Ratiometric and Time-Resolved Fluorimetry from Quantum Dots Featuring Drug Carriers for Real-Time Monitoring of Drug Release in Situ

Rijun Gui, ${ }^{\text {a,b }}$ Ajun Wan, ${ }^{\text {b,c, }{ }^{*}}$ Yalei Zhang, ${ }^{\text {c }}$ Huili Li,,${ }^{\text {a, }}$ and Tingting Zhao ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
${ }^{\mathrm{b}}$ Department of Chemistry, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
${ }^{\text {c }}$ State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center of Facilities Agriculture, Tongji University, Shanghai 200092, P.R. China

* Fax: +86 2154745706 . Tel.: +86 213420 1245. E-mail address: lihl@ sjtu.edu.cn (H. Li); wanajun@ sjtu.edu.cn (A. Wan).

Part S1. Synthesis of MPA-capped CdSe/ZnS QDs (MPA-QDs)

Lipophilic hexadecylamine (HDA)-capped $\mathrm{CdSe} / \mathrm{ZnS}$ QDs (HDA-QDs) were first prepared by using the reported method, ${ }^{1}$ and then modified by MPA to achieve water solubility (MPA-QDs) based on a surface-ligand exchange. ${ }^{2,3}$ In detail, 1 mL of HDA-QDs dissolved in toluene was selected to react (12 h) with 1 mL of MPA in the dark. After surface-ligand exchange between HDA and MPA, these QDs were transferred from toluene to an aqueous phase by adding NaOH solution $(1 \mathrm{M})$ and shaking. The aqueous phase was separated, and the excess of MPA was removed from water-soluble QDs by the precipitation of QDs with acetone, centrifugation ($12000 \mathrm{rpm}, 15 \mathrm{~min}$), followed by re-dispersion of MPA-QDs in Milli-Q water for subsequent experiments.

Reference

(1) Čapek, R. K.; Lambert, K.; Dorfs, D.; Smet, P. F.; Poelman, D.; Eychmüller, A.; Hens, Z. Chem. Mater. 2009, 21, 1743.
(2) Ruedas-Rama, M. J.; Hall, E. A. H. Analyst 2008, 133, 1556.
(3) Patolsky, F.; Gill, R.; Weizmann, Y.; Mokari, T.; Banin, U.; Willner, I. J. Am. Chem. Soc. 2003, 125, 13918.

Part S2. Preparation of PEG-NH2 conjugated MPA-QDs (QDs-PEG)

Under the action of ultrasonic, $1.0 \mathrm{mg} / \mathrm{mL}$ of MPA-QDs dispersed in water was treated with $10 \mathrm{mg} / \mathrm{mL}$ of 6 -arm poly(ethylene glycol)-amine (PEG- NH_{2}) for 10 min . After that, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) hydrochloride was added (10 mM), and the resulting mixed solution was sonicated for another 1 h , followed by adding EDC (40 mM) and N-hydroxysuccinimide (NHS, 20 mM), stirring for 24 h . The reaction was terminated by adding mercaptoethanol. The final reaction solution was further purified by centrifugation (12000 rpm) for 1 h , and the supernatant was collected to obtain products (QDs-PEG), which were properly diluted with PBS to prepare QDs-PEG aqueous suspension (with different pHs) for further uses in following experiments.

Figure S1 Schematic illustration of the chemical structure and preparation procedure of QDs-PEG based on a carboxy-amine coupling reaction.

Figure S2 (a) Wide-filed transmission electron microscope (TEM) images of MPA-QDs (inserted) and QDs-PEG. (b) Normal UV-vis absorption and PL emission spectra of QDs (from QDs-PEG) and ADM. (c) Colloidal stability of QDs-PEG in 1 mM of PBS (pH 7.4) and 10 mM of BSA at $37^{\circ} \mathrm{C}$. (d) Photostability of QDs-PEG and Rhodamine B (RhB) (a commercial fluorescent dye) in PBS ($1 \mathrm{mM}, \mathrm{pH} 7.0$) at $25^{\circ} \mathrm{C}$, continuously excited with a 50 mW of $450 \mathrm{~nm}(475 \mathrm{~nm})$ laser for QDs-PEG (RhB). PL intensities of QDs-PEG (RhB) were measured at different incubation or exposure (excitation) times.

Figure S3 Zeta (ζ) potential of the as-prepared QDs-PEG conjugates (a) and QDs-PEG-ADM drug carriers (b). The two peaks are centerted at -20.5 mV and +14.3 mV , respectively.

Part S3. The calculation of LC and LE of ADM in QDs-PEG-ADM

Loading content (LC) and efficiency (LE) of ADM in QDs-PEG were provided as below. In a typical experiment, $1.0 \mathrm{mg} / \mathrm{mL}$ of QDs-PEG was mixed with $2.0 \mathrm{mg} / \mathrm{mL}$ of ADM in 1 mM of PBS (pH 7.4), and then stirred at room temperature for 12 h in the dark. The reaction products were separated by dialysis (MWCO of 3500) frequently against water for 48 h , together with the bath solution changed with water every 4 h . The as-obtained products were further purified by lyophilizing. The LC and LE were measured by dispersing final products (QDs-PEG-ADM) into PBS ($1 \mathrm{mM}, \mathrm{pH} 7.4$), and determining the absorbance at 475 nm . According to the following equations, LC and LE of ADM loaded into QDs-PEG-ADM were calculated to be 17.4% and 34.1%, respectively.
ADM-LC $(\%)=100 \times$ (weight of ADM loaded into products) / weight of products
ADM-LE $(\%)=100 \times$ (weight of ADM loaded into products) $/$ weight of total ADM

Part S4. The concentration of ADM released from QDs-PEG-ADM

The release of ADM from QDs-PEG-ADM was studied at $37{ }^{\circ} \mathrm{C}$ in 1 mM of PBS with pH of $5.5,6.0,6.5$ and 7.4, respectively. Briefly, 50 mg of QDs-PEG-ADM was dispersed in 100 mL water. An aliquot of 10 mL of the solution was transferred into a dialysis membrane (MWCO of 3500), which was immersed in 1 mM of PBS (40 mL) with different pH values at $37{ }^{\circ} \mathrm{C}$, together with constant shaking (150 rpm). After incubation for desired time intervals ($0-24 \mathrm{~h}$), 1 mL of the solution after ADM release was taken for the concentration analysis of [ADM].

To calculate the concentration of ADM released from QDs-PEG-ADM, aqueous suspension of QDs-PEG-ADM was centrifuged, and washed with water twice to remove releasing ADM. The mass of ADM loaded in QDs-PEGADM (after ADM release, M_{1}) was calculated by measuring the absorbance at 475 nm (UV-vis spectrophotometer based on the Lambert-Beer law). The mass of ADM in the supernatant (i.e., released ADM, M) was calculated by subtracting M_{1} from the initial (i.e., total) mass of $\operatorname{ADM}\left(M_{0}\right)$ in the aqueous suspension, as below;

$$
\begin{equation*}
\text { Released ADM (\%), } M=100 \times\left(M_{0}-M_{1}\right) / M_{0} \tag{3}
\end{equation*}
$$

Figure S4 Time-dependent ADM release profiles from QDs-PEG-ADM ($0.1 \mathrm{mg} / \mathrm{mL}$) dispersed in 1 mM of PBS with different pH values: 5.5, 6.0, 6.5 and 7.4. Results of [ADM] were calculated by measuring the absorbance at 475 nm , using the Lambert-Beer law.

Table S1 Examples of PL lifetimes (τ_{1-4}) and normalized pre-exponential factors (fractional weights, a_{1-4}) of ADM, QDs-PEG and QDs-PEG-ADM at different ADM release times.

${ }^{\mathrm{a}}$ Sample	τ_{1} / ns	$a_{1} / \%$	τ_{2} / ns	$a_{2} / \%$	τ_{3} / ns	$a_{3} / \%$	τ_{4} / ns	$a_{4} / \%$	${ }^{\mathrm{b}} \tau_{\mathrm{ave}} / \mathrm{ns}$	χ^{2}
QDs-PEG	0.53	10	5.83	16	9.97	32	25.14	42	20.54	1.129
ADM	4.69	100							4.69	1.012
QDs-PEG-ADM,	0.31	38	2.53	28	8.04	24	19.78	10	11.93	1.193
10 min										
QDs-PEG-ADM, 1 h	0.35	37	2.93	26	8.52	25	20.13	12	12.69	1.181
QDs-PEG-ADM, 2 h	0.32	37	3.31	27	8.53	23	21.15	13	13.61	1.212
QDs-PEG-ADM, 3 h	0.31	36	3.01	24	8.97	25	21.54	15	14.57	1.158
QDs-PEG-ADM, 6 h	0.36	35	2.19	23	9.28	24	21.67	18	15.74	1.205

${ }^{\mathrm{a}}$ PL lifetimes of QDs from QDs-PEG and QDs-PEG-ADM are measured under 475 nm of λ_{em} ($\lambda_{\mathrm{ex}}=450 \mathrm{~nm}$). For the case of ADM, the λ_{em} is $595 \mathrm{~nm}\left(\lambda_{\mathrm{ex}}=495 \mathrm{~nm}\right)$.
${ }^{\mathrm{b}}$ The $\tau_{\text {ave }}$ is calculated by the following equation, ${ }^{4,5}$ as below;

$$
\begin{equation*}
\tau_{\mathrm{ave}}(\mathrm{~ns})=\sum a_{\mathrm{i}} \cdot\left(\tau_{\mathrm{i}}\right)^{2} / \sum a_{\mathrm{i}} \cdot \tau_{\mathrm{i}}(i=1,2,3,4) \tag{4}
\end{equation*}
$$

Reference

(4) Ruedas-Rama, M. J.; Orte, A.; Hall, E. A. H.; Alvarez-Pez, J. M.; Talavera, E. M. Chem. Commun. 2011, 47, 2898.
(5) Ruedas-Rama, M. J.; Orte, A.; Hall, E. A. H.; Alvarez-Pez, J. M.; Talavera, E. M. Analyst 2012, 137, 1500.

Part S5. Cell apoptosis (fluorescence activated cell sorter, FACS) assay

HeLa cells were loaded into a 6-well plate (1×10^{4} cells/well). After incubation for 24 h , these cells were treated with QDs-PEG at a concentration of $0.1 \mathrm{mg} / \mathrm{mL}$ for 24 h at $37{ }^{\circ} \mathrm{C}$. Afterward, these cells were collected, repeatedly washed with PBS ($1 \mathrm{mM}, \mathrm{pH} 7.4$), followed by incubation with anti-annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI). Single-cell suspensions were analyzed by the FACS. Here, acinomycin D ($0.1 \mu \mathrm{M}$) was used for the apoptosis positive control groups.

For Figure 3a-d in the text (manuscript), the cells appearing in the upper left quadrant $\left(\mathrm{Q}_{1}\right)$ stood for the necrosis
cells, while the cells appearing in the lower left quadrant $\left(\mathrm{Q}_{3}\right)$ denote the normal cells. In addition, those appearing in the upper right quadrant $\left(\mathrm{Q}_{2}\right)$, and in the lower right quadrant $\left(\mathrm{Q}_{4}\right)$ represent the cells in the late and early stages, respectively.

Part S6. In vitro cytotoxicity of QDs-PEG and QDs-PEG-ADM

In detail, HeLa cells were cultured as subconfluent monolayers on $25 \mathrm{~cm}^{2}$ cell culture plates with vent caps in 1 \times minimum essential α medium supplemented with fetal bovine serum (10%) in a humidified incubator at $37{ }^{\circ} \mathrm{C}$ containing $\mathrm{CO}_{2}(5 \%)$. After grown to subconfluence, these cells were dissociated from the surface with a solution of trypsin (0.25%), and aliquots $(100 \mu \mathrm{~L})$ were seeded $\left(1 \times 10^{4}\right.$ cells) into a 96-well plate. After 24 h incubation at $37{ }^{\circ} \mathrm{C}$, the medium was replaced with $10 \mu \mathrm{~L}$ of serum-free Dulbecco modified Eagle medium (DMEM) containing QDs-PEG ($0-1 \mathrm{mg} / \mathrm{mL}$). These cells were incubated for $12,24,48$ and 72 h at $37{ }^{\circ} \mathrm{C}$ in the dark, while those cells treated with alone medium were used for low cell death controls. Finally, cell viabilities were quantitated by using a standard (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) MTT assay.

Subsequently, the QDs-PEG, QDs-PEG-ADM and ADM were added into HeLa cell culture medium at selected concentrations $(0-1 \mathrm{mg} / \mathrm{mL})$. Typically, HeLa cells $\left(1 \times 10^{4}\right.$ cells $/$ well $)$ were incubated in the DMEM containing calf serum (wt. 10%) and 100 units mL^{-1} penicillin in a fully humidified incubator with CO_{2} (vol. 5%) at $37{ }^{\circ} \mathrm{C}$. When the cells reached 80% of confluence with a normal morphology, QDs-PEG, QDs-PEG-ADM and free ADM were added into cell dishes, respectively. Then, these cell dishes containing additives were put into incubators for 72 h at $37{ }^{\circ} \mathrm{C}$. After 72 h incubation, the culture medium was replaced by $20 \mu \mathrm{~L}$ of MTT reagent (diluted in the culture medium, $0.5 \mathrm{mg} \cdot \mathrm{mL}^{-1}$), followed by incubation for an additional 2 h . Finally, MTT medium was carefully removed and $150 \mu \mathrm{~L}$ of dimethyl sulfoxide (DMSO) was added into each well for dissolving crystals, and the absorbance (A) of colored solutions (individual well) was recorded at 570 nm with a Multiskan MK3 enzyme-labeled Instrument. All experiments were performed in triplicate, and each result was averaged. The cell viability (survival) rates were determined according to the following equation as below;

Cell viability rate $(\%)=100 \times\left(A_{\text {test cells }} / A_{\text {control cells }}\right)$

Part S7. The detection of [ADM] in HeLa cells treated with QDs-PEG-ADM

The prepared QDs-PEG-ADM $(0.2 \mathrm{mg} / \mathrm{mL})$ was ultrasonically dispersed in 10 mL of PBS $(1 \mathrm{mM}, \mathrm{pH} 5.5,6.0$, and 6.5 , respectively). Under continuous stirring, 10 mL aqueous suspension of HeLa cells $\left(1 \times 10^{4}\right.$ cells/well) was added to form 20 mL of mixed solution at room temperature. At different time intervals (release times of 1,2,3 and 6 h), the resulting mixed solution was centrifuged, and washed with water twice to remove the free ADM released from QDs-PEG-ADM. Both the initial (before release) and the residual (after release) mass of ADM loaded in the QDs-PEG-ADM were calculated by UV-vis spectrophotometer (absorbance) at 475 nm using the Lambert-Beer law. The real-time concentration of released $\operatorname{ADM}(\%)$ was calculated by the following equation, as below;

Released ADM $(\%)=100 \times\left(M_{\text {initial-ADM }}-M_{\text {residual-ADM }}\right) / M_{\text {initial-ADM }}$
(6)

Table $\mathbf{S} 2$ Results of [ADM] in HeLa Cells Incubated with $0.1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ of QDs-PEG-ADM (in 1 mM of PBS) for Different Times of ADM Release, Measured by the Methods of $I_{\mathrm{QDs}} / I_{\mathrm{ADM}}$ and $\tau_{\text {ave }}$ of QDs.

Sample	${ }^{\mathrm{a}}[\mathrm{ADM}]$	${ }^{\mathrm{b}} I_{\mathrm{QDS}} / I_{\mathrm{ADM}}$	${ }^{\mathrm{c}}$ RSD	${ }^{\mathrm{d}} \tau_{\text {ave }}$	RSD
pH 5.5					
1 h	8.1	8.0	2.9	7.9	2.5
2 h	19.2	19.0	2.6	19.3	2.4
3 h	34.5	34.5	1.8	34.3	3.1
6 h	48.6	48.8	2.0	48.7	0.9
pH 6.0					
1 h	6.0	5.8	2.8	5.9	1.7
2 h	13.8	13.9	3.2	13.8	0.7
3 h	21.4	21.1	1.1	21.5	2.1
6 h	34.3	34.5	2.3	34.0	2.5
pH 6.5					
1 h	3.9	4.1	2.4	4.0	3.0
2 h	9.7	10.0	1.5	9.9	1.9
3 h	15.6	15.5	2.2	15.4	3.3
6 h	24.2	24.2	1.6	24.0	2.7

[^0]
[^0]: Note: All measured results of [ADM]: ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{d}}$ from the methods of absorbance (Part S4, SI), $I_{\mathrm{QDs}} / I_{\mathrm{ADM}}$ (Figure 2d) and $\tau_{\text {ave }}$ of QDs (Figure 2f). All results are expressed as the mean of six repeated measurements. ${ }^{\text {c }}$ The relative standard deviation (RSD) is calculated as (standard deviation $/$ mean) $\times 100 \%$.

