOMO (β 254)/LUMO (β 255) levels.

Figure SI-68. UV/Vis-NIR electronic absorption spectra of 7^+ (blue), 7^{2+} (red) and 7^{3+} (green) prepared in-situ by controlled potential electrolysis in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-69. Overlay of experimental (blue) and theoretical (red) line and curve spectra for 7^{3+} .

Fig. SI-70 Percentage contributions of Ru, OQN, (MeOPh)₂ and bpy fragments for frontier molecular orbitals of 7^{3+} . Filled and valence levels are separated by a yellow row between the HOMO (254) and LUMO (255) levels.

Figure SI-71. UV/Vis-NIR electronic absorption spectra of $\mathbf{8}^+$ (blue), $\mathbf{8}^{2+}$ (red) and $\mathbf{8}^{3+}$ (green) prepared in-situ by controlled potential electrolysis in 0.1 M Bu₄NPF₆ acetonitrile electrolyte.

Figure SI-72. Overlay of experimental (blue) and theoretical (red) line and curve spectra for 8^{3+} .

Fig. SI-73 Percentage contributions of Ru, OQN, TPA₂ and bpy fragments for frontier molecular orbitals of 8^{3+} . Filled and valence levels are separated by a yellow row between the HOMO (254) and LUMO (255) levels.

Table SI-17. Cartesian coordinates of the optimized complexes $1^{2+} - 8^+$.

$1^{2+} [Ru(bpy)_3]^{2+}$				
Тад	Symbol	Х	Y	Z
1	С	-1.32034	0.968148	2.106893
2	С	0.081877	2.036956	0.575745
3	С	-0.15527	3.268077	1.194069
4	С	-0.99974	3.334192	2.297905
5	С	-1.59334	2.162284	2.763909
6	Н	-1.75796	0.034736	2.437727
7	Н	0.312605	4.168904	0.818529
8	Н	-1.18899	4.285074	2.78376
9	Н	-2.25778	2.162562	3.620058
10	С	1.836125	0.366253	-2.15602
11	С	2.556038	1.370619	-2.79252
12	С	2.468235	2.672047	-2.30113
13	С	1.663347	2.920769	-1.19371
14	С	0.961996	1.869033	-0.59687
15	Н	1.87318	-0.65751	-2.50626
16	Н	3.168864	1.127543	-3.65265
17	Н	3.015826	3.482063	-2.77026
18	Н	1.585066	3.925572	-0.79909
19	С	-4.18246	-1.23682	-1.19275
20	С	-2.9186	-1.34198	-0.6046
21	С	-2.04561	0.179701	-2.14629
22	С	-3.27671	0.322032	-2.7757
23	С	-4.36587	-0.39786	-2.28754
24	Н	-5.01857	-1.80062	-0.79984
25	Н	-1.17337	0.719208	-2.49309
26	Н	-3.36929	0.986188	-3.62703
27	Н	-5.3431	-0.30977	-2.74942
28	С	-1.90032	-3.76373	2.713567
29	С	-1.00302	-2.9141	2.077163
30	С	-2.62591	-2.21084	0.552078
31	С	-3.57223	-3.04973	1.148055
32	С	-3.20885	-3.83385	2.238553
33	Н	-1.57038	-4.3543	3.560196
34	Н	0.022389	-2.82952	2.414241
35	Н	-4.5833	-3.0958	0.764532
36	Н	-3.9364	-4.48773	2.706664
37	С	0.583627	-4.22139	-2.81302
38	С	1.765014	-4.78774	-2.33742
39	С	2.390444	-4.21434	-1.23478

40	С	1.828008	-3.08814	-0.62706
41	С	0.071023	-3.10302	-2.16581
42	Н	0.060486	-4.63189	-3.66873
43	Н	2.19475	-5.66166	-2.81457
44	Н	3.307042	-4.64471	-0.85231
45	Н	-0.8433	-2.63104	-2.50287
46	С	3.620456	-2.80797	1.140874
47	С	4.102462	-2.11386	2.246423
48	С	3.371664	-1.03199	2.735077
49	С	2.18749	-0.68289	2.096516
50	С	2.420901	-2.41092	0.542614
51	Н	4.175863	-3.64981	0.748415
52	Н	5.032281	-2.41485	2.716432
53	Н	3.705221	-0.46148	3.593946
54	Н	1.587623	0.149447	2.442537
55	Ru	-0.04565	-0.8646	-0.03232
56	Ν	-1.34697	-2.15159	1.021232
57	Ν	-1.8606	-0.62873	-1.08489
58	Ν	-0.50245	0.895608	1.039053
59	Ν	1.054493	0.599123	-1.08417
60	Ν	1.715386	-1.34916	1.025473
61	Ν	0.670804	-2.54155	-1.09822

$2^{+} [Ru(bpy)_2(OQN)]^{+}$

Tag	` I	Symbol	x	Y	Z
-	1	Ru	-3.84734	-0.77366	1.140099
	2	С	-5.22869	1.091841	-0.69739
	3	С	-2.91879	1.389865	-0.86806
	4	С	-3.06885	2.403025	-1.80604
	5	С	-4.35702	2.77275	-2.19656
	6	С	-5.44181	2.107421	-1.63601
	7	С	-6.31468	0.318593	-0.0665
	8	С	-6.81158	-1.42889	1.412352
	9	С	-8.17698	-1.27849	1.199155
	10	С	-8.61695	-0.28708	0.320389
	11	С	-7.67654	0.516018	-0.31829
	12	Н	-1.93822	1.07265	-0.53244
	13	Н	-2.19098	2.888623	-2.21766
	14	Н	-4.5136	3.561341	-2.92489
	15	Н	-6.44985	2.375403	-1.92856
	16	Н	-6.39709	-2.17581	2.081102
	17	Н	-8.87602	-1.92556	1.7172

18	Н	-9.67578	-0.1407	0.134235
19	Н	-8.0022	1.288701	-1.00421
20	С	-1.20089	-1.99469	0.660509
21	С	0.158626	-2.29469	0.79853
22	С	0.948896	-1.54254	1.660715
23	С	0.360357	-0.49547	2.370247
24	С	-0.9943	-0.24467	2.191019
25	С	-2.11402	-2.72581	-0.23622
26	С	-1.71933	-3.80486	-1.03466
27	С	-2.64511	-4.42742	-1.86446
28	С	-3.95691	-3.9534	-1.88178
29	С	-4.2896	-2.88121	-1.06393
30	Н	0.59758	-3.11242	0.240483
31	Н	2.002978	-1.77116	1.777469
32	Н	0.933656	0.116411	3.057675
33	Н	-1.49697	0.550716	2.728226
34	Н	-0.69671	-4.1603	-1.00655
35	Н	-2.34815	-5.26695	-2.4841
36	Н	-4.71512	-4.40554	-2.51128
37	Н	-5.2986	-2.48811	-1.03522
38	Ν	-5.9003	-0.64919	0.798164
39	Ν	-3.96397	0.742411	-0.31182
40	Ν	-1.76701	-0.96838	1.357227
41	Ν	-3.40014	-2.27374	-0.25558
42	С	-4.27456	-2.48816	4.990509
43	С	-4.16828	-1.71276	3.830689
44	С	-4.20777	-0.28562	3.988255
45	С	-4.35435	0.322839	5.273504
46	С	-4.45698	-0.50778	6.412628
47	С	-4.41486	-1.88324	6.252683
48	Н	-4.24561	-3.56876	4.894799
49	С	-4.38558	1.7416	5.311937
50	Н	-4.56745	-0.05981	7.394664
51	Н	-4.49283	-2.52221	7.127912
52	С	-4.27918	2.467338	4.145817
53	С	-4.13506	1.789341	2.917245
54	Н	-4.49459	2.244816	6.268708
55	Н	-4.30306	3.551673	4.151976
56	н	-4.0463	2.335832	1.98418
57	Ν	-4.09554	0.461651	2.838488
58	0	-4.05478	-2.22558	2.621679

$\mathbf{3}^{+}$ [Ru(bpy)₂(Me₂OQN)]⁺

Тад	Symbol	Х	Y	Z
1	Ru	-0.46814	0.307039	0.362723
2	С	-0.82471	2.938667	1.999184
3	С	-0.80287	4.33664	2.176515
4	С	-0.46192	5.149499	1.117539
5	С	-0.14006	4.58305	-0.14489
6	Н	-1.0856	2.276346	2.817004
7	н	-1.05344	4.75028	3.147124
8	Н	-0.43898	6.22665	1.245935
9	С	3.49252	-1.3724	0.460952
10	С	2.125846	-1.11331	0.313937
11	С	3.747598	0.769377	1.51006
12	С	4.313706	-0.42438	1.062323
13	Н	3.913631	-2.3058	0.109405
14	н	4.345606	1.538028	1.986042
15	Н	5.374778	-0.61608	1.1795
16	С	0.569866	-4.15983	-1.32084
17	С	-0.75451	-3.72337	-1.35491
18	С	-1.05602	-2.46293	-0.85402
19	С	1.173832	-2.06273	-0.29103
20	С	1.539525	-3.32003	-0.78308
21	Н	0.844434	-5.13637	-1.70468
22	Н	-1.54626	-4.34167	-1.76207
23	Н	-2.07002	-2.08283	-0.86574
24	Н	2.572446	-3.6422	-0.74664
25	С	-3.32795	0.016351	1.049446
26	С	-4.72074	0.069761	0.933832
27	С	-5.29467	0.495464	-0.26042
28	С	-4.46342	0.858756	-1.32101
29	С	-3.08634	0.786722	-1.14714
30	Н	-5.35211	-0.21662	1.765545
31	Н	-6.37377	0.541222	-0.36004
32	Н	-4.86871	1.194542	-2.26868
33	Н	-2.3846	1.052984	-1.92943
34	С	-0.52646	-0.81263	3.237904
35	С	-1.10872	-1.25843	4.417936
36	С	-2.50038	-1.28594	4.513073
37	С	-3.25519	-0.86975	3.42132
38	С	-2.61262	-0.43218	2.258825
39	Н	0.549762	-0.77224	3.122724
40	Н	-0.47719	-1.5749	5.240166
41	Н	-2.99015	-1.62643	5.418842

42	Н	-4.33657	-0.88729	3.473458
43	Ν	-0.12288	-1.64205	-0.33382
44	Ν	-0.52442	2.366518	0.836348
45	Ν	1.581325	0.0581	0.75125
46	Ν	-1.24903	-0.40187	2.175716
47	Ν	-2.52744	0.37824	0.008199
48	С	2.383791	0.969964	1.335029
49	Н	1.901343	1.881286	1.666207
50	С	0.459632	3.237002	-2.58175
51	С	-0.18931	3.156677	-0.24051
52	С	0.110072	2.465453	-1.46087
53	0	0.03549	1.148914	-1.49899
54	С	0.220096	5.341283	-1.29499
55	С	0.504719	4.642328	-2.46096
56	Н	0.780896	5.212052	-3.34673
57	С	0.773999	2.548445	-3.88419
58	Н	1.594836	1.830344	-3.76875
59	Н	-0.08612	1.975176	-4.25171
60	Н	1.056285	3.269709	-4.65593
61	С	0.288327	6.849482	-1.25021
62	Н	-0.67642	7.299811	-0.98503
63	Н	1.019602	7.210163	-0.51601
64	н	0.579075	7.248435	-2.22562

$4^{+} \left[\text{Ru}(\text{bpy})_{2}(i-\text{Ph}_{2}\text{OQN}) \right]^{+}$					
Tag	Symbol	Х	Y	Z	
1	Ru	-1.47265	0.008746	1.223982	
2	С	-3.21475	1.674536	-0.48742	
3	С	-2.45696	2.937133	1.321716	
4	С	-3.1684	4.054799	0.902553	
5	С	-3.93093	3.967508	-0.26203	
6	С	-3.9521	2.764863	-0.96063	
7	С	-3.17085	0.364107	-1.16119	
8	С	-2.28528	-1.7958	-1.12406	
9	С	-2.96864	-2.14862	-2.28159	
10	С	-3.78413	-1.19843	-2.89503	
11	С	-3.88437	0.067328	-2.32677	
12	Н	-1.85631	2.958126	2.221879	
13	Н	-3.12108	4.968699	1.48347	
14	Н	-4.49957	4.818438	-0.62098	
15	Н	-4.53788	2.677683	-1.86684	
16	Н	-1.64847	-2.50553	-0.61165	

17	Н	-2.85962	-3.1491	-2.68407
18	Н	-4.3353	-1.43717	-3.79809
19	Н	-4.51627	0.816505	-2.7865
20	С	1.107727	-0.84305	0.049867
21	С	2.191682	-0.90296	-0.83122
22	С	2.472741	0.184066	-1.65243
23	С	1.662968	1.315964	-1.56725
24	С	0.595998	1.311777	-0.67635
25	С	0.73105	-1.94712	0.951537
26	С	1.508703	-3.09125	1.157916
27	С	1.058119	-4.0809	2.026238
28	С	-0.16735	-3.90835	2.671604
29	С	-0.89325	-2.74797	2.431227
30	Н	2.802964	-1.79541	-0.88516
31	Н	3.307098	0.146339	-2.34447
32	Н	1.844598	2.191115	-2.18068
33	Н	-0.05912	2.168874	-0.5818
34	Н	2.459922	-3.20365	0.652989
35	Н	1.654604	-4.97084	2.195768
36	Н	-0.55902	-4.65532	3.352571
37	Н	-1.85462	-2.56155	2.894533
38	Ν	-2.46819	1.769292	0.649856
39	Ν	-2.37495	-0.57185	-0.56914
40	Ν	-0.45737	-1.7838	1.597626
41	Ν	0.3055	0.25911	0.11119
42	С	-4.33543	-0.51412	4.315445
43	С	-3.23777	-0.21968	3.495263
44	С	-2.12147	0.482505	4.07604
45	С	-2.16486	0.898307	5.44611
46	С	-3.29414	0.561228	6.232902
47	С	-4.34827	-0.13333	5.664302
48	С	-1.03233	1.620074	5.948625
49	Н	-5.20827	-0.39224	6.276478
50	С	0.034111	1.809918	5.093496
51	С	0.02318	1.346604	3.755387
52	Н	0.909902	2.351048	5.433182
53	Ν	-1.03721	0.713111	3.243367
54	0	-3.19414	-0.58359	2.235632
55	С	1.256454	1.617859	2.954222
56	С	2.287697	0.66967	2.902874
57	С	1.463704	2.882909	2.385441
58	С	3.495643	0.974003	2.271892
59	Н	2.148602	-0.30105	3.369576

60	С	2.671031	3.185164	1.753217
61	Н	0.683493	3.635926	2.446636
62	С	3.689516	2.231175	1.694873
63	Н	4.287483	0.231452	2.239408
64	Н	2.817683	4.167649	1.31417
65	Н	4.631664	2.468635	1.209744
66	С	-0.96005	2.162426	7.331653
67	С	0.163642	1.89299	8.131542
68	С	-1.96919	2.995151	7.846642
69	С	0.271089	2.431685	9.414145
70	Н	0.947422	1.245696	7.749211
71	С	-1.85576	3.539697	9.126012
72	Н	-2.83433	3.230942	7.235205
73	С	-0.73791	3.257234	9.915285
74	Н	1.142278	2.204527	10.02153
75	Н	-2.63996	4.188889	9.504251
76	Н	-0.65379	3.678326	10.91274
77	Н	-5.17131	-1.05386	3.880532
78	Н	-3.31909	0.836947	7.279121

$\mathbf{5}^{\scriptscriptstyle +} \left[Ru(bpy)_2(PhOQN) \right]^{\scriptscriptstyle +}$

Tag	-	Symbol	Х	Y	Z
	1	Ru	-3.85827	-0.81781	1.184921
	2	С	-5.25329	0.959177	-0.72065
	3	С	-2.94968	1.329049	-0.83405
	4	С	-3.10726	2.310982	-1.80423
	5	С	-4.39442	2.623828	-2.24194
	6	С	-5.47388	1.938957	-1.69363
	7	С	-6.3326	0.176972	-0.08928
	8	С	-6.82759	-1.52071	1.443029
	9	С	-8.19025	-1.41194	1.191778
	10	С	-8.62916	-0.46693	0.263364
	11	С	-7.69121	0.33302	-0.38235
	12	Н	-1.96912	1.057556	-0.46277
	13	Н	-2.23399	2.815035	-2.20211
	14	Н	-4.55633	3.385345	-2.99698
	15	Н	-6.48068	2.164299	-2.02204
	16	Н	-6.42187	-2.2345	2.150687
	17	Н	-8.88646	-2.05596	1.716666
	18	Н	-9.68524	-0.3536	0.043625
	19	Н	-8.01602	1.070314	-1.10578
	20	С	-1.15967	-1.88616	0.605558

21	С	0.220792	-2.09861	0.68158
22	С	0.99172	-1.32429	1.542544
23	С	0.36362	-0.34523	2.312125
24	С	-1.01137	-0.18234	2.194407
25	С	-2.0566	-2.64408	-0.28636
26	С	-1.61926	-3.65515	-1.1483
27	С	-2.53541	-4.31272	-1.96255
28	С	-3.8787	-3.94344	-1.89888
29	С	-4.25312	-2.93225	-1.0225
30	Н	0.691793	-2.8622	0.075715
31	Н	2.062584	-1.48288	1.608917
32	Н	0.921286	0.284257	2.995977
33	Н	-1.54122	0.564306	2.77293
34	Н	-0.57232	-3.92802	-1.18521
35	Н	-2.205	-5.09836	-2.63328
36	Н	-4.63028	-4.42588	-2.5131
37	Н	-5.28593	-2.61815	-0.93796
38	Ν	-5.91694	-0.74718	0.821444
39	Ν	-3.98979	0.662523	-0.29313
40	Ν	-1.766	-0.92973	1.365318
41	Ν	-3.37277	-2.29078	-0.22981
42	С	-4.27499	-2.4302	5.100563
43	С	-4.16375	-1.69159	3.916241
44	С	-4.23603	-0.2588	4.035269
45	С	-4.39952	0.391894	5.298219
46	С	-4.47352	-0.40304	6.486619
47	С	-4.42302	-1.78871	6.338814
48	Н	-4.23002	-3.51377	5.046775
49	С	-4.52666	1.808251	5.265075
50	Н	-4.47797	-2.40424	7.232911
51	С	-4.45112	2.486551	4.069209
52	С	-4.24966	1.769707	2.873547
53	Н	-4.69226	2.35182	6.187903
54	Н	-4.54775	3.565845	4.028879
55	Н	-4.17363	2.280577	1.920378
56	Ν	-4.14954	0.444098	2.854645
57	0	-4.01813	-2.23913	2.73206
58	С	-4.6017	0.189778	7.844767
59	С	-5.596	-0.26983	8.728083
60	С	-3.71551	1.180426	8.308666
61	С	-5.70354	0.24195	10.02188
62	Н	-6.29711	-1.02677	8.387981
63	С	-3.82727	1.698298	9.599902

64	Н	-2.91781	1.530747	7.66008
65	С	-4.82193	1.231859	10.46297
66	Н	-6.48265	-0.12754	10.68286
67	Н	-3.12772	2.458923	9.935249
68	Н	-4.90743	1.633705	11.46833

$\mathbf{6}^{+} [Ru(bpy)_2(Ph_2OQN)]^{+}$

Tag		Symbol	Х	Y	Z
	1	Ru	-1.74559	0.153101	1.153226
	2	С	-3.05938	1.668439	-1.01685
	3	С	-2.29879	3.142606	0.625387
	4	С	-2.83701	4.237794	-0.03842
	5	С	-3.51384	4.028807	-1.2406
	6	С	-3.62202	2.732249	-1.73094
	7	С	-3.1118	0.264669	-1.46301
	8	С	-2.48253	-1.93267	-0.99571
	9	С	-3.08814	-2.40664	-2.15221
	10	С	-3.73332	-1.49807	-2.9914
	11	С	-3.74216	-0.15275	-2.64049
	12	Н	-1.77337	3.253988	1.566249
	13	Н	-2.7298	5.229462	0.38675
	14	Н	-3.95067	4.859023	-1.78546
	15	Н	-4.14406	2.549968	-2.66215
	16	Н	-1.98105	-2.60335	-0.30875
	17	Н	-3.05596	-3.46594	-2.38108
	18	Н	-4.22245	-1.8304	-3.90095
	19	Н	-4.24038	0.566857	-3.27837
	20	С	0.975725	-0.99913	0.985631
	21	С	2.327905	-1.15468	0.660844
	22	С	2.957676	-0.22084	-0.15465
	23	С	2.214481	0.858073	-0.63659
	24	С	0.876742	0.962109	-0.27847
	25	С	0.221199	-1.94797	1.825916
	26	С	0.765222	-3.10127	2.401182
	27	С	-0.04634	-3.93814	3.161426
	28	С	-1.3921	-3.60783	3.330046
	29	С	-1.87878	-2.4488	2.736534
	30	Н	2.885217	-2.00198	1.041725
	31	Н	4.005783	-0.33408	-0.41064
	32	Н	2.658962	1.610172	-1.27898
	33	Н	0.26199	1.784559	-0.62509
	34	Н	1.811103	-3.34511	2.259326

35	Н	0.365979	-4.83383	3.614106
36	Н	-2.05888	-4.23244	3.913984
37	Н	-2.91202	-2.12951	2.824086
38	Ν	-2.39961	1.882393	0.157677
39	Ν	-2.48657	-0.63164	-0.64748
40	Ν	-1.0927	-1.63541	2.004159
41	Ν	0.256831	0.066271	0.517915
42	С	-4.89811	0.557571	3.983723
43	С	-3.72125	0.572147	3.203677
44	С	-2.5551	1.193056	3.763023
45	С	-2.55937	1.82986	5.044202
46	С	-3.77946	1.861608	5.784851
47	С	-4.8808	1.216616	5.236701
48	С	-1.3212	2.345817	5.506631
49	Н	-5.8129	1.254221	5.791992
50	С	-0.18925	2.247789	4.725549
51	С	-0.2726	1.627413	3.465179
52	Н	-1.27244	2.807485	6.486443
53	Н	0.765606	2.6317	5.067774
54	Н	0.598854	1.536984	2.825265
55	Ν	-1.40932	1.117512	2.998799
56	0	-3.62935	0.003826	2.016425
57	С	-4.41526	1.866099	8.212343
58	С	-3.8976	2.549691	7.098978
59	С	-3.53979	3.900547	7.256813
60	С	-3.68582	4.541254	8.48734
61	С	-4.19879	3.847069	9.584604
62	С	-4.56617	2.507856	9.441297
63	Н	-4.68705	0.819102	8.112051
64	Н	-3.17116	4.459373	6.401012
65	Н	-3.4107	5.587526	8.585233
66	Н	-4.31446	4.346504	10.54177
67	Н	-4.96499	1.959063	10.28954
68	С	-8.53047	-1.39851	2.741696
69	С	-7.7362	-0.73733	1.802579
70	С	-6.55103	-0.11434	2.189842
71	С	-6.13527	-0.12907	3.534254
72	С	-6.94468	-0.80376	4.467367
73	С	-8.12693	-1.43081	4.077395
74	Н	-9.45218	-1.88477	2.436002
75	Н	-8.04441	-0.70234	0.761092
76	Н	-5.94071	0.394378	1.454224
77	Н	-6.63477	-0.85428	5.507153

$\mathbf{7}^+ \{ Ru(bpy)_2[(MeOPh)_2OQN] \}^+$

Tag		Symbol	Х	Y	Z
	1	Ru	-1.59077	-0.06615	1.190042
	2	С	-2.99992	1.683746	-0.7368
	3	С	-2.25689	2.94623	1.08064
	4	С	-2.82232	4.107219	0.56746
	5	С	-3.50508	4.041339	-0.64701
	6	С	-3.59162	2.817697	-1.30294
	7	С	-3.02281	0.349704	-1.36456
	8	С	-2.342	-1.87637	-1.19101
	9	С	-2.939	-2.20455	-2.40213
	10	С	-3.60509	-1.20708	-3.11381
	11	С	-3.64496	0.080014	-2.58797
	12	Н	-1.71932	2.949928	2.020743
	13	Н	-2.7267	5.037462	1.115566
	14	Н	-3.96168	4.925756	-1.0779
	15	Н	-4.11613	2.747721	-2.24735
	16	Н	-1.8198	-2.62113	-0.60334
	17	Н	-2.87978	-3.22219	-2.77064
	18	Н	-4.08528	-1.4253	-4.06151
	19	Н	-4.15658	0.867274	-3.127
	20	С	1.147985	-1.04926	0.664313
	21	С	2.47177	-1.09306	0.215693
	22	С	2.993807	-0.02244	-0.50258
	23	С	2.17439	1.076579	-0.76174
	24	С	0.868263	1.064711	-0.28856
	25	С	0.504588	-2.14008	1.419776
	26	С	1.14479	-3.3303	1.779961
	27	С	0.440714	-4.30394	2.481888
	28	С	-0.89527	-4.06976	2.810118
	29	С	-1.4776	-2.86772	2.42612
	30	Н	3.090017	-1.95723	0.423706
	31	Н	4.01946	-0.04778	-0.85411
	32	Н	2.533506	1.933533	-1.32003
	33	Н	0.199056	1.897747	-0.46457
	34	Н	2.181539	-3.49734	1.516197
	35	н	0.928308	-5.23006	2.766444
	36	н	-1.48137	-4.8009	3.355005
	37	н	-2.50961	-2.62507	2.650158
	38	Ν	-2.33788	1.756591	0.453167

39	Ν	-2.37744	-0.63304	-0.67356
40	Ν	-0.79965	-1.9219	1.748469
41	Ν	0.35442	0.034601	0.414337
42	С	-4.59649	-0.04213	4.234246
43	С	-3.45097	0.031002	3.406265
44	С	-2.25031	0.586533	3.972825
45	С	-2.17726	1.050857	5.322284
46	С	-3.35164	0.976829	6.134718
47	С	-4.49442	0.429804	5.564597
48	С	-0.91197	1.513807	5.771736
49	Н	-5.38036	0.359205	6.188886
50	С	0.162145	1.547965	4.910196
51	С	-0.00319	1.1142	3.581128
52	Н	-0.79554	1.83579	6.800095
53	Н	1.134573	1.90007	5.235998
54	Н	0.819649	1.143468	2.876042
55	Ν	-1.16214	0.64552	3.127897
56	0	-3.43142	-0.37532	2.157002
57	С	-5.89767	-0.55885	3.740282
58	С	-7.10764	0.002069	4.183034
59	С	-5.98748	-1.64066	2.837956
60	С	-8.35054	-0.48471	3.771052
61	С	-7.21538	-2.13775	2.421288
62	С	-8.41075	-1.56682	2.885171
63	С	-3.38309	1.442663	7.547473
64	С	-3.86576	0.607439	8.566014
65	С	-2.98727	2.745147	7.91411
66	С	-3.95377	1.032923	9.894257
67	С	-3.06189	3.182135	9.230978
68	С	-3.5464	2.328565	10.23463
69	Н	-7.27212	-2.97716	1.73473
70	Н	-5.07893	-2.09425	2.462888
71	Н	-7.08843	0.855659	4.854193
72	Н	-9.25282	-0.00952	4.13724
73	Н	-4.17184	-0.40552	8.320222
74	Н	-4.32936	0.348916	10.64597
75	Н	-2.76164	4.189321	9.502883
76	Н	-2.63617	3.434082	7.151332
77	0	-9.56388	-2.12749	2.415707
78	0	-3.58284	2.850479	11.49518
79	С	-10.8046	-1.58525	2.859028
80	Н	-10.9145	-0.5358	2.560896
81	Н	-11.5822	-2.17928	2.377413

82	Н	-10.9116	-1.66306	3.947495
83	С	-4.07908	2.029812	12.54944
84	Н	-3.46612	1.130386	12.68117
85	Н	-4.02622	2.637133	13.45369
86	Н	-5.11977	1.733875	12.37206

$\mathbf{8}^{+}$ [Ru(bpy)₂(TPA₂OQN)]⁺

Tag		Symbol	Х	Y	Z
	1	Ru	1.185623	-0.03402	0.183167
	2	С	1.799653	1.797801	2.426142
	3	С	0.176303	0.255848	3.087073
	4	С	0.074649	0.830261	4.348248
	5	С	0.871922	1.934533	4.649259
	6	С	1.742303	2.418806	3.678314
	7	С	2.699184	2.229036	1.340227
	8	С	3.429863	1.816684	-0.83826
	9	С	4.324893	2.878551	-0.79164
	10	С	4.399988	3.641636	0.373316
	11	С	3.579269	3.310936	1.446565
	12	Н	-0.42233	-0.60329	2.81043
	13	Н	-0.61756	0.415409	5.071901
	14	Н	0.819836	2.410231	5.622565
	15	Н	2.371076	3.272848	3.895645
	16	Н	3.334795	1.201876	-1.7245
	17	Н	4.943911	3.096237	-1.65437
	18	Н	5.084635	4.479592	0.446865
	19	Н	3.624231	3.892277	2.358637
	20	С	3.059487	-2.18591	-0.58755
	21	С	4.015332	-3.20198	-0.49091
	22	С	4.554154	-3.52807	0.749301
	23	С	4.124736	-2.82483	1.875039
	24	С	3.171674	-1.82619	1.717975
	25	С	2.439816	-1.76482	-1.85796
	26	С	2.730305	-2.33538	-3.10146
	27	С	2.098097	-1.85217	-4.24314
	28	С	1.185883	-0.80309	-4.12077
	29	С	0.936193	-0.27699	-2.85883
	30	Н	4.33765	-3.7336	-1.37741
	31	Н	5.295749	-4.31492	0.833604
	32	Н	4.516455	-3.04024	2.86253
	33	Н	2.807683	-1.25746	2.564836
	34	Н	3.442249	-3.1474	-3.17996

35	Н	2.31602	-2.28797	-5.21217
36	н	0.672569	-0.3953	-4.98403
37	Н	0.242174	0.539596	-2.6961
38	Ν	1.014459	0.720308	2.139455
39	Ν	2.630175	1.490691	0.195661
40	Ν	1.544125	-0.74365	-1.75121
41	Ν	2.639696	-1.50585	0.520824
42	С	-2.71786	1.469046	-0.71258
43	С	-1.54196	0.760563	-0.36687
44	С	-1.68186	-0.62169	0.01158
45	С	-2.94795	-1.2797	0.074621
46	С	-4.12637	-0.52381	-0.22041
47	С	-3.96069	0.798886	-0.61209
48	С	-2.9344	-2.66462	0.388644
49	Н	-4.85699	1.377867	-0.81416
50	С	-1.7442	-3.30581	0.652949
51	С	-0.54097	-2.57683	0.60775
52	Н	-3.86652	-3.21727	0.4093
53	Н	-1.71505	-4.36305	0.891792
54	Н	0.409068	-3.05104	0.825983
55	Ν	-0.50692	-1.28449	0.295382
56	0	-0.33977	1.285452	-0.4099
57	С	-6.42678	-0.94132	-1.14769
58	С	-5.49483	-1.09236	-0.10489
59	С	-5.93492	-1.74823	1.060095
60	С	-7.23078	-2.2436	1.173044
61	С	-8.15429	-2.0779	0.127359
62	С	-7.73214	-1.41157	-1.03517
63	Н	-6.12271	-0.44234	-2.06344
64	Н	-5.25533	-1.86521	1.899049
65	Н	-7.53615	-2.75033	2.082442
66	Н	-8.42902	-1.26949	-1.85456
67	С	-2.70561	5.598788	-2.02089
68	С	-1.78044	5.148375	-1.064
69	С	-1.77507	3.821663	-0.64532
70	С	-2.68453	2.880133	-1.1671
71	С	-3.59661	3.343249	-2.13561
72	С	-3.61788	4.671507	-2.54953
73	Н	-1.06339	5.846785	-0.64454
74	Н	-1.04786	3.501067	0.090035
75	Н	-4.30401	2.650382	-2.58158
76	Н	-4.34001	4.9923	-3.29318
77	Ν	-2.71427	6.954065	-2.44697

78	Ν	-9.4815	-2.56873	0.244732
79	С	-2.54224	8.000508	-1.50007
80	С	-3.17105	7.93941	-0.24477
81	С	-1.7405	9.113715	-1.80511
82	С	-2.9922	8.96486	0.683054
83	н	-3.7988	7.088252	-0.00266
84	С	-1.58205	10.14276	-0.87765
85	Н	-1.24476	9.167089	-2.76875
86	С	-2.20162	10.07479	0.373196
87	Н	-3.48701	8.900575	1.64808
88	Н	-0.95848	10.99545	-1.13125
89	Н	-2.07038	10.87471	1.095435
90	С	-2.90839	7.265089	-3.82133
91	С	-2.25753	6.520309	-4.81937
92	С	-3.75466	8.31994	-4.20264
93	С	-2.45861	6.820965	-6.16601
94	Н	-1.59641	5.708638	-4.53394
95	С	-3.93585	8.62463	-5.5513
96	Н	-4.26742	8.89593	-3.43937
97	С	-3.29422	7.876243	-6.54188
98	Н	-1.94702	6.23449	-6.92401
99	Н	-4.59429	9.443361	-5.82757
100	Н	-3.44321	8.11184	-7.59118
101	С	-10.1144	-3.18749	-0.86891
102	С	-11.457	-2.90582	-1.17234
103	С	-9.40833	-4.09116	-1.68058
104	С	-12.0777	-3.52318	-2.25773
105	Н	-12.0081	-2.20387	-0.55518
106	С	-10.032	-4.68982	-2.77474
107	Н	-8.37353	-4.32143	-1.44928
108	С	-11.3703	-4.41482	-3.06858
109	Н	-13.1166	-3.29356	-2.47732
110	Н	-9.47071	-5.3864	-3.39112
111	Н	-11.8548	-4.88848	-3.91685
112	С	-10.1808	-2.4436	1.477386
113	С	-10.9575	-3.50678	1.96763
114	С	-10.1063	-1.25511	2.223135
115	С	-11.6482	-3.37672	3.172041
116	Н	-11.016	-4.4311	1.402427
117	С	-10.7857	-1.14083	3.435492
118	Н	-9.51538	-0.42572	1.848768
119	С	-11.5642	-2.19703	3.916497
120	н	-12.2437	-4.2093	3.535854

121	Н	-10.7163	-0.21431	3.998447
122	Н	-12.0977	-2.10221	4.857281

Complete reference # 57

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;

Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; P.,

H. H.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota,

K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;

Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,

E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.;

Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J.

E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,

O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;

Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.;

Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Revision A.1 ed.; Gaussian

Inc.: Wallingford, CT., 2009.