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Carrier transport modeling

Our transport model is based on the linearized Boltzmann transport equation (BTE) with the
relaxation time approximation. All the transport properties are expressed as integral functions of

the differential conductivity g4(E) over energy E defined by
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where e is the electron charge, 7 is the relaxation time, ppos is the density of states, v is the carrier
velocity and fj is the Fermi-Dirac distribution. For multiple-band transport in PbTe, the transport
properties are calculated in each of the bands with a relative position of the Fermi level Er from

the band edge and the contributions from each band are then added together to find the total



transport values in the bulk. The electrical conductivity o, the Seebeck coefficient S, the Lorenz

number L, and the electronic thermal conductivity x, are given, respectively, by
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where X is sum over the bands, ¢ is —e for conduction bands, and +e for valence bands, T is the
absolute temperature, and Er is the relative position of the Fermi level to each of the band edges.

(S5) is known as the Wiedemann-Franz relation.

For the transport modeling of p-type PbTe, both the L and X valence valleys are taken into
account. As discussed in the main text, we chose 700 K as the band convergence temperature of
the two valence valleys for better fitting of the experimental Seebeck coefficients. The
conduction band at the L valley is also considered in the modeling, but it turns out that the
contribution of electrons in the transport properties is much smaller than that of holes in all of the

unintentionally p-type doped PbTe samples studied in this work.

According to our BTE calculations, the Lorenz number calculated by (S4) is much lower
than the conventional value (2.45 x 10®* W Q' K™) for all the three samples. For sample SPS405,
the Lorenz number steadily decreases from 1.44 x 10® to 1.37 x 10* W Q' K as temperature
increases from 300 K to 400 K. For sample SPS450 and SPS500, the Lorenz number is almost

constant to be 1.35 ~ 1.38 x 10® W Q' K over the temperature range.



The relaxation time is determined by several major scattering mechanisms in PbTe. Acoustic
phonon deformation potential scattering, polar optical phonon scattering, and ionized impurity
scattering are included in our calculations for bulk PbTe, although it turns out that the acoustic
phonon deformation potential scattering is a predominant scattering mechanism. In our
nanostructured PbTe, additional scattering mechanisms such as grain boundary and defect
scatterings can be very strong and reduce the mobility quite significantly. We modeled this
additional scattering using the short-range defect scattering and the ionized (long-range) impurity

scattering mechanisms.

The energy-dependent scattering time by acoustic phonon deformation potential for a non-
parabolic band is given by
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where C is the elastic constant, m, is the density of states effective mass for a single valley, D,
is the acoustic phonon deformation potential, and « is the non-parabolicity.

The scattering time by ionized impurities (II) is given by
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where Ny is the ionized impurity density, &, and & are the static permittivity values, and
8, = h? /[(8m,r E) . ry is the screening length given by 1/, =(e* /&, )J:0 (=0fy 1 OE) ppos (E)dE .

The scattering time by short-range deformation potential of defects is given by
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where A=aE(1-K,)/(1+2aF), B=8aE(1+aE)K, /3(1+ 2aE)?, Ngp is the defect density,

and Kgp is the ratio of the short range deformation potential coupling constants of valence and
conduction band defects. The scattering parameters used for fitting of the transport properties of
each sample are given in Table S-1.

With the assumption that the different scattering events are independent of each other, the total
energy-dependent scattering time can be obtained by
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This total scattering time is plugged into (S1) to calculate the differential conductivity as a
function of energy, which is then used to calculate the thermoelectric properties of the

nanostructured PbTe using (S2) through (S5).

TABLE S-1. Scattering parameters used for fitting of transport properties of the three PbTe

samples
Sample Dy(V) | Ng(em®) | Usp(m’) | Nsp(em®) | K
SPS405 320 0 14x10” 1 2x10% 0 1x10° 1 15
SPS450 32 C42x10° 1 2x10% 1 6x 107 1.5
SPS500 32 C 44x10° 1 2x10% 1 1.7x10%° | 1.5




