Supporting Information

Thermodynamic Contributions to the Stability of the Insulin Hexamer

George P. Lisi, Chien Yi M. Png, and Dean E. Wilcox

Table of Contents

Page 2

Figure S1. MALDI-TOF spectra of human insulin samples

Page 3

Figure S2. Reversibility of DSC unfolding of T₆ human insulin hexamer

Page 4

Figure S3. Scan rate dependence of R₆' insulin hexamer unfolding profiles

Table S1. Buffer dependence of porcine insulin DSC values

Page 5

Figure S4. CD spectra of human insulin hexamer forms

Page 6

Figure S5. Fitted thermal unfolding from CD of human insulin hexamer forms

<u>Page 7</u>

Figure S6. Effect of stoichiometric and excess Zn^{2+} on DSC of human insulin unfolding

Table S2. Thermodynamics for human insulin with stoichiometric and excess Zn^{2+}

<u>Page 8</u>

Experimental Procedure. GuHCl unfolding monitored by CD and fitting of the data **Figure S7.** Fitted GuHCl unfolding from CD of human insulin hexamer forms

Page 9

Table S3. Thermodynamic values for bovine insulin hexamers with stoichiometric Zn^{2+} **Table S4.** Thermodynamic values for bovine insulin hexamers with excess Zn^{2+}

Figure S1. MALDI-TOF mass spectra of (**top**) 25 μ M human insulin, showing predominantly monomer (*m/z* 5811.60), and (**bottom**) 75 μ M human insulin, showing predominantly dimer (*m/z* 11614.17).

Figure S2. Representative DSC scans of T_6 human insulin showing the thermal reversibility upon repeated heating to 80-90 °C and subsequent cooling to 20 °C.

Figure S3. Representative baseline-adjusted, concentration-normalized DSC endotherms of 0.10 mM human insulin with the R_6 ' hexamer structure at scan rates of 45 °C/hr (blue), 60 °/hr (red) and 80 °C/hr (green).

Buffer	Parameters	Аро	<i>T</i> ₆	T ₆ '	<i>T</i> ₃ <i>R</i> ₃ '
ACES	$T_{\rm m}$ (°C)	65 ± 1	77 ± 1	78 ± 1	79 ± 1
	ΔH_{cal} (kcal/mol)	12 ± 3	14 ± 1	16 ± 1	18 ± 1
Bis-Tris	$T_{\rm m}$ (°C)	74 ± 0.5	78 ± 0.2	83 ± 0.1	81
	ΔH_{cal} (kcal/mol)	18 ± 2	24 ± 4	30 ± 1	30
Tris	$T_{\rm m}$ (°C)	64 ± 0.3	78 ± 2	77	80 ± 1
	$\Delta H_{\rm cal}$ (kcal/mol)	14 ± 1	15 ± 0.3	23	23 ± 1

Table S1. Average DSC parameters for 0.10 mM porcine insulin with the indicated hexamer structure in different buffers at 50 mM concentration, pH 7.4.

Figure S4. Room temperature UV-CD spectra of 40 µM human insulin with the indicated hexamer structure in 10 mM phosphate buffer, pH 7.4.

Figure S5. Representative plots of thermal unfolding monitored by CD at 220 nm for 10 μ M Apo, T_6 , T_6 ', T_3R_3 , T_3R_3 ' and R_6 ' human insulin in 10 mM phosphate buffer, pH 7.4; best fit line from fitting the data to Equation 1.

Hexamer	$\Delta G_{\rm u} (\rm kcal/mol)^a$	$\Delta G_{\rm u}$ (kcal/mol) ^b	ΔH_{cal} (kcal/mol)	$\Delta S_{\rm u}$ (kcal/mol)
Аро	0	5.6 ± 0.6	64 <u>+</u> 1	189 ± 3
$T_6 (2 Zn^{2+}/Hex)$	1.8 ± 1.0	11.1 ± 0.9	106 ± 2	311 ± 6
T_6 (9.6 Zn ²⁺ /Hex)	10.1 ± 0.9	24.1 ± 1.2	174 ± 3	490 ± 7

Table S2. Thermodynamic values for the thermal unfolding of apo and of T_6 human insulin with stoichiometric and excess Zn^{2+} in 50 mM Tris buffer, pH 7.4; ^a338 K reference temperature; ^b298 K reference temperature.

Figure S6. Representative baseline-adjusted, concentration-normalized DSC endotherms of 0.10 mM human insulin in (A) 50 mM Tris buffer, pH 7.4 and (B) 10 mM phosphate buffer, pH 7.4; (bottom) apo insulin, (middle) $2 \operatorname{Zn}^{2+}$ /hexamer and (top) 9.6 Zn^{2+} /hexamer.

Materials and Methods

Chaotrope-induced protein unfolding involved addition of guanidine hydrochloride (GuHCl) to insulin samples in 10 mM sodium phosphate buffer, pH 7.4. Samples were incubated with GuHCl for two hours prior to ellipticity measurements. Changes in the protein 2° structure were monitored by the ellipticity at 220 nm measured with a JASCO J-815 CD spectrometer. The concentration of GuHCl at each titration point was determined by the refractive index.¹ Non-linear curve fitting was carried out using MATLAB and Equation 3, as described previously,²

$$f(x) = \frac{[(m_f x + b_f) + (m_u x + b_u)]exp\left[\frac{m(x - [D]_{50\%})}{RT}\right]}{1 + exp\left[\frac{m(x - [D]_{50\%})}{RT}\right]}$$
(3)

where m_f , b_f and m_u , b_u are the slope and y-intercept for the folded (low [GuHCl]) and unfolded (high [GuHCl]) regions, *R* is the gas constant (8.314 J/mol K), *T* is the experimental temperature and [D]_{50%} is the concentration of denaturant at which 50% of the protein is unfolded (transition midpoint). The constant *m* has been discussed by Fersht and others,^{2,3} and often provides an indication of the degree of unfolding. In this fitting model, *x* reflects changes with respect to the concentration of the denaturant.

- 1) Krivacic, J.R., and Urry, D.W. (1971) Ultraviolet refractive indices of aqueous solutions of urea and guanidine hydrochloride. *Analyt. Chem.* 43, 1508-1510.
- 2) Fersht A. (1999) *Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding.* W.H. Freeman & Company, Orange, VA.
- 3) Myers, J.K., Pace, C.N., and Scholtz, J.M. (1995) Denaturant *m* values and heat capacity changes: relation to changes in accessible surface area of protein unfolding. *Protein Sci. 4*, 2138-2148.

Figure S7. Representative plots of chaotrope (GuHCl) unfolding monitored by CD at 220 nm; best fit line from fitting the data to Equation 3, which gave the following *m* parameter and [GuHCl]_{50%}, respectively: **Apo** (0.79 kcal/L, 3.6 M GuHCl), **T**₆ (1.3 kcal/L, 3.1 M), **T**₃**R**₃' (1.1 kcal/L, 4.6 M).

Hexamer	$\Delta \boldsymbol{G}_{u}$ (kcal/mol) ^a	ΔG_{u} (kcal/mol) ^b	ΔH_{cal} (kcal/mol)	ΔS_u (cal/molK) ^c
Аро	0	5.6 ± 1.0	69 ± 3	211 ± 9
Τ ₆	1.8 ± 2.0	7.9 ± 1.7	81 ± 3	238 ± 7
Τ ₆ '	3.9 ± 1.9	11.1 ± 1.8	100 ± 3	288 ± 8
$T_{3}R_{3}$	2.1 ± 1.1	9.5 ± 1.1	95 ± 3	279 ± 9
<i>T</i> ₃ <i>R</i> ₃ '	4.4 ± 2.7	10.7 ± 2.5	94 ± 2	269 ± 6
R 6'	9.5 ± 1.1	20.9 ± 1.3	153 ± 3	430 ± 8

Table S3. Thermodynamic values for the thermal unfolding of bovine insulin hexamers (2 Zn^{2+} per hexamer) determined by DSC on a per hexamer basis; ^acalculated with Equation 2 and 335 K (Apo T_m) reference temperature; ^bcalculated with Equation 2 and 298 K reference temperature; ^cdetermined at T_m by $\Delta H_{cal}/T_m$.

Hexamer	$\Delta \boldsymbol{G}_{u}$ (kcal/mol) ^a	$\Delta \boldsymbol{G}_{u}$ (kcal/mol) ^b	ΔH_{cal} (kcal/mol)	ΔS_u (cal/molK) ^c
Аро	0	5.6 ± 1.0	69 ± 3	211 ± 9
Τ ₆	9.0 ± 1.9	21.5 ± 1.9	158 ± 4	445 ± 10
<i>T</i> ₆ '	9.1 ± 1.1	21.7 ± 1.1	159 ± 3	448 ± 8
T_3R_3	6.5 ± 1.1	16.5 ± 1.2	130 ± 3	369 ± 9
<i>T</i> ₃ <i>R</i> ₃ '	6.1 ± 1.9	14.9 ± 1.8	119 ± 3	337 ± 8
<i>R</i> ₆ '	9.4 ± 1.8	21.4 ± 1.9	154 ± 4	431 ± 11

Table S4. Thermodynamic values for the thermal unfolding of bovine insulin hexamers (9.6 Zn^{2+} per hexamer) determined by DSC on a per hexamer basis; ^acalculated with Equation 2 and 335 K (Apo T_{m}) reference temperature; ^bcalculated with Equation 2 and 298 K reference temperature; ^cdetermined at T_{m} by $\Delta H_{\text{cal}}/T_{\text{m}}$.