Supporting Information

Selective Preparation of Diamondoid Phosphonates

Andrey A. Fokin,^{*a,b} Raisa I. Yurchenko,^a Boryslav A. Tkachenko,^b Natalie A. Fokina,^b Maria A. Gunawan,^{b,c} Didier Poinsot,^c Jeremy E. P. Dahl,^d Robert M. K. Carlson,^d Michael Serafin,^e Hélène Cattey,^c Jean-Cyrille Hierso,^{*c} and Peter R. Schreiner^{*b}

^aDepartment of Organic Chemistry, Kiev Polytechnic Institute, pr. Pobedy 37, 03056 Kiev, Ukraine, aaf@xtf.kpi.ua

^bInstitute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, 35392 Giessen, Germany, prs@uni-giessen.de

^cUniversité de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue Alain Savary 21078 cedex, Dijon, France, Jean-Cyrille.Hierso@u-bourgogne.fr

^dStanford University, Stanford Institute for Materials & Energy Science, 476 Lomita Mall, Stanford, CA 94305 (USA)

^eInstitute of Inrganic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany

Contents

1. NMR spectra of new compounds	S2
2. X-Ray crystal structure data	S25

1. NMR spectra of new compounds.

[e] 56.6406 55.9134 26.1349 36.8885 36.88592 36.7122 36.6870 33.9799 SI2 œ POCI2 40 35 30 55 45 25 [ppm] 50

Figure 2S. ¹³C-NMR (100 MHz, CDCl₃) spectrum of compound 5.

24.7149

Figure 4S. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 13.

Figure 5S. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **13**.

Figure 6S. ³¹P NMR (162 MHz, CDCl₃) spectrum of compound **13**.

Figure 7S. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 14.

Figure 8S. ¹³C NMR (151 MHz, CDCl₃) spectrum of compound 14.

Figure 98. ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 14.

Figure 10S. ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 15.

Figure 11S. ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 15.

Figure 12S. ³¹P NMR (162 MHz, DMSO-d₆) spectrum of compound 15.

Figure 13S. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 17.

Figure 14S. ¹³C NMR (151 MHz, CDCl₃) spectrum of compound 17.

Figure 15S. ³¹P NMR (243 MHz, CDCl₃) spectrum of compound 17.

Figure 16S. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 19.

Figure 178. ¹³C NMR (151 MHz, CDCl₃) spectrum of compound 19.

Figure 18S. ³¹P NMR (243 MHz, CDCl₃) spectrum of compound 19.

Figure 19S. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 22.

Figure 20S. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 22.

Figure 21S. ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 22.

Figure 22S. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 23.

Figure 238. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 23.

Figure 24S. ³¹P NMR (162 MHz, CDCl₃) spectrum of compound 23.

2. The X-Ray crystal stricture data

Compound **5**: Summary of Data CCDC 983769 Compound **17**: Summary of Data CCDC 981439 Compound **19**: Summary of Data CCDC 981440

Crystals were obtained as described in the Experimental section. For compound **5** the intensity data were collected at 100 K. The structure was solved with the olex2.solve structure solution program, using the charge flipping solution method. The model was refined with full-matrix least-squares methods based on F^2 (SHELXL)¹ with the aid of the Olex2 program.² All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included in their calculated positions and refined with a riding model. The structure was refined as a 2-component inversion twin.

The X-ray crystallographic data for **17** and **19** were collected at 193 K. Mo K α radiation (λ = 0.71069 Å) and a graphite monochromator was used. Cell parameters were refined by using up to 5000 reflections. A sphere of data was collected with the φ -oscillation mode (frame widths: 0.7^o, 1.0^o; number of frames: 265, 190; Irradiation times/frame: 30, and 5 min for **17** and **19** resp.) No absorption corrections were applied. The structures were solved by direct methods in SHELXS97 (all non H-atoms). The H-atoms were found by difference Fourier syntheses. The structures were refined using full-matrix least squares in SHELXL.¹ Refinement was done with F². All non-H atoms were treated anisotropically. All H-atoms were found in the difference Fourier syntheses and were refined isotropically.

Crystallographic data are reported in Tables 1S-10S.

Identification code	(5)
Empirical formula	$C_{14}H_{19}Cl_2OP$
Formula weight	305.16
Temperature/K	100
Crystal system	monoclinic
Space group	P2 ₁
a/Å	6.547(3)
b/Å	14.435(7)
c/Å	7.735(4)
α/°	90
β/°	108.659(18)
γ/°	90
Volume/Å ³	692.5(6)
Z	2
Q _{calc} mg/mm ³	1.463
m/mm ⁻¹	0.569
F(000)	320.0
Crystal size/mm ³	$0.58 \times 0.22 \times 0.08$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection	5.558 to 54.974°
Index ranges	$-8 \le h \le 8, -18 \le k \le 18, -9 \le l \le 10$
Reflections collected	11813
Independent reflections	$3153 [R_{int} = 0.0451, R_{sigma} = 0.0407]$
Data/restraints/parameters	3153/1/164
Goodness-of-fit on F ²	1.092
Final R indexes [I>= 2σ (I)]	$R_1^{a} = 0.0370, wR_2^{b} = 0.0831$
Final R indexes [all data]	$R_1^{a} = 0.0457, wR_2^{b} = 0.0889$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.36
Flack parameter	0.10(11)
N° CCDC	983769

Table S1. Crystal data and structure refinement for diamantane 1-phosphonic dichloride (5).

^a R1=S(||F_o|-|F_c||)/S|F_o|. ^b wR2=[Sw(F_o²-F_c²)²/S[w(F_o²)²]^{1/2} where w=1/[s²(Fo²+(0.0369P)²+0.22P]

Atom	x	y	z	U(eq)
C4	515(5)	2554(2)	5873(5)	26.3(7)
C5	859(7)	4098(3)	7528(5)	37.8(9)
C7	4131(5)	2817(2)	5440(4)	25.9(7)
C8	3793(6)	2933(2)	8637(4)	31.5(8)
С9	397(7)	3562(3)	2500(5)	44.1(10)
C10	3655(6)	3873(2)	5249(5)	31.8(8)
C11	3005(5)	2415(2)	6784(4)	21.6(6)
C12	-318(6)	2102(3)	3958(5)	38.2(9)
C13	69(6)	3610(2)	5675(5)	28.9(7)
C14	858(7)	2522(3)	2709(5)	41.9(10)
C15	3296(6)	2363(3)	3541(5)	37.1(8)
C16	1210(6)	4020(3)	4385(5)	32.5(8)
C17	4469(7)	4366(3)	7097(6)	40.1(9)
C18	3305(7)	3972(3)	8359(5)	36.6(9)
O6	3002(5)	513.0(19)	5726(5)	49.0(8)
P1	3641.7(13)	1180.5(6)	7217.1(13)	29.9(2)
C12	2440.2(17)	817.4(7)	9240.5(15)	45.8(3)
C13	6871.0(15)	1121.3(8)	8502.6(17)	55.9(3)

Table S2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å² $\times 10^3$) for diamantane 1-phosphonic dichloride (**5**). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Table S3. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for diamantane 1-phosphonic dichloride (5). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	\mathbf{U}_{22}	U_{33}	U ₂₃	U ₁₃	U ₁₂
C4	22.2(16)	24.4(16)	34.1(17)	-0.1(13)	11.7(13)	-1.7(13)
C5	55(3)	28.5(18)	37.1(19)	-0.6(15)	24.7(19)	10.4(18)
C7	20.0(16)	31.7(17)	27.4(15)	-0.1(13)	9.4(12)	-1.9(13)
C8	40(2)	29.5(18)	22.1(15)	-2.9(13)	6.4(14)	0.0(16)
C9	43(2)	60(3)	26.5(19)	9.5(18)	6.6(16)	9(2)
C10	35.6(19)	29.5(18)	34.3(18)	6.2(15)	16.7(15)	-4.0(15)
C11	23.3(16)	17.8(14)	24.0(15)	-1.8(12)	8.2(12)	-0.5(12)
C12	24.1(18)	37(2)	45(2)	-11.7(16)	-0.1(15)	-6.0(16)
C13	28.2(18)	26.3(17)	34.4(17)	4.7(14)	12.9(14)	7.9(14)
C14	41(2)	55(3)	23.5(17)	-10.4(16)	2.8(15)	1.3(19)
C15	41(2)	47(2)	27.3(17)	-5.7(16)	17.2(15)	4.8(18)
C16	39(2)	29.7(17)	30.9(17)	8.7(14)	13.5(15)	3.3(16)
C17	44(2)	24.5(18)	48(2)	-2.3(16)	9.6(18)	-7.9(16)
C18	53(2)	27.6(18)	27.9(17)	-7.8(14)	10.9(16)	0.9(17)
06	56.9(19)	28.1(14)	63.8(19)	-12.4(13)	21.7(15)	1.7(13)
P1	25.4(4)	21.1(4)	43.8(5)	1.2(4)	11.8(3)	2.2(4)
Cl2	48.3(5)	37.6(5)	56.7(6)	18.9(4)	24.3(4)	4.2(4)
C13	24.6(4)	47.1(6)	89.7(8)	16.1(6)	9.3(4)	7.5(5)

Table S4. Bond	Lengths for	diamantane	l-phosp	ohonic	dichloride	(5).
	0					

Atom	n Atom	Length/Å	Atom	Atom	Length/Å
C4	C11	1.569(4)	C9 C16		1.533(5)
C4	C12	1.548(5)	C10 C16		1.539(5)
C4	C13	1.551(5)	C10 C17		1.532(5)
C5	C13	1.530(5)	C11 P1		1.836(3)
C5	C18	1.534(6)	C12 C14		1.539(6)
C7	C10	1.554(5)	C13 C16		1.543(5)
C7	C11	1.565(4)	C14 C15		1.536(6)
C7	C15	1.540(5)	C17 C18		1.527(6)
C8	C11	1.551(4)	O6 P1		1.458(3)
C8	C18	1.534(5)	P1 Cl2		2.0325(16)
С9	C14	1.529(6)	P1 Cl3		2.0298(15)

 Table S5. Bond Angles for diamantane 1-phosphonic dichloride (5).

Aton	1 Aton	n Atom	Angle/°	Aton	1 Aton	Atom	Angle/°
C12	C4	C11	111.9(3)	C5	C13	C16	109.9(3)
C12	C4	C13	108.8(3)	C16	C13	C4	109.0(3)
C13	C4	C11	107.8(3)	C9	C14	C12	109.4(3)
C13	C5	C18	109.4(3)	C9	C14	C15	109.5(3)
C10	C7	C11	107.7(3)	C15	C14	C12	109.9(3)
C15	C7	C10	109.1(3)	C14	C15	C7	109.9(3)
C15	C7	C11	112.2(3)	C9	C16	C10	110.5(3)
C18	C8	C11	110.4(3)	C9	C16	C13	110.9(3)
C14	C9	C16	109.0(3)	C10	C16	C13	108.5(3)
C16	C10	C7	109.0(3)	C18	C17	C10	109.1(3)
C17	C10	C7	111.6(3)	C8	C18	C5	108.5(3)
C17	C10	C16	110.1(3)	C17	C18	C5	110.8(3)
C4	C11	P1	110.4(2)	C17	C18	C8	109.3(3)
C7	C11	C4	107.2(2)	C11	P1	Cl2	105.64(11)
C7	C11	P1	110.7(2)	C11	P1	C13	105.67(11)
C8	C11	C4	110.1(3)	06	P1	C11	120.41(17)
C8	C11	C7	110.3(3)	06	P1	Cl2	110.78(15)
C8	C11	P1	108.1(2)	06	P1	C13	110.51(14)
C14	C12	C4	109.9(3)	C13	P1	Cl2	102.17(7)
C5	C13	C4	111.3(3)				

Table S6. Torsion Angles for diamantane 1-phosphonic dichloride (5).

Α	В	С	D	Angle/°	Α	B	С	D	Angle/°
C4	C11	P1	06	56.9(3)	C11	C8	C18	C5	60.7(4)
C4	C11	P1	Cl2	-69.4(2)	C11	C8	C18	C17	-60.2(4)
C4	C11	P1	Cl3	-177.22(18)	C12	C4	C11	C7	56.2(3)
C4	C12	C14	- C9	-61.2(4)	C12	C4	C11	C8	176.2(3)
C4	C12	C14	C15	59.1(4)	C12	C4	C11	P1	-64.5(3)
C4	C13	C16	C9	59.4(4)	C12	C4	C13	C5	-180.0(3)
C4	C13	C16	C10	-62.1(4)	C12	C4	C13	C16	-58.6(4)
C5	C13	C16	C9	-178.4(3)	C12	C14	C15	C7	-59.4(4)
C5	C13	C16	C10	60.1(4)	C13	C4	C11	C7	-63.4(3)
C7	C10	C16	C9	-59.6(4)	C13	C4	C11	C8	56.6(3)
C7	C10	C16	C13	62.2(4)	C13	C4	C11	P1	175.9(2)
C7	C10	C17	C18	-61.3(4)	C13	C4	C12	C14	60.2(4)
C7	C11	P1	06	-61.7(3)	C13	C5	C18	C8	-61.2(4)
C7	C11	P1	Cl2	172.01(19)	C13	C5	C18	C17	58.8(4)
C7	C11	P1	Cl3	64.2(2)	C14	C9	C16	C10	60.4(4)
C8	C11	P1	06	177.4(2)	C14	C9	C16	C13	-60.0(4)
C8	C11	P1	Cl2	51.1(2)	C15	C7	C10	C16	58.7(3)
C8	C11	P1	C13	-56.7(2)	C15	C7	C10	C17	-179.5(3)
C9	C14	C15	C7	60.8(4)	C15	C7	C11	C4	-56.6(3)
C10	C7	C11	C4	63.5(3)	C15	C7	C11	C8	-176.5(3)
C10	C7	C11	C8	-56.5(3)	C15	C7	C11	P1	63.9(3)
C10	C7	C11	P1	-176.0(2)	C16	C9	C14	C12	60.1(4)
C10	C7	C15	C14	-59.7(4)	C16	C9	C14	C15	-60.3(4)
C10	C17	C18	C5	-58.8(4)	C16	C10	C17	C18	59.8(4)
C10	C17	C18	C8	60.7(4)	C17	C10	C16	C9	177.7(3)
C11	C4	C12	C14	-58.8(4)	C17	C10	C16	C13	-60.5(4)
C11	C4	C13	C5	-58.4(4)	C18	C5	C13	C4	61.6(4)
C11	C4	C13	C16	63.0(3)	C18	C5	C13	C16	-59.3(4)
C11	C7	C10	C16	-63.3(3)	C18	C8	C11	C4	-59.4(4)
C11	C7	C10	C17	58.5(4)	C18	C8	C11	C7	58.8(4)
C11	C7	C15	C14	59.5(4)	C18	C8	C11	P1	179.9(3)

Atom	x	у	z	U(eq)
H4	-262	2280	6673	32
H5A	129	3832	8355	45
H5B	506	4766	7372	45
H7	5722	2718	5962	31
H8A	3063	2676	9472	38
H8B	5365	2840	9204	38
H9A	-1172	3668	1948	53
H9B	1136	3836	1687	53
H10	4400	4144	4421	38
H12A	-63	1426	4065	46
H12B	-1889	2208	3421	46
H13	-1519	3712	5128	35
H14	327	2220	1483	50
H15A	4048	2634	2735	44
H15B	3602	1690	3648	44
H16	907	4700	4247	39
H17A	6043	4273	7644	48
H17B	4188	5040	6930	48
H18	3823	4295	9564	44

Table S7. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for diamantane 1-phosphonic dichloride (5).

Table S8. Final atomic coordinates for 17

	Х	у	Z	U _{equiv} or U _{iso}
P1	0.82765(4)	0.27945(8)	0.97341(3)	0.01782(15)
Cl1	0.70463(4)	0.11473(9)	0.95832(3)	0.03107(17)
Cl2	0.77728(4)	0.57070(8)	0.96963(3)	0.02695(16)
01	0.87493(13)	0.2340(3)	1.03590(8)	0.0299(4)
C1	1.05457(15)	0.3583(3)	0.72369(11)	0.0185(4)
C2	0.90344(13)	0.2483(3)	0.77978(10)	0.0128(4)
C3	0.99599(17)	0.3970(3)	0.66002(11)	0.0230(5)
C4	1.00444(14)	-0.0096(3)	0.72092(10)	0.0160(4)
C5	0.90827(15)	0.2503(3)	0.65795(10)	0.0202(4)
C6	1.15082(15)	0.0963(4)	0.78752(12)	0.0243(5)
C7	0.93512(16)	0.0193(3)	0.90174(11)	0.0184(4)
C8	1.0591(2)	0.3612(4)	0.60131(13)	0.0301(5)
C9	0.89848(14)	0.2434(3)	0.90162(10)	0.0150(4)
C10	0.83978(14)	0.2848(3)	0.83820(10)	0.0156(4)
C11	1.09339(14)	0.1354(3)	0.72397(11)	0.0181(4)
C12	0.84519(15)	0.2870(3)	0.71631(11)	0.0193(4)
C13	1.00014(15)	-0.0130(3)	0.84386(10)	0.0169(4)
C14	0.99234(14)	0.3929(3)	0.78320(10)	0.0157(4)
C15	0.94202(14)	0.0248(3)	0.78005(10)	0.0142(4)
C16	1.15494(17)	0.0993(4)	0.66440(13)	0.0265(5)
CI7	0.98693(15)	0.389/(3)	0.90569(11)	0.018/(4)
	1.008//(19)	-0.0077(4)	0.59842(12)	0.0267(5)
C19 C20	1.04998(15) 1.00587(18)	0.3538(3) 0.1287(4)	0.84/12(11)	0.0184(4) 0.0272(5)
C20	1.09587(18)	0.1387(4)	0.60165(12)	0.0273(5)
C21 C22	0.94551(16)	0.0280(3)	0.65721(11)	0.0194(4)
C22	1.08809(15)	0.1324(3)	0.84630(11)	0.0202(5)
	0.8830(10)	-0.009(3)	0.777(11)	0.011(3)
П2 Ц3	0.8793(18) 0.7866(17)	-0.074(4) 0.105(4)	0.6960(12) 0.7142(11)	0.022(0)
ПЭ 114	0.7800(17) 1.0250(17)	0.193(4) 0.152(4)	0.7143(11) 0.8452(12)	0.014(3)
П4 Ц5	1.0230(17) 1.1252(10)	-0.133(4)	0.8433(12) 0.8840(14)	0.018(0)
п5 Н6	1.1232(19) 0.8717(18)	0.107(4) 0.277(4)	0.0040(14) 0.6182(13)	0.020(0) 0.023(6)
H7	0.3717(13) 0.7840(17)	0.277(4) 0.190(3)	0.0182(13) 0.8366(11)	0.025(0)
H8	1.0296(17)	-0.154(4)	0.0300(11) 0.7220(12)	0.013(0) 0.021(6)
H9	0.8201(18)	0.134(4) 0.425(4)	0.7220(12) 0.8371(13)	0.021(0) 0.024(6)
H10	1 110(2)	0.429(4) 0.450(4)	0.0371(13) 0.7262(14)	0.024(0) 0.032(7)
H11	1.105(2)	0.443(4)	0.8487(13)	0.028(7)
H12	1.0227(18)	0.363(4)	0.9436(13)	0.022(6)
H13	0.9677(18)	0.532(4)	0.7807(12)	0.021(6)
H14	1.175(2)	-0.040(4)	0.6651(14)	0.032(7)
H15	0.8901(18)	-0.064(4)	0.6566(12)	0.021(6)
H16	0.9712(19)	-0.006(4)	0.9388(14)	0.026(6)
H17	1.115(2)	0.449(5)	0.6022(15)	0.042(8)
H18	0.8242(18)	0.429(4)	0.7162(13)	0.025(6)
H19	1.209(2)	0.183(4)	0.7897(14)	0.034(7)
H20	0.973(2)	0.015(4)	0.5601(15)	0.031(7)
H21	1.0247(19)	0.391(4)	0.5597(15)	0.030(7)
H22	1.215(2)	0.185(4)	0.6687(14)	0.035(7)
H23	0.965(2)	0.523(5)	0.9087(14)	0.037(8)
H24	1.174(2)	-0.042(5)	0.7901(13)	0.033(7)
H25	0.972(2)	0.538(4)	0.6596(14)	0.031(7)
H26	1.137(2)	0.108(5)	0.5664(16)	0.044(8)
H27	1.031(2)	-0.152(5)	0.5981(14)	0.039(8)

Table S9. Final atomic coordinates for 19

	Х	у	Z	U _{equiv} or U _{iso}
P1	0.04670(6)	0.2500	0.79723(5)	0.02059(16)
Cl1	0.01052(5)	0.12474(4)	0.91170(4)	0.03515(16)
01	0.21109(18)	0.2500	0.78350(17)	0.0326(4)
C1	-0.4284(2)	0.2500	0.52133(17)	0.0107(3)
C2	-0.1244(2)	0.2500	0.63566(18)	0.0133(3)
C3	-0.41391(14)	0.15104(10)	0.43446(13)	0.0111(3)
C4	-0.2355(2)	0.2500	0.32246(17)	0.0113(3)
C5	-0.2908(2)	0.2500	0.66311(18)	0.0132(3)
C6	-0.55318(15)	0.14901(11)	0.29227(13)	0.0131(3)
C7	-0.24688(15)	0.14928(11)	0.40740(13)	0.0115(3)
C8	-0.5940(2)	0.2500	0.54806(19)	0.0162(4)
С9	-0.7310(2)	0.2500	0.4065(2)	0.0183(4)
C10	-0.71782(16)	0.15056(13)	0.32159(15)	0.0187(3)
C11	-0.3714(2)	0.2500	0.17822(18)	0.0134(3)
C12	-0.53590(17)	0.04981(12)	0.20813(15)	0.0193(3)
C13	-0.37104(18)	0.04972(12)	0.18006(14)	0.0201(3)
C14	-0.11049(15)	0.14976(11)	0.55005(13)	0.0137(3)
C15	-0.23381(16)	0.05028(11)	0.32173(14)	0.0179(3)
C16	-0.35766(18)	0.14943(13)	0.09558(14)	0.0196(3)
C17	-0.5368(2)	0.2500	0.20908(18)	0.0127(3)
H1	-0.127(3)	0.2500	0.302(3)	0.018(6)
H2	-0.301(2)	0.1862(16)	0.718(2)	0.021(4)
H3	-0.624(3)	0.2500	0.118(3)	0.021(6)
H4	-0.130(2)	0.0536(17)	0.306(2)	0.026(5)
H5	-0.419(2)	0.0861(16)	0.490(2)	0.019(4)
H6	-0.237(2)	-0.0152(17)	0.377(2)	0.026(5)
H7	-0.361(2)	-0.0146(17)	0.125(2)	0.027(5)
H8	-0.838(4)	0.2500	0.423(3)	0.032(7)
H9	-0.809(3)	0.1486(18)	0.233(2)	0.032(5)
H10	-0.116(2)	0.0861(17)	0.605(2)	0.024(4)
H11	-0.549(2)	-0.0114(18)	0.258(2)	0.029(5)
H12	-0.619(3)	0.0494(19)	0.121(2)	0.038(6)
H13	-0.442(3)	0.1476(18)	0.007(2)	0.031(5)
H14	-0.728(3)	0.0871(19)	0.376(2)	0.032(5)
H15	-0.009(3)	0.1492(17)	0.533(2)	0.028(5)
H16	-0.253(3)	0.1499(18)	0.076(2)	0.035(5)
H17	-0.602(3)	0.1861(17)	0.605(2)	0.031(5)

Table 1S10. Crystallographic data for 17 and 19

	17	19
	[121]tetramantane-	[1(2,3)4]pentamantane-
	dichlorophosphonat	dichlorophosphonat
emp. form.	C ₂₂ H ₂₇ Cl ₂ OP	C ₂₆ H ₃₁ Cl ₂ OP
form. wt.	409.34	461.38
T (K)	193(2)	193(2)
cryst. syst.	monoclinic	monoclinic
space group	$P2_1/n$	P2 ₁ /m
a (Å)	13.7657(10)	8.5927(10)
b (Å)	6.5028(6)	12.5125(11)
c (Å)	20.5800(14)	9.8811(11)
α (°)	90.0	90
β (°)	91.615(8)	107.977(13)
γ(°)	90.0	90
Z	4	2
$V(Å^3)$	1841.5(2)	1010.51(19)
D_{calc} (Mg/m ³)	1.476	1.516
F (000)	864	488
R ₁	0.034	0.0361
wR ₂	0.996	0.1140
N – total	12826	9249
N – indep.	3483	2528
N – obsd.	2537	2115
variables	343	216

Figure 25S. The ORTEP-Plot of 17.

Figure 26S. The ORTEP-plot of compound 19.

Figure 27S. The ORTEP-plot of compound 5.

Additional References

(1) Sheldrick, G. M. Acta Crystallographica Section A 2008, 64, 112–122.

(2) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341.