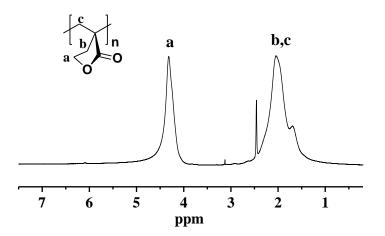

Supporting Information

Coordination Ring-opening Copolymerization of Naturally Renewable α-Methylene-γ-

butyrolactone into Unsaturated Polyesters


Miao Hong and Eugene Y.-X. Chen^*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA

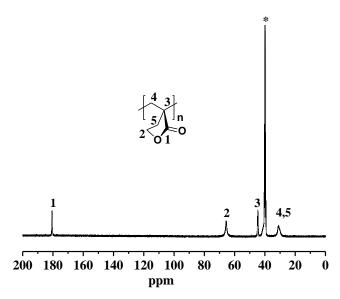


Figure S1. GPC (in DMF) trace of the polymer product derived from the copolymerization of neat ε -CL and MBL (1:1) by Bi(OTf)₃ at at 130 °C, showing a bimodal MW distribution: $M_w = 145$ kg/mol, PDI = 1.24 (~16%), $M_w = 8.35$ kg/mol, PDI = 1.33 (~84%).

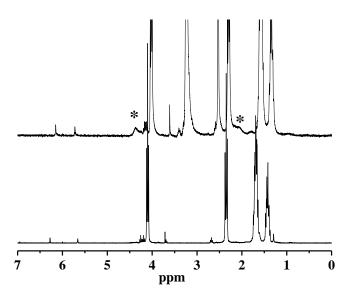

^{*} Corresponding author. E-mail: eugene.chen@colostate.edu

Figure S2. ¹H NMR spectrum (DMSO- d_6) of PMBL produced by catalyst **1** ($M_w = 62.5$ kg/mol, PDI = 2.31). Unlabeled sharp peaks were originated from the NMR solvent.

Figure S3. ¹³C NMR spectrum (DMSO-*d*₆) of PMBL produced by catalyst **1** ($M_w = 62.5$ kg/mol, PDI = 2.31). The starred peak was originated for the NMR solvent.

Figure S4. ¹H NMR spectra of the polymer product obtained by $Y(CH_2SiMe_3)_3(THF)_2$ (4) (run 4) in: DMSO-*d*₆ (top) and CDCl₃ (bottom), showing the formation of 18 mol% PMBL (starred peaks), in addition to the desired ring-opening copolymer.