## **Supporting Information**

### 4-Amino-1-(3-mercapto-propyl)-pyridine hexafluorophosphate ionic liquid

#### functionalized gold nanoparticles for IgG immunosensing enhancement

Rui Li<sup>†</sup>, Changxian Liu<sup>†</sup>, Kangbing Wu<sup>‡</sup>, Yin Huang<sup>†</sup>, Yanying Wang<sup>†</sup>, Huaifang Fang<sup>†</sup>, Huijuan Zhang<sup>†</sup>, Chunya Li<sup>\*,†</sup>

<sup>†</sup> Key Laboratory of Analytical Chemistry of the Satate Ethnic Affairs Commission, College of Chemistry and Materials Science, South–Central University for Nationalities, Wuhan 430074, China

<sup>‡</sup>Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

\* Corresponding author. E-mail: lichychem@163.com.

#### **Table of content**

- Scheme S1 Schematic illuminations for the synthesis of AMPPH ionic liquid and AMPPH-AuNPs.
- Scheme S2 Schematic illustrations of the IgG immunosensing system.
- **Figure S1** <sup>1</sup>H-NMR spectrum of 4–amino–1–(3–mercapto–propyl)–pyridine hexafluorophosphate ionic liquid (solvent: D<sub>2</sub>O).
- **Figure S2**<sup>13</sup>C-NMR spectrum of 4–amino–1–(3–mercapto–propyl)–pyridine hexafluorophosphate ionic liquid (solvent: DMSO).
- Figure S3 HPLC-Mass spectroscopy of 4-amino-1-(3-mercapto-propyl)-pyridine hexafluorophosphate ionic liquid.
- Figure S4 Cyclic voltammograms of 5.0 × 10<sup>-3</sup> mol L<sup>-1</sup> K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> at the immunosensors, which were respectively fabricated with AMPPH-AuNPs (a), AuNPs (b) and AMPPH ionic liquid (c), before (black solid line) and after (red dash line) being interacted with 50.0 ng mL<sup>-1</sup> human IgG.
- Figure S5 The oxidation peak current difference of  $5.0 \times 10^{-3}$  mol L<sup>-1</sup> K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> at the immunosensors, which were respectively fabricated with AMPPH-AuNPs (a), AuNPs (b) and AMPPH ionic liquid (c), before and after being interacted with 50.0 ng mL<sup>-1</sup> human IgG.

Figure S6 The oxidation peak current of  $5.0 \times 10^{-3}$  mol L<sup>-1</sup> K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> at the immunosensor, which was blocked with BSA, before (a) and after being interacted with 50.0 ng mL<sup>-1</sup> human IgG (b), AFP (c) and PSA (d);

The oxidation peak current of  $5.0 \times 10^{-3}$  mol L<sup>-1</sup> K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> at the immunosensor, which was not blocked with BSA, before (a') and after being interacted with 50.0 ng mL<sup>-1</sup> human IgG (b'), AFP (c') and PSA (d');

- Table S1 Comparison of analytical characteristics of the human IgG immunosensor with previous reports.
- Table S2 Analytical characteristics of some commercial kits for human IgG.
- Table S3 Influence of potential interferences on the current response of immunosensor (n=5).



Scheme S1 Schematic illumination for the synthesis of AMPPH ionic liquid and AMPPH-AuNPs.



Scheme S2 Schematic illustration of the IgG immunosensing system.



hexafluorophosphate ionic liquid (solvent: D<sub>2</sub>O).



Figure S2 <sup>13</sup>C-NMR spectrum of 4–amino–1–(3–mercapto–propyl)–pyridine hexafluorophosphate ionic liquid (solvent: DMSO).



Figure S3 HPLC-Mass spectrum of 4-amino-1-(3-mercapto-propyl)-pyridine

hexafluorophosphate ionic liquid.



Figure S4 Cyclic voltammograms of  $5.0 \times 10^{-3}$  mol L<sup>-1</sup> K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> at the immunosensors, which were respectively fabricated with AMPPH-AuNPs (a), AuNPs (b) and AMPPH ionic liquid (c), before (black solid line) and after (red dash line) being interacted with 50.0 ng mL<sup>-1</sup> human IgG.



Figure S5 The oxidation peak current difference of  $5.0 \times 10^{-3}$  mol L<sup>-1</sup> K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> at the immunosensors, which were respectively fabricated with AMPPH-AuNPs (a), AuNPs (b) and AMPPH ionic liquid (c), before and after being interacted with 50.0 ng mL<sup>-1</sup> human IgG.



**Figure S6** (A) Cyclic voltammograms of immunosensing system in  $5.0 \times 10^{-3}$  mol  $L^{-1}$  K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> solution at scan rate of 0.02, 0.04, 0.06, 0.08, 0.09, 0.1, 0.12, 0.15, 0.18, 0.2, 0.25, 0.3, 0.4, 0.5 and 0.6 V s<sup>-1</sup> (From curve a to o); (B) The relationship between the current response and the square root of scan rate.



Figure S 7 The oxidation peak current of  $5.0 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ K}_3 \text{Fe}(\text{CN})_6/\text{K}_4 \text{Fe}(\text{CN})_6$  at the immunosensor, which was blocked with BSA, before (a) and after being interacted with 50.0 ng mL<sup>-1</sup> human IgG (b), AFP (c) and PSA (d);

The oxidation peak current of  $5.0 \times 10^{-3}$  mol L<sup>-1</sup> K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> at the immunosensor, which was not blocked with BSA, before (a') and after being interacted with 50.0 ng mL<sup>-1</sup> human IgG (b'), AFP (c') and PSA (d');

| Method         | Method Materials                             |                | Detection limit | Ref.   |
|----------------|----------------------------------------------|----------------|-----------------|--------|
|                |                                              | $(ng mL^{-1})$ | $(ng mL^{-1})$  |        |
| Votammetric    | 4-amino-1-(3-mercapto-propyl)-pyridine       | 0.1 - 100      | 0.08            | This   |
| immunosensor   | hexafluorophosphate modified gold            |                |                 | method |
|                | nanoparticles                                |                |                 |        |
| Amperometric   | iridium oxide matrices                       | 10 - 200       | 8               | 1      |
| immunosensor   |                                              |                | -               | -      |
|                |                                              |                |                 |        |
| Sandwich-type  | SiO <sub>2</sub> nanoparticle                | 1.5 – 2250     | 0.75            | 2      |
| amperometric   |                                              |                |                 |        |
| immunosensor   |                                              |                |                 |        |
| Amperometric   | Multifunctional mesoporous silica            | 0.01 - 10      | -               | 3      |
| immunosensor   | nanoparticles                                |                |                 |        |
| <b>a 1 1 1</b> |                                              | 0.10 10        | 0.00            |        |
| Sandwich-type  | Carbon Sphere/Gold                           | 0.10 - 10      | 0.09            | 4      |
| amperometric   | Nanoparticle                                 |                |                 |        |
| immunosensor   |                                              |                |                 |        |
| Sandwich-type  | gold nanoparticles decorated graphene        | 0.50 - 10      | 0.44            | 5      |
| voltammetric   | nanosheets and palladium nanoparticle        |                |                 |        |
| immunosensor   | decorated carbon nanotube                    |                |                 |        |
| Sandwich-type  | I aver-by-layer assembly of chemical         | 1.0 - 500      | 0.2             | 6      |
| voltammetric   | reduced graphene and carbon nanotubes        | 1.0 500        | 0.2             | 0      |
| immunosensor   | reduced gruphene und europh hunstabes        |                |                 |        |
|                |                                              |                |                 |        |
| Sandwich-type  | poly(m-aminophenol) modified expanded        | 5000 -         | 190             | 7      |
| voltammetric   | graphite electrode                           | 60000          |                 |        |
| immunosensor   |                                              |                |                 |        |
| Potentiometric | Fe <sub>3</sub> O <sub>4</sub> Nanoparticles | 0.1 - 1.2      | 0.023           | 8      |
| immunosensor   |                                              |                |                 |        |
|                | Conducting polymor and carbon                | 0 1 10         | 0.084+0.004     | 0      |
| Amperometric   | nanotube linked hydrazine                    | 0.1 - 10       | 0.084+0.004     | 9      |
| immunosensor   | hanotube-miked nyurazine                     |                |                 |        |
|                |                                              |                |                 |        |
| Voltammetric   | COOH-multiwalled carbon                      | 30 - 1000      | 25              | 10     |
| immunosensor   | nanotubes/Fe <sub>3</sub> O <sub>4</sub>     |                |                 |        |
|                |                                              |                |                 | 11     |
| Electrochemilu | electrochemically reduced graphene oxide     | 0.02 -100      | 0.013           |        |
| minescence     | and gold nanoparticles                       |                |                 |        |
| Amperometric   | ZnO/chitosan composite                       | 2.5 - 500      | 1.2             | 12     |
| immunosensor   | -                                            |                |                 |        |
| <b>A</b>       |                                              | 510 20170      | 190             | 12     |
| Amperometric   | $Cure_2O_4$ magnetic nanoparticles           | 510 - 301/0    | 180             | 13     |
| Flectrochemilu | Thiolacetic acid self-assembled monolayers   | 1.0 - 1000     | 03              | 14     |
| minescence     | on AuSb allov electrode                      | 1.0 1000       | 0.5             |        |
| milesconec     | surrado unoj electrode                       |                |                 |        |

Table S1 Comparison of analytical characteristics of the IgG immunosensor with previous reports.

#### References

- (1) Wilson, M.S.; Rauh, R.D. Biosens. Bioelectron. 2004, 19, 693-699.
- (2) Zhong, Z.Y.; Li, M.X.; Xiang, D.B.; Dai, N.; Qing, Y.; Wang, D.; Tang, D.P. Biosens. Bioelectron. 2009, 24, 2246–2249.
- (3) Yang, M.H.; Li, H.; Javadi, A.; Gong, S.Q. Biomater. 2010, 31, 3281-3286.
- (4) Xu, Q.N.; Yan, F.; Lei, J.P.; Leng, C.; Ju, H.X. Chem. Eur. J. 2012, 18, 4994 4998.
- (5) Leng, C.; Wu, J.; Xu, Q.N.; Lai, G.S.; Ju, H.X.; Yan, F. *Biosens. Bioelectron.* **2011**, 27, 71–76.
- (6) Liu, Y.; Liu, Y.; Feng, H.B.; Wu, Y.M.; Joshi, L.; Zeng, X.Q.; Li, J.H. Biosens.
   Bioelectron. 2012, 35, 63–68.
- (7) Tao,Y.X.; Liu, Q.X.; Li, W.; Xue, H.G.; Qin, Y.; Ge, J.F.; Kong, Y. Synthetic Met.
  2013, 183, 50–56
- (8) Li, J.P.; Gao, H.L. Electroanal. 2008, 20, 881-887.
- (9) Zhu, Y.; Choon W.; Koh, A.; Shim, Y.B. Electroanal. 2010, 22, 2908–2914.
- (10) Zarei, H.; Ghourchian, H.; Eskandari, K.; Zeinali, M. Anal. Biochem. 2012, 421, 446–453.
- (11)Peng, S.S.; Zou, G.Z.; Zhang, X.L.; J. Electroanal. Chem. 2012, 686, 25-31.
- (12) Wang, Z.J.; Yang, Y.H.; Li, J.S.; Gong, J.L.; Shen, G.L.; Yu, R.Q. *Talanta* 2006, 69, 686–690.
- (13) Liu, Z.M.; Yang, H.F.; Li, Y.F.; Liu, Y.L.; Shen, G.L.; Yu, R.Q. Sensor. Actuat.
   *B*, 2006,113, 956–962.
- (14) Wu, A.H.; Sun, J.J.; Fang, Y.M.; Su, X.L.; Chen, G.N. *Talanta* **2010**, 82, 1455–1461.

| Dynamic range  | Detection limit | Sensitivity    | Web site                                     |  |  |
|----------------|-----------------|----------------|----------------------------------------------|--|--|
| $(ng mL^{-1})$ | $(ng mL^{-1})$  | $(ng mL^{-1})$ |                                              |  |  |
| 0.1 - 100      | 0.08            | -              | This method                                  |  |  |
| 1.6 - 100      | 1.6             | 1.6            | http://www.ebioscience.com/human-ig-g-tot    |  |  |
|                |                 |                | al-ready-set-go-elisa-kit.htm                |  |  |
| 0.24 - 1000    | 0.24            | -              | http://www.perkinelmer.com.cn/Catalog/Fa     |  |  |
|                |                 |                | mily/ID/AlphaLISA+Human+IGg+Research         |  |  |
|                |                 |                | +Immunoassay+Kits                            |  |  |
| 0.69 - 500     | -               | -              | http://www.funakoshi.co.jp/data/datasheet/B  |  |  |
|                |                 |                | ET/E88-104.pdf                               |  |  |
| 10-640         | -               | 10             | http://www.clontech.com/takara/US/Product    |  |  |
|                |                 |                | s/Cell_Biology/Miscellaneous/Reagents_Kit    |  |  |
|                |                 |                | s/IgG-Human_EIA_Kit                          |  |  |
| 0.2 - 100      | -               | -              | https://www.mabtech.com/sites/default/files/ |  |  |
|                |                 |                | datasheets/3850-1AD-6.pdf                    |  |  |
| 0.021 - 15     | -               | < 0.15         | http://www.abcam.cn/igg-human-elisa-kit-a    |  |  |
|                |                 |                | b100547.html                                 |  |  |
| 1.25 - 80.0    | 1.2             | -              | http://www.abnova.com/products/products_     |  |  |
|                |                 |                | detail.asp?Catalog_id=KA3817                 |  |  |

# Table S2 Analytical characteristics of some commercial kits for human IgG.

| Antigens |       | Oxidation peak current |       |       |       | A            | RSD |
|----------|-------|------------------------|-------|-------|-------|--------------|-----|
|          |       |                        | (µA)  |       |       | Average (µA) | (%) |
| IgG      | 39.78 | 39.26                  | 39.41 | 41.53 | 39.69 | 39.93        | 2.3 |
| IgG-PSA  | 40.21 | 41.32                  | 39.04 | 40.36 | 40.85 | 40.36        | 2.1 |
| IgG-AFP  | 41.56 | 39.47                  | 41.88 | 40.75 | 39.04 | 40.54        | 3.1 |

 Table S3 Influence of potential interferences on the current response (n=5).