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Carrier transport modeling 

Our transport model is based on the linearized Boltzmann transport equation (BTE) with the 

relaxation time approximation. All the transport properties are expressed as integral functions of 

the differential conductivity σd(E) over energy E defined by 

 σ d E( ) = e2τ E( )vx
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where e is the electron charge, τ is the relaxation time, ρDOS is the density of states, v is the carrier 

velocity and f0 is the Fermi-Dirac distribution. For multiple-band transport in PbTe, the transport 

properties are calculated in each of the bands with a relative position of the Fermi level EF from 

the band edge and the contributions from each band are then added together to find the total 



transport values in the bulk. The electrical conductivity σ, the Seebeck coefficient S, the Lorenz 

number L, and the electronic thermal conductivity κe are given, respectively, by 

 σ = σ d  E( )dE∫∑ , (S2) 
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∫ σ d  E( ) dE∑ − S2 , (S4) 

     TLe σκ = ,          (S5) 

where Σ is sum over the bands, q is −e for conduction bands, and +e for valence bands, T is the 

absolute temperature, and EF is the relative position of the Fermi level to each of the band edges. 

(S5) is known as the Wiedemann-Franz relation.  

For the transport modeling of p-type PbTe, both the L and Σ valence valleys are taken into 

account. As discussed in the main text, we chose 700 K as the band convergence temperature of 

the two valence valleys for better fitting of the experimental Seebeck coefficients. The 

conduction band at the L valley is also considered in the modeling, but it turns out that the 

contribution of electrons in the transport properties is much smaller than that of holes in all of the 

unintentionally p-type doped PbTe samples studied in this work.  

According to our BTE calculations, the Lorenz number calculated by (S4) is much lower 

than the conventional value (2.45 × 10
-8

 W Ω
-1

 K
-2

) for all the three samples. For sample SPS405, 

the Lorenz number steadily decreases from 1.44 × 10
-8

 to 1.37 × 10
-8

 W Ω
-1

 K
-2

 as temperature 

increases from 300 K to 400 K. For sample SPS450 and SPS500, the Lorenz number is almost 

constant to be 1.35 ~ 1.38 × 10
-8

 W Ω
-1

 K
-2

 over the temperature range.  



The relaxation time is determined by several major scattering mechanisms in PbTe. Acoustic 

phonon deformation potential scattering, polar optical phonon scattering, and ionized impurity 

scattering are included in our calculations for bulk PbTe, although it turns out that the acoustic 

phonon deformation potential scattering is a predominant scattering mechanism. In our 

nanostructured PbTe, additional scattering mechanisms such as grain boundary and defect 

scatterings can be very strong and reduce the mobility quite significantly. We modeled this 

additional scattering using the short-range defect scattering and the ionized (long-range) impurity 

scattering mechanisms.  

The energy-dependent scattering time by acoustic phonon deformation potential for a non-

parabolic band is given by 
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where Cl is the elastic constant, md
*
 is the density of states effective mass for a single valley, Da 

is the acoustic phonon deformation potential, and α is the non-parabolicity. 

The scattering time by ionized impurities (II) is given by 
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where NII is the ionized impurity density, ε∞ and ε0 are the static permittivity values, and 
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The scattering time by short-range deformation potential of defects is given by 
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where )21/()1( EKEA SD αα +−= , 2)21(3/)1(8 EKEEB SD ααα ++= , NSD is the defect density, 

and KSD is the ratio of the short range deformation potential coupling constants of valence and 

conduction band defects. The scattering parameters used for fitting of the transport properties of 

each sample are given in Table S-1. 

With the assumption that the different scattering events are independent of each other, the total 

energy-dependent scattering time can be obtained by 
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This total scattering time is plugged into (S1) to calculate the differential conductivity as a 

function of energy, which is then used to calculate the thermoelectric properties of the 

nanostructured PbTe using (S2) through (S5).  

 

TABLE S-1. Scattering parameters used for fitting of transport properties of the three PbTe 

samples 

Sample Da (eV) NII (cm
-3

) USD (J/m
3
) NSD (cm

-3
) KSD  

SPS405 32 1.4 × 10
21

 2 × 10
-46

 1 × 10
20

 1.5 

SPS450 32 4.2 × 10
20

 2 × 10
-46

 6 × 10
19

 1.5 

SPS500 32 4.4 × 10
20

 2 × 10
-46

 1.7 × 10
20

 1.5 

 

 

 


